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In cove-edged zigzag graphene nanoribbons (ZGNR-Cs), one terminal CH group per length unit is
removed on each zigzag edge, forming a regular pattern of coves that controls their electronic structure.
Based on three structural parameters that unambiguously characterize the atomistic structure of ZGNR-Cs,
we present a scheme that classifies their electronic state (i.e., if they are metallic, topological insulators, or
trivial semiconductors) for all possible widths N, unit lengths a, and cove position offsets at both edges b,
thus showing the direct structure-electronic structure relation. We further present an empirical formula to
estimate the band gap of the semiconducting ribbons from N, a, and b. Finally, we identify all
geometrically possible ribbon terminations and provide rules to construct ZGNR-Cs with a well-defined
electronic structure.
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With the emergence of precision chemistry, the atomi-
cally precise synthesis of graphene nanoribbons (GNRs)
with well-defined widths, edge structures, and terminations
has become possible [1–4]. Besides GNRs with zigzag or
armchair edge termination, more complex edges have also
been realized [2–13]. The edges have a determinant impact
on the electronic structure of the GNRs. In their seminal
work, Lee et al. [14] have demonstrated topologically
nontrivial cove-edged zigzag GNRs (ZGNR-Cs) and the
influence of cove placement and ribbon width. The
introduction of coves—missing CH groups at both edges
of an inherently metallic zigzag GNR, forming a super-
lattice—opens a band gap. ZGNR-Cs have been realized
experimentally [7,13]; but, up to now, their topological
states have been predicted only by theory [15]. Although
many of the ZGNR-Cs have been studied to date, there is
not yet any rule established that connects their structural
topology with their electronic state. Such a connection is
well known and extremely useful for carbon nanotubes,
where the chirality indexes ðm; nÞ define the tube’s elec-
tronic state, being either metallic if ðm − nÞ=3 is an integer
or semiconducting otherwise [16–18]. For armchair GNR
(AGNR), the dependence of the topological invariant on the
width and unit cell is known [19]. Here, we report the direct
relation between three structural parameters that identify
ZGNR-Cs (see Fig. 1) and the electronic state, and we
discuss the impact of termination effects.
Unambiguous labeling of cove-edged ZGNRs requires

three parameters: the width N, counted as the number of
zigzag rows of carbon atoms ðN ∈ N; N ≥ 3Þ; the distance
between coves on the same edge a in units of hexagonal
rings ða ∈ N; a ≥ 2Þ, which also gives the unit cell length;
and the shortest offset between adjacent coves on opposite

edges b (b ∈ ½0; a=2�). The N-ZGNR-Cða; bÞ, that is, the
ZGNR with width N, edge length a and offset b as
illustrated in Figs. 1(a) and 1(b), labels all structurally
possible regular ZGNR-Cs and is equivalent to the

FIG. 1. (a) Visualization of parameters N, a, and b in
N-ZGNR-Cða; bÞ. (b) Schematic representation of parameters
and positions of reference points S and L relative to cove
positions. (c) Termination types (red and blue) at boundary of
unit cell (orange) for different values of α in 5-ZGNR-Cð3; 1

2
Þ.
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N-CZGNR-ðm; nÞ introduced by Wang et al. with
a ¼ mþ 1 [7]. For even N, b is an integer; whereas for
odd N, b is a half-integer. These parameters directly re-
late to the Frieze groups [20] as p2mm for b ¼ 0, p2mg
for b ¼ a=2, and p211 otherwise. This is shown for
exemplary structures in Fig. S1 in the Supplemental
Material (SM) [21].
For a given ZGNR-C with b ≠ a=2, there are two distinct

inversion centers in the unit cell, henceforth called reference
points S (denoting the inversion center at the shorter offset
between the coves) and L (located at the longer offset), as
shown in Fig. 1(b). S and L are shifted by half a lattice vector
along the ribbon with respect to one another. For b ¼ a=2, S
andL are equivalent. In general, the position of the unit cell of
any structure is arbitrary. Here, we concentrate on GNRs as
obtained in bottom-up synthesis from well-defined mono-
mers. Typically, either one centrosymmetric or two identical
building blocks are used [2]. As a consequence, the unit cell
becomes centrosymmetric and has inversion centers at the
boundaries. Illustrative examples can be found in published
bottom-up syntheses of ZGNR-Cs [7,13]. The molecular
building blocks determine not only the ribbon geometry but
also its terminal ends. Therefore, cell angles of α ¼ 60, 90,
and 120° are chosen because they coincide with the carbon-
carbon bond orientation. The unit cell boundary then cuts
through the ribbon in different ways, creating either an
armchair, zigzag, or bearded termination type [see Fig. 1(c)].
The tight-binding (TB) method is applied to calculate

electronic properties and topological invariants with the
PythTB package [22] (see SM Sec. S1 for details [21]). By
considering one π electron per carbon atom, the TB model
Hamiltonian with only first-neighbor interactions t1 ¼ −1
and on-site energies εi is

H ¼
X
i

εic
†
i ci þ

X
hi;ji

t1c
†
i cj: ð1Þ

To characterize the topological properties, the Zak phase
[23] was calculated as an integral of the Berry connection
ihunkj∇kunki over the Brillouin zone (BZ) summed over all
occupied states,

γ ¼ i
Xocc:
n¼1

Z
C
hunkj∇kunki · dk; ð2Þ

whereC is an open path over theBZ.This can be divided into
two parts: 1) integrating within the first BZ, and 2) crossing
the boundary from the last point of the cell to the first point of
the next periodic cell. γ is then calculated numerically as in
[24] using the gauge-periodic-boundary condition,

unkfinal ¼ e−iGrunkinitial ; ð3Þ

with reciprocal-lattice vector G. For systems with inversion
or mirror symmetries in the unit cell, the Zak phase is
quantized to zero or π when one of the inversion centers
coincides with the real-space coordinate origin [25] (as it is

the case for all systems studied here), and theZ2 topological
invariant is obtained from

Z2 ¼
�
γ

π

�
mod 2: ð4Þ

Following Fu and Kane [26], Z2 values for systems with
inversion symmetry can also be obtained from the parity of
occupied states at time-reversal invariant momentum
(TRIM) points as

ð−1ÞZ2 ¼
Y
m

Yocc:
n

ξðψnÞ; ð5Þ

wherem are the TRIM points, and ξðψnÞ is the parity of the
nth occupied band.
The topological signatures obtained by the Zak phase and

parity calculations agree for all our systems. For systems
without inversion symmetry, alternative methods are avail-
able [27,28]. However, motivated by the available experi-
ments, we restrict our analyses to symmetric ZGNR-Cs.
By sampling the configuration space of cove-edged

ZGNRs, we find that the structural parameters N, a, and
b determine the ribbon’s electronic state to be either
metallic or semiconducting, as well as their Z2 invariant.
Using a classification based on the reference points S and L
at the unit cell boundary, we observe that Z2 is uniquely
given by the structural parameters, with a 4p periodicity in
N (p ¼ 1; 2;…) as shown for small a in Figs. 2(a)–2(d) and
extended to large a in Fig. S2 [21]. A classification scheme
of the electronic character of cove-edged ZGNR structures
is given in Fig. 2(e).
For even N, the topological properties only depend on

the reference point at the unit cell boundary, independent of
a and b, with the exception of the metallic ZGNR-C with
b ¼ a=2 [Figs. 2(a) and 2(b)]. The N ¼ 4pðp ¼ 1; 2;…Þ
ZGNR-C with S and the N ¼ 4pþ 2 ZGNR-C with L at
the boundary are topologically nontrivial, whereas the
others are trivial semiconductors. This can be reflected
in the expression Z2 ¼ ½ðN=2Þ þ 1� mod 2 for S and
Z2 ¼ ðN=2Þ mod 2 for L. For odd N, the same values
of Z2 are obtained for N ¼ 4pþ 1 and N ¼ 4pþ 3 with
the same reference point. The topological properties
become independent of a and only change with the
value of b as Z2 ¼ ðb − 1

2
Þ mod 2 for reference point S

[Fig. 2(c)]. For L, the Z2 invariant interchanges with both a
and b because Z2 ¼ ðaþ bþ 1

2
Þ mod 2 in a checkerboard

pattern [Fig. 2(d)]. These rules can be generalized by a
single function for ZS

2 as the value of Z2 for reference point
S, which is given by

ZS
2 ¼ ðN þ 1Þ mod 2 ·

�
N
2
þ 1

�
mod 2

þ ðNÞ mod 2 ·

�
b −

1

2

�
mod 2; ð6Þ
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and a function relating ZS
2 to Z

L
2 (Z2 for reference point L),

which is given by

ZL
2 ¼ jðNaþ 1Þ mod 2 − ZS

2 j: ð7Þ

The value of Z2 does not depend on the termination type
of the unit cell; however, the positions of S and L (Fig. 1)
can affect Z2. As shown in Fig. 3, for the unit cells of a
given N-ZGNR-Cða; bÞ having the same reference point at
the boundary, the same value of Z2 is obtained. It is
independent of the realized termination type being an
armchair, a zigzag, or bearded.
The change of Z2 upon exchange of S and L at the unit

cell boundary is apparent from the parity of the electronic
states. In the TB formalism, the eigenstate ψn is expressed
as

ψn ¼
X
i

cn;ieikri jϕii ¼
X
i

c̃n;ijϕii; ð8Þ

where cn;i are the components i of eigenvector cn to the
basis functions ϕi, and r is the position of site i. When
treated as a periodic infinite system, the same ZGNR-C will
always give the same set of eigenvectors cn. The parity is
only affected by the structure of the ribbon itself and by the

choice of its terminal position (S or L at the boundary).
When switching the boundary between reference points S
and L, the unit cell is shifted by half a lattice vector. At
k ¼ 0, this transformation has no effect because eikri ¼ 1.
On the other hand, at k ¼ π, half of the elements in c̃n;i are
multiplied by −1, and parity switches the sign for all states
at k ¼ π. As the number of occupied states in a ZGNR-C is
Na − 1, Z2 interchanges when the boundary of the unit cell
is shifted between S and L for all structures, with an odd
number of occupied states as their parity product changes
sign at k ¼ π. Hence, Z2 stays the same when switching
between S and L only for ZGNR-Cs with both odd N and
odd a at the same time due to an even number of occupied
states. Similar parity-based arguments rationalize why the
cutting angle α, and thus the structure of the terminals
(zigzag, armchair, or bearded), does not affect the value
of Z2.
The parameters N, a, and b also define the character and

size of the band gap Δg. All semiconducting ZGNR-Cs
have a direct band gap at k ¼ 0 for odd a and at k ¼ π for
even a, independent of N and b (see Fig. S3 for examples
[21]). Quantum confinement gives the largest Δg for small
N, and Δg decreases exponentially with N [see Fig. 4(a)].
This was also reported for other GNR types [29]. We also
observe exponential decay with increasing a because the
cove is the structural element opening the band gap in
zigzag nanoribbons. The only exception is found for a ¼ 2,
where the proximity of the coves dominates the electronic
structure. Because of this, the corresponding data points in
Fig. 4(a) are colored in gray.
The dependence of Δg on offset b, expressed relative to

a, is shown in Fig. 4(b). The largest Δg values for a given a
(Δmax) are found at b ¼ 0 for even N and at b ¼ a=2 for
odd N. As a consequence, ZGNR-Cs with even N are
metallic for b ¼ a=2. However, geometric out-of-plane
distortion (e.g., by H-H repulsion across the cove) reduces
the p2mg symmetry and opens a band gap [7,30]. These

FIG. 2. Z2 invariant for ZGNR-C in (a) N ¼ 4p (p ¼ 1; 2;…) with S or N ¼ 4pþ 2 with L at the boundary, (b) N ¼ 4p with L or
N ¼ 4pþ 2 with S at the boundary, (c) N ¼ 4pþ 1 and N ¼ 4pþ 3 with S, and (d) N ¼ 4pþ 1 and N ¼ 4pþ 3 with L at the
boundary. Structural parameters a and b are varied in rows and columns, respectively. Topological insulators (Z2 ¼ 1) are marked in red,
trivial semiconductors (Z2 ¼ 0) in blue, and metallic ribbons (marked “m”) in yellow. (e) Generalized scheme to derive Z2 for a given
set of structural parameters N, a, and b.

FIG. 3. Possible primitive unit cells for 5-ZGNR-Cð2; 1
2
Þ

ribbons with reference points S (orange) and L (blue) at the
boundary. Unit cells with α ¼ 60°, α ¼ 90°, and α ¼ 120° are
shown; and the termination type is indicated.
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results show that ZGNR-Cs with large band gaps are
obtained for thin ribbons (small N), for high cove density
(small a), and for b being close to zero for evenN or to a=2
for odd N.
The relative band gap as a function of b=a converges

toward a cosine function [see Fig. 4(b)]. The deviations
evident for a ¼ 3 quickly decrease with increasing a. Thus,
a good estimate for Δg for all ZGNR-Cs is

Δg ¼ Δmax · cos

��
b
a
þ Nmod 2

2

�
π

�
; ð9Þ

where Δmax can be fitted as function of N and a (a ≥ 3):

Δmax ¼ Ae−B·N þ Ce−ðDþE·aÞ·N: ð10Þ

Close agreement with explicit TB calculations (R2 > 0.99)
is obtained for A ¼ 3.04, B ¼ 1.42, C ¼ 1.30, D ¼ −0.35,
and E ¼ 0.17 {see Fig. S4(a) [21]}, parameterized for data
with 3 ≤ N ≤ 10 and 3 ≤ a ≤ 11. For large values of N
with a ¼ 3, the convergence of Δg toward zero is slower
than predicted by Eq. (10) because of short-range effects
[see Fig. S4(b)].
A junction state occurs when a topologically trivial and a

topologically nontrivial GNR fuse. This requires commen-
surable terminal ends, which can be expressed by com-
mensurable unit cell boundaries. The termination types in
ZGNR-Cs can be described by simple rules, as shown in
Fig. 5 for reference point S and in Fig. S5 [21] for both S
and L with an extended dataset. A schematic representation
similar to Fig. 2(e) is shown in Fig. S6.
All rectangular unit cells have armchair terminations.

However, for even N, the symmetry along the ribbon axis is
broken in finite ribbons due to atoms at the boundary of
the cell.
In ZGNR-Cs with even N, either zigzag or bearded

termination is realized for both α ¼ 60° and α ¼ 120°. The

influence of b on the termination type is shown in Figs. 5(a)
and 5(b) for S and in Figs. S5(e) and S5(f) [21] for L. For S,
a bearded termination is found for b ¼ 2k (k ¼ 0; 1; 2;…)
and a zigzag termination is found for b ¼ 1þ 2k at
N ¼ 4p. This interchanges for N ¼ 4pþ 2. For L, the
zigzag and bearded terminations alternate with both a and b
for both N ¼ 4p and N ¼ 4pþ 2.
In ZGNR-Cs with odd N, both zigzag and bearded

terminations are realized by choosing either α ¼ 60° or
α ¼ 120°, as shown in Figs. 5(c) and 5(d) and Figs. S5(c)–
S5(f) [21]. With S at the unit cell boundary, the termination
types in ZGNR-Cs with odd N are independent of a and
alternate with b. Zigzag terminations are realized by
α ¼ 60° at even b − 1

2
with N ¼ 4pþ 1 and at odd b − 1

2

with N ¼ 4pþ 3. In cells with α ¼ 120°, zigzag and
bearded terminations are interchanged. With L at the unit
cell boundary, the realized termination type alternates with

FIG. 5. Realized termination types for ZGNR-C with S at the
unit cell boundary: (a)N ¼ 4p and (b)N ¼ 4pþ 2 show the same
termination types for both α ¼ 60° and α ¼ 120°. (c) Termination
types in N ¼ 4pþ 1, α ¼ 60° and N ¼ 4pþ 3, α ¼ 120°; and
(d) termination types in N ¼ 4pþ 1, α ¼ 120° and N ¼ 4pþ 3,
α ¼ 60°. Zigzag terminations are indicated by "zz" in orange, and
bearded terminations are indicated by “bd” in blue.

FIG. 4. (a) Δmax in units of jt1j. (b) Δg relative to the maximum
value for a given a as a function of b=a for (left) odd and (right)
even N. Data points correspond to calculated structures, and
continuous red lines correspond to the fit of Eq. (9).

FIG. 6. Topological junction state between 4-ZGNR-C(3,0)
with reference point L at the boundary of the unit cell (Z2 ¼ 0)
and pristine 9-AGNR of the zigzag cell type (Z2 ¼ 1). The
ribbons are connected at a zigzag termination (red line), and the
primitive unit cells adjacent to the heterojunction are indicated.
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both a and b. Detailed information on this is given in
Figs. S5(e) and S5(f) [21].
Together with the rules on theZ2 invariant, the band gap,

and finite ZGNR-C structures, we have now developed the
rule set for the construction of GNRs with junction states
and sizeable large band gaps. This is demonstrated for an
exemplary system in Fig. 6.
In conclusion, we predicted the electronic structure,

including band gap character and size, and the Z2 invariant
for all geometrically possible cove-edged zigzag graphene
nanoribbons, depending on their characteristic structural
variables, thewidthN, the distance between coves a, and the
cove offset b. The topological properties are impacted by the
termination of the ribbons and reflected by the positions of
the inversion centers S and L in the unit cell. Equations (6)
and (7) provide the topological properties, whereas Eq. (9)
gives an approximation of the band gap. We further give
rules for constructing GNR junctions with topological edge
states. We thus demonstrate the direct relation between
structural and electronic topology in these systems, and we
provide simple rules for the design of cove-edged nano-
ribbons of rich electronic variety, including metals and
semiconductors: the latter with a large variation of band gap
and with or without topological edge states. We are con-
fident that similar rules are applicable to other GNR types.

All calculated data are available at the zenodo re-
pository [31].
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