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Collective motion over increasing length scales is a signature of the vitrification process of liquids. We
demonstrate how distinct static and dynamic length scales govern the dynamics of vitrifying films. In
contrast to a monotonically growing static correlation length, the dynamical correlation length that
measures the extent of surface-dynamics acceleration into the bulk displays a striking nonmonotonic
temperature evolution that is robust also against changes in detailed interatomic interaction. This
nonmonotonic change defines a crossover temperature T� that is distinct from the critical temperature
Tc of mode-coupling theory. We connect this nonmonotonic change to a morphological change of
cooperative rearrangement regions of fast particles, and to the point where the decoupling of fast-particle
motion from the bulk relaxation is most sensitive to fluctuations. We propose a rigorous definition of this
new crossover temperature T� within a recent extension of mode-coupling theory, the stochastic
β-relaxation theory.
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Dynamical processes in a liquid close to the glass
transition become cooperative across spatial regions of
increasing extent [1], and it is thus natural to seek an
intrinsic correlation length whose divergence would signal
the transition. Yet, the hallmark of the glass transition is a
dramatic change in the dynamics that is caused by only
weak changes in the statics. Consistently, attempts at
defining static correlation lengths have found them to
change only weakly close to the computationally or
experimentally accessible part of the transition [1–4].
Only recently it has become clear that in certain perturbed
systems, dynamic correlation lengths can be defined that
display a much more interesting, nonmonotonic behavior
[5–7] with a peak at some crossover temperature.
The prevailing methodology to detect spatial correlations

in glassy systems is suggested by the random first-order
theory (RFOT) [8–10]: pinning a subset of particles in the
equilibrium fluid, one examines how the configuration of
the rest of particles is influenced [11–15]. While this point-
to-set (PTS) protocol is designed to keep the static proper-
ties of the system in equilibrium, it represents a strong
perturbation of the dynamics [16,17]: the freezing of some
particles can be viewed as imposing a zero-temperature
region and hence a strong temperature gradient, yet the
associated linear-response regime shrinks to zero at the
glass transition [18]. Since nonmonotonic variations appear
more broadly in the nonequilibrium dynamics of glass
formers [19,20], this questions whether nonmonotonic
changes also appear in the equilibrium dynamics.
We demonstrate here that the study of glass-forming

fluids with a free surface offers a clean way to interrogate

spatiodynamical correlations in equilibrium. The study of
glassy films per se is an important topic in material
sciences, e.g., for the fabrication of ultrastable glasses
[21–23]. We provide here a link of the dynamics in (free-
standing) films to the fundamental features of the glass
transition in the bulk.
In particular we find that the dynamics in fully equili-

brated films is governed by a nonmonotonic dynamical
correlation length. We demonstrate that the crossover
temperature T� of maximal dynamical correlations also
governs the shape transition of cooperative rearrangement
regions (CRR) of fast particles in the bulk liquids. This new
crossover point is rationalized in the context of stochastic
β-relaxation theory (SBR), as the point where the effect of
long-range fluctuations is the most pronounced in the
decoupling of fast-particle dynamics from bulk relaxation.
We study two exemplary glass formers by molecular

dynamics simulations: the Kob-Andersen Lennard-Jones
binary mixture (LJBM) [24], and a model of the molten
CuZr alloy with embedded-atom method many-body inter-
actions [25]. Simulations (using the LAMMPS package [26])
start in the bulk liquid at high temperature (T ¼ 0.6 for
LJBM; T ¼ 2000 K for CuZr) and zero pressure. A liquid-
vacuum interface was created by an instantaneous increase
of the box length along the z axis [see the illustration in
Fig. 1(a)]. After reequilibration, the membranes were
cooled down to the target temperatures in the canonical
ensemble (NVT); data was collected in the microcanonical
ensemble (NVE) over 16 realizations per state point. To
check finite-size effects, we compare simulations of
two system sizes: small systems (S) with Lx ¼ Ly ≈ 13σ,
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Lz ≈ 31σ and at least N ¼ 5000 particles; and large
systems (L) with Lz ≈ 40σ and at least N ¼ 7000 particles
(where σ is a typical atomic size, σ ≈ 2.7 Å for CuZr;
precise information is given in Supplemental Material
(SM) [27]).
The spatially resolved dynamics can be assessed through

the overlap correlation function suggested by the PTS
method [9]: the simulation box is discretized into small
cubic units of size δ (about 0.52σ ≈ 1.4 Å for CuZr and 0.6σ
for the LJBM), and the overlap of configurations at time t
apart is calculated as qcðz;tÞ¼hPiniðtÞnið0Þδðzi−zÞi=
hPinið0Þδðzi−zÞi, where ni ¼ 1 if box i at distance zi
from the surface is occupied by an atom and ni ¼ 0
otherwise, and h·i denotes an average over the simulation
ensemble.
The functions qcðz; tÞ follow a standard two-step relax-

ation pattern of dynamical correlation functions near the
glass transition [Fig. 1(c)]: a short-time relaxation to
an intermediate-time plateau is followed by stretched-
exponential structural relaxation from the plateau. At long
times, qcðz; tÞ decays to a nonzero z-dependent constant
qcðz;∞Þ that represents averaged density fluctuations: the
introduction of a free surface induces a static density profile
ρðzÞ [Fig. 1(b)], and we find qcðz;∞Þ ∝ ρðzÞ [Fig. 1(d)].
This is the expected behavior for a stationary ergodic
system. A static correlation length ξstat characterizes the

density profile, extracted from fits of the form ρðzÞ¼
AðzÞexpð−z=ξstatÞþρð∞Þ, where ρð∞Þ is the density of the
bulk liquid. The function AðzÞ ¼ A0 sinð2πðz − z0Þ=dpÞ
captures the pronounced surface-induced layering effects
seen for CuZr [in Fig. 1(b)]. These are in agreement with
experiments on metallic [33] and nonmetallic liquids
[34,35], and grand-canonical molecular dynamics simula-
tions of liquid films [36]. The LJBM does not show
pronounced layering [37], so that there AðzÞ ¼ A0 is used.
In both cases, the static length scale ξstat increases mono-
tonically and mildly across the temperature range that we
investigate (open symbols in Fig. 2). It qualitatively agrees
with standard length scales associated to the bulk dynam-
ics, such as the one extracted from four-point correlation
functions [27], as well as with other computer simulation
results [1,3,11].
To obtain the dynamical correlation length, we para-

metrize the long-time decay of the overlap correlation
function by stretched-exponential functions,

qcðz; tÞ ¼ q0ðzÞ exp½−ðt=τovðzÞÞβðzÞ� þ qcðz;∞Þ; ð1Þ

where τovðzÞ is a z-dependent relaxation time. Similar τðzÞ
are obtained from fits to the collective and self-intermediate
scattering function (SISF), or from time integrals over the

(a) (b) (c)

(d) (e) (f)

FIG. 1. (a) Snapshot of the simulation setup (CuZr system, colors indicating atomic species). (b) Static density profiles ρðzÞ as a
function of distance z from the surface along the normal into the bulk for the CuZr liquid and the Lennard-Jones binary mixture (LJBM)
(in units of the average atomic radius σ, each curve shifted vertically in steps of 0.4=σ3 for clarity). Solid lines are fits to extract the static
correlation length. (c) Decay of the overlap correlation function qcðz; tÞ (CuZr; T ¼ 810 K). Dashed lines in the inset exemplify
stretched-exponential fits of the structural decay, Eq. (1). (d) Static and dynamic parameters characterizing the overlap correlation
function (CuZr; T ¼ 850 K). The normalized static overlap qcðz;∞Þ=qcð∞;∞Þ (crosses) follows the normalized density profile
ρðzÞ=ρð∞Þ (line). The normalized change in the relaxation time τovðzÞ=τovð0Þ (squares) is shown in comparison to the corresponding
quantity obtained from the z-resolved SISF (circles). (e), (f): Position-dependent relative mobility enhancement τð∞Þ=τðzÞ − 1 (from the
layer-resolved SISF) for CuZr and the LJBM.

PHYSICAL REVIEW LETTERS 129, 215501 (2022)

215501-2



correlation functions that provide parameter-free proxies
for the structural relaxation time [Fig. 1(d) and SM [27] ].
Two spatial regimes emerge in the relative enhancement

of the mobility μðzÞ ¼ 1=τðzÞ, given by τð∞Þ=τðzÞ − 1, at
low temperature [Figs. 1(e) and 1(f)]: first, a surface layer
extends over the weakly T-dependent static length scale
(z≲ 2σ for CuZr, and 3σ for LJBM), where the density
profile is strongly perturbed by the presence of the free
surface. We exclude this surface layer from our analysis,
separating statically induced variations from purely
dynamical ones; this is a crucial distinction from PTS-
based analyses and recent theoretical approaches [38–40]
(see SM [27]). More importantly, an intermediate z range
with a much slower decay opens at lower tempera-
tures (T ≲ 1000 K for CuZr, T ≲ 0.45 for LJBM). This
intermediate regime expands as T is lowered. Here,
ρðzÞ ≈ ρð∞Þ, and thus this is the regime where an intrinsic
dynamical correlation length ξdyn can be extracted from the
exponential decay of μðzÞ, viz.

μðzÞ ¼ C exp½−z=ξdyn� þ μð∞Þ: ð2Þ

Note that this fitting formula differs from the double
exponential function used in PTS (see SM [27]). One
already anticipates from Figs. 1(e) and 1(f) that ξdyn shows
a nonmonotonic temperature dependence: curves for inter-
mediate temperature (around T ¼ 850 K in the CuZr
liquid; around T ¼ 0.4 in the LJ binary mixture) extend
further into the bulk than those both at higher and at lower
temperatures.
The resulting dynamical correlation lengths ξdyn display

clear maxima at a temperature T� (Fig. 2). Both above and

below T�, the dynamic and static (symbols with dashed lines
in Fig. 2) correlation lengths become similar. In particular,
below T�, ξdyn decreases toward the smaller static one, ξstat,
again. This is not a finite-size effect: only around the
maximum in ξdyn, some slight effects of system size (in
line with those expected from conventional four-point
correlations in supercooled liquids [41–43]) are seen that
disappear both at higher and at lower temperatures, and thus
give additional evidence that the dynamical correlation
length peaks at T�. In both the CuZr and the LJBM systems,
we note that the peak observed in ξdyn over ξstat is at least a
factor of 2. Both systems show very different layering
propensity in the density profiles [Fig. 1(b)] and hence
demonstrate the robustness of the maximum in ξdyn across
systems with different surface interactions.
We now demonstrate the intimate link of the maximum

in the dynamical correlation length near the surface with a
crossover point that governs the bulk dynamics. Such a link
is remarkable because the point of maximal correlation
length, T�, is clearly above the Tc of mode-coupling theory
(MCT) to which candidates of dynamical changes in the
bulk have so far been linked. One example is a change in
morphology of the CRR as suggested by RFOT [44].
We identify CRR as nearest-neighbor clusters of fast

particles in simulations of the bulk systems. Following
established procedures [45,46], fast particles are defined as
those that, during the time interval corresponding to the
average structural relaxation time, move significantly
farther than what is expected from the average mean-
squared displacement. Clusters are defined by fast particles
initially closer than the first minimum position in the pair
distribution function. To quantify the geometric shape of
these clusters, we consider the ratio of their correlation
length to the expected spherical size: in analogy to
percolation theory [47], the average cluster correlation
length is given by

ξ2cl ¼
X

s

R2
g;ss2PðsÞ=

X

s

s2PðsÞ; ð3Þ

where the sums run over the individual clusters of size s
whose probability of occurrence isPðsÞ. The radius of gyra-
tion of such a cluster is R2

g;s ¼ ð1=2s2ÞhPij∈sðri − rjÞ2is,
where r is the position of particles at the initial time for the
considered relaxation time interval. The sum runs over all
particles i, j that are part of the cluster, and h� � �is denotes the
average over all clusters of size s. The expected linear
dimension of a spherical cluster of size Rs in turn is defined
by hsi ¼ ð4π=3ÞρnR3

s, where ρn is the number density, and
hsi ¼ P

s≥2 s
2PðsÞ=Ps≥2 sPðsÞ is the average cluster size.

The ratio, ξcl=Rs, can then be used as a proxy to measure the
anisotropy of the fast-particle regions.
As spatial correlations grow with decreasing temper-

ature, ξcl also grows monotonically [48]. But the aspect
ratio of clusters, ξcl=Rs, evolves nonmonotonically

FIG. 2. Temperature-dependent statical ξstatðTÞ and dynamical
correlation lengths ξdynðTÞ near a free surface for the CuZr (top
panel) and the LJBM liquids (bottom panel). The static corre-
lation length ξstat is extracted from the exponential decay of ρðzÞ.
Values from the self- (ξsdyn) and collective- (ξcdyn) intermediate
scattering functions are shown in systems of two different sizes
(S: small systems; L: large systems). The evolution is non-
monotonic around a peak temperature T� indicated by the dashed
vertical lines.
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[Fig. 3(a)], with a maximum at the same temperature
T� > Tc where also the dynamical correlations show a
maximum. Thus, we argue that the nonmonotonic change
in ξdyn is intimately related to the shape transition of
bulk CRR.
Typical shapes of fast-particle clusters in the bulk

demonstrate the shape transition [Figs. 3(b)–3(d)]: at high
temperatures, clusters are small and of a random-walk-like
fractal structure. As the temperature is lowered, the clusters
increase in size, and at temperatures below T�, they are
relatively compact objects. Around T ¼ T�, the aspect ratio
is largest: as the clusters grow in average size upon
lowering the temperature, this growth first occurs through
a stringlike extension of the clusters; only below T�, a more
isotropic growth of the clusters is seen. While the stringlike
motion of atoms is well known in supercooled liquids
[45,46,49,50], the transition back to more compact (albeit
larger) CRR at low temperatures is a more striking result
of our study.
Within RFOT the shape change of CRR arises from

a competition between stringlike particle motion and a
free-energy cost associated to the large interfacial area of
these strings [44]. However, the shape-transition point was
conjectured to be the MCT-Tc, while we find it to be the T�
that was identified in the glassy films. As we show next, it
is clearly distinct from Tc and yet rigorously defined within
the MCT framework.
The emergence of large CRR signals heterogeneities in

the dynamics that, among other things, lead to a breakdown
of the Stokes-Einstein (SE) relation [42,51–53]: the fast-
particle dominated diffusivity decouples from the bulk

relaxation that is governed by the slow particles [54,55].
The stochastic β-relaxation theory (SBR) [56–58], a recent
extension of the asymptotic laws of MCT, rationalizes the
crossover from regular to fractional SE relations [59], as
arising from long-wave length fluctuations in the local
dynamical order parameter (see Ref. [27] for details). The
scaling function of SBR can be evaluated numerically to
yield both D and η ∼ τ, and the result (solid line in Fig. 4)
matches the simulation data.
We expect the point of maximal dynamical correlations

to be that where changes in the fast-particle dynamics
(quantified by the diffusivity) are most sensitive to changes
in the bulk dynamics (using viscosity as a proxy). This is
indicated by the point where the change in δ ¼ logðD=TÞ
with v ¼ logðηÞ has the strongest sensitivity to control
parameters. SBR predicts the derivative ϵ ¼ −dδ=dv to
cross over from ϵ ¼ 1 at high temperatures (the ordinary SE
relation,Dη ∼ T) to an effective exponent ϵ ¼ x < 1 at low
temperatures: the fractional SE relation, D=T ≈ η−x, with
the exponent x given by the MCT exponent parameter λ
[59]. The strongest slope in this crossover curve (inset of
Fig. 4) defines T� in good agreement with the observed
maximum in ξdyn and the shape transition in the CRR
(marked by a circle and arrows, respectively, in Fig. 4). This
T� is strictly higher than Tc because within SBR, non-
mean-field fluctuations of the local glassiness have a finite
variance and trigger a decoupling of the fast-particle
dynamics already above the mean-field Tc.
In conclusion, we find a dynamical correlation length

with nonmonotonic temperature dependence to govern the
dynamics of equilibrium free-surface films of glass form-
ers. We demonstrate that the nonmonotonic change in

(a)

(b) (c) (d)

FIG. 3. Characterization of the CRR shape in the bulk liquids.
(a) Aspect ratio of fast-particle clusters in the bulk simulations,
ξcl=Rs. Vertical dashed lines are T� from Fig. 2. (b), (c), (d) denote
the temperature points at which fast-particle clusters are exem-
plified in the respective panels. Particles in blue correspond to the
core of the cluster (having more than two fast nearest neighbors);
red particles are those with only one or two fast particles as their
nearest neighbors.

FIG. 4. Diffusivity D versus viscosity η for the bulk liquids
(symbols), compared with the prediction from stochastic
β-relaxation theory (solid line, using the MCT exponent param-
eter λ ¼ 0.75). μ0 and η0 are scaling factors, and are ones
for LJBM. Dotted lines are the SBR asymptotes for the SE
relation, D=T ∼ η−1, at high temperatures, and a fractional law,
D=T ∼ η−0.56, at low temperatures. Red circles mark the MCT-Tc,
and T� predicted from SBR (maximum slope in the inset); arrows
indicate the T� from ξdyn in Fig. 2.
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dynamical correlations as measured near the surface is
linked to a nonmonotonic shape evolution, i.e., a string-to-
compact shape transition, of cooperative rearrangement
regions in the bulk. This transition occurs at a distinct
temperature T� above the MCT-Tc. It can be identified as the
point where the balance of liquidlike and glasslike fluctua-
tions in the system is most sensitive to a change in control
parameter, and it can be rigorously defined within the
recently developed developed stochastic β-relaxation theory.
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