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This Letter provides a concrete implementation of Fermi’s model of particle acceleration in magneto-
hydrodynamic (MHD) turbulence, connecting the rate of energization to the gradients of the velocity of
magnetic field lines, which it characterizes within a multifractal picture of turbulence intermittency. It then
derives a transport equation in momentum space for the distribution function. This description is shown to
be substantiated by a large-scale numerical simulation of strong MHD turbulence. The present general
framework can be used to model particle acceleration in a variety of environments.
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Introduction.—Particle energization through scatterings
off inhomogeneous, random moving structures is a uni-
versal process [1,2], which has stirred considerable interest
in various branches of physics: primarily astrophysics, with
applications ranging from solar flares [3] to more remote
phenomena involving plasmas in extreme conditions, e.g.,
[4], but also statistical plasma physics [5] or high-energy
density physics [6]. Remarkably, the two papers of Fermi
[1,2] represent the first concrete scenarios for the origin of
nonthermal particles in the Universe. While the literature
has placed significant emphasis on acceleration at shock
fronts, numerical experiments have demonstrated that
stochastic acceleration can be efficient [7–9], notably so
at large turbulent Alfvén velocity [10–14], in the sense that
it produces extended, hard power-law distributions of
suprathermal particles. Additionally, the stochastic Fermi
process assuredly plays a role in the vicinity of shock fronts
[15–17], just as it seemingly controls part of the energiza-
tion in reconnection environments [18,19].
While the overall scenario is commonly pictured as

originally formulated by Fermi—a sequence of discrete,
pointlike interactions between a particle and infinitely
massive, perfectly conducting plasma clouds—its imple-
mentation in a realistic turbulent context has remained a
challenge [20–22], to the extent that phenomenological
applications rely on a Fokker-Planck model parameterized
by a momentum diffusion coefficient.
The present Letter proposes a novel approach to this

problem and formulates a transport equation to describe the
evolution of the distribution function in momentum space.
It is first shown that particle momenta obey a continuous-
time random walk (CTRW), whose random force scales as
the gradients of the velocity of magnetic field lines, coarse
grained on a scale comparable to the particle gyroradius
rg ≡ pc=eB (p momentum, B ¼ jBj with B as the mag-
netic field). A key observation is that those gradients are
subject to intermittency on small length scales. Hence, the
random forces are neither Gaussian nor white noise in time

and, consequently, the random walk deviates from
Brownian motion, just as the transport equation, which
is derived here from known properties of CTRW, differs
from the Fokker-Planck form. This equation is characte-
rized by the statistics of velocity gradients, which are
captured via a multifractal description of turbulence inter-
mittency. This framework is eventually shown to reproduce
the time- and momentum-dependent Green’s functions
obtained by tracking a large number of test particles in a
large-scale magnetohydrodynamics (MHD) simulation.
The present formalism thus provides a successful imple-
mentation of stochastic Fermi acceleration in realistic,
collisionless MHD turbulence.
A (continuous-time) random walk picture.—To evaluate

energy gains and losses in the original Fermi model, it
proves convenient to boost to the scattering center frame
where the motional electric field E vanishes. The genera-
lization of that model to a continuous random flow
similarly tracks the particle momentum in the instantaneous
(here, noninertial) frame R=E in which E vanishes [23,24],
which, in ideal MHD, moves at velocity vE ¼ cE × B=B2.
In that frame, momentum gains or losses scale in direct
proportion to the (lab frame) spatiotemporal gradients of
the velocity field vE, as expressed by Γacc, Γk, and Γ⊥
below. In detail, the momentum p of particles with
gyroradius rg ≪ lc (lc coherence length of the turbulence)
evolves as

_p ¼ pfΓacc þ Γk þ Γ⊥g; ð1Þ

with Γacc ¼ −v−1μb · ∂tvE (where v is the particle velocity;
μ ¼ p · b=p is the pitch-angle cosine with respect to the
magnetic field direction b ¼ B=B); Γk ¼ −μ2b · ðb · ∇ÞvE
and Γ⊥ ¼ −ð1 − μ2Þ½∇ · vE − b · ðb · ∇ÞvE�=2. For simplic-
ity, the present Letter focuses on the subrelativistic limit
vE ≪ c. Equation (1)—more precisely, its relativistic limit—
has been shown to account for the bulk of acceleration in
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numerical simulations of collisionless turbulence [25],
putting the present model on solid footing. It generalizes
the two contributions originally identified by Fermi: inter-
actions with moving magnetic mirrors are captured by Γ⊥,
while orbits in dynamic, curved magnetic field lines are
represented by Γk; the remaining term Γacc describes the
effective gravity force associated with the acceleration or
deceleration of the field lines; of second order in vE=c, it is
subdominant in the subrelativistic limit, unless v ≪ vA.
All quantities in Eq. (1) are understood to be coarse

grained on wave number scale kg ∼ r−1g (length scales
lg ∼ 2πrg), where rg ¼ pc=eB denotes the particle gyro-
radius in the lab frame. This procedure filters out wave
numbers k > kg, whose contribution averages out over a
gyro-orbit, to retain the larger scales that shape the velocity
structures responsible for acceleration (in accord with the
original Fermi picture).
Henceforth, Eq. (1) is simplified to the symbolic

_p ¼ pΓlg , with Γlg representing an aggregate (random)
force exerted by electromagnetic fields, coarse grained on
scale lg; order of unity factors related to μ are thus omitted.
We also consider relativistic particles (v ∼ c) to ease the
discussion. For technical details concerning the modeling
of this random process, see the Supplemental Material,
Sec. A [26]. Separate now fluctuations from the mean,
Γl ¼ hΓli þ δΓl, the average carrying over the statistical
realizations of the turbulent flow: hΓli characterizes system-
atic heating, while the random δΓl represents the diffusive
part. If δΓlwereGaussian distributed, and its time correlation
function that of white noise, the process would describe
Brownian motion, in one-to-one correspondence with a
Fokker-Planck equation for the distribution function [27].
As anticipated above, however, those random forces are
neither Gaussian in amplitude, nor white noise in time: at
small scales, they develop large power-law tails as a result of
intermittency, while at large scales, the coherence time of the
random force ≳lg=c cannot be regarded as infinitesimal.
To obtain the transport equation, we first observe that the

process _p ¼ pΓlg can be described as a CTRW: unlike
discretized Brownian motion, which operates at a fixed and
uniform time step, the random walk is here defined by the
joint probability ϕðpjp0; t − t0Þ to jump from p0 to p in time
Δt ¼ t − t0, with both Δp ¼ p − p0 and Δt regarded as
random variables. Expectations are Δt ∼ lgðp0Þ=c (thus, a
function of p0) and Δ lnp ∼ ΓlgΔt. We will assume Δt to
be exponentially distributed with mean waiting time tp ≡
lgðp0Þ=c and Δ lnp distributed as Γlg lg=c [lg ¼ lgðp0Þ]; see
the Supplemental Material, Sec. A [26] for methodology.
The random walk is then entirely defined by the statistics of
the velocity gradients Γlg .
Statistics of momentum jumps.—In turbulence theories,

such statistics are conveniently described within a multi-
fractal analysis [28–30], which ascribes to each position
x a local scaling exponent hðxÞ for gradients on coarse-
graining scale l, viz.

ΓlðxÞ ∼ ΓlcðxÞðl=lcÞhðxÞ; ð2Þ

and which describes the set of locations x with index hðxÞ
as a fractal of dimension dðhÞ. The statistics of Γl are thus
entirely captured by the probability distribution function
(PDF) pΓlc

of Γlc
and by the spectrum dðhÞ, since the

probability of being at x in a set with exponent h on scale l
evolves as the volume filling fraction lD−dðhÞ (where D is
the number of spatial dimensions). The gradient ΓlcðxÞ on
the coherence scale lc is naturally modeled as a Gaussian
variable with standard deviation σc ∼ vA=lc, where vA
denotes the Alfvén velocity of the turbulent component.
The spectrum dðhÞ can take different forms, the simplest
being log-normal [31] modern descriptions of the statistics
of Elsässer fields in MHD turbulence rather relying on log-
Poisson models [32–35]. We use the former log-normal
form, as it provides a simple and satisfactory description of
the statistics of the gradients of vE; see the Supplemental
Material, Sec. B [26], which includes Refs. [36–39]. We
thus derive the PDF pΓl

of Γl as (using D ¼ 3) [30]

pΓl
∼
Z

dΓlcpΓlc

Z
dh l3−dðhÞδ½Γl − Γlcðl=lcÞh�: ð3Þ

This PDF remains to be properly normalized. In this
formulation, the gradient statistics pΓl

on all scales reduce
to a function of the main quantities vA, lc, and the few
parameters characterizing dðhÞ, which themselves depend
on the physical properties of the turbulence. This offers a
first-principles connection between the fundamental sta-
tistics of turbulence intermittency and the physics of parti-
cle energization.
The transport equation.—The CTRW is exactly equiv-

alent to the following kinetic equation for the volume
averaged distribution npðtÞ ¼ 4πp2fðp; tÞ, where fðp; tÞ
represents the angle-averaged distribution function [40,41],

∂tnpðtÞ ¼
Z þ∞

0

dp0
Z

t

0

dt0½ψðpjp0; t − t0Þnp0 ðt0Þ

− ψðp0jp; t − t0Þnpðt0Þ�: ð4Þ

The kernel ψðpjp0; t − t0Þ differs from the CTRW jump
distribution probability ϕðpjp0; t − t0Þ introduced earlier,
yet the two are related as follows. Denoting with a tilde
symbol the Laplace transform in time, and ν the Laplace
variable conjugate to t − t0,

ψ̃ðpjp0; νÞ ¼ νϕ̃ðpjp0; νÞ
1 − ϕ̃p0 ðνÞ ; ð5Þ

with the shorthand notation ϕ̃p0 ðνÞ≡ Rþ∞
0 dp ϕ̃ðpjp0; νÞ,

the subscript p0 emphasizing the dependence on p0. As
discussed above, we characterize the CTRW with a joint
probability distribution of the form
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ϕðpjp0; t − t0Þ ¼ φðpjp0Þ e
−ðt−t0Þ=tp0

tp0
; ð6Þ

recalling that tp0 ≡ lgðp0Þ=c. Then,

ψ̃ðpjp0; νÞ ¼ φðpjp0Þ
tp0

; ð7Þ

in which case the transport equation becomes local in
time [41],

∂tnpðtÞ ¼
Z þ∞

0

dp0
�
φðpjp0Þ

tp0
np0 ðtÞ − φðp0jpÞ

tp
npðtÞ

�
: ð8Þ

It takes the form of a master equation for a Markov process,
balancing gains and losses at respective rates t−1p0 and t−1p .
As φðpjp0Þ represents the PDF to jump to p from p0 in
any given amount of time, it is normalized throughRþ∞
0 dpφðpjp0Þ ¼ 1. Recalling that Δ lnp is distributed
as Γlg lg=c, the PDF φðpjp0Þ derives from pΓl

through

φðpjp0Þ ¼ 1

ptp0
pΓlg

; ð9Þ

at Γlg ¼ lnðp=p0Þ=tp0 , with lg ¼ lgðp0Þ.
Test against numerical experiments.—The above model

is now tested on a direct numerical simulation of driven
incompressible MHD turbulence (10243 with 1024 time
steps) [42,43]. This simulation has no guide field, and its
units have been set to obtain an Alfvén velocity vA ¼ 0.4c;
this offers a reasonable compromise between the limits of
applicability of this (subrelativistic) simulation and the
value of vA needed to observe acceleration within the
duration of the simulation (2.8lc=c); see the Supplemental
Material, Sec. B [26] for the methods used to extract
numerical data from this simulation.
The statistics of the absolute values of the velocity

gradients Γl, parallel and perpendicular to the mean
magnetic field and coarse grained on scale l, are shown
in Fig. 1 for various values of l. The red solid line
represents the adjustment obtained for a log-normal spec-
trum dðhÞ ¼ 3 − ðh − hMFÞ2=ð2σ2MFÞ, parameterized by
hMF ¼ −0.2 and σMF ¼ 0.9, see the Supplemental
Material, Sec. B [26]. As the random walk has been
simplified to one aggregate force term Γl, we have chosen
to tune those parameters to provide a fair reconstruction of
the ensemble of parallel and perpendicular gradients, rather
than fitting one or the other. The solid blue line shows an
adjustment of pjΓlj by a broken power-law approximation,
which has the advantage of speeding up the numerical
integration of the kinetic transport equation. It takes the
form

pΓl
∼
�
1þ

�
Γl

σBPðlÞ
�

k0ðlÞ=k1�−k1
; ð10Þ

where σBPðlÞ and k0ðlÞ depend on l; σBPðlÞ characterizes
the width of the distribution before it turns over into the
power-law behavior with index ≃ − k0ðlÞ, while k1 ¼ 3
ensures the smoothness of that transition from core to wing;
see the Supplemental Material, Sec. B [26] for details and
methodology. Both models use a width σ ≃ 0.3vA=lc, with
σ ¼ σc for Γlc [respectively, σ ¼ σBPðlcÞ] for the multi-
fractal (respectively, broken power-law) model.
From pΓl

, we derive φðpjp0Þ using Eq. (9), then integrate
the transport equation (8) to compare the theoretical spectra
npðtÞ with experimental ones obtained by tracking a large
number of particles in theMHD simulation.We remark here

FIG. 1. Statistics jΓljpjΓlj of the absolute values of the gradients
Γl (Γl expressed in units of c=lc). Symbols, values recorded in a
10243 MHD simulation at various coarse-graining scales l, as
indicated; squares (respectively, diamonds), gradients measured
along (respectively, perpendicular to) the mean magnetic field
direction as coarse grained on scale l. The PDF reveals power-law
tails at large values of jΓlj on small scales. Solid red line,
adjustment of a multifractal log-normal model; solid blue line, a
broken power-law approximation; dotted line, shot noise level
associated with the finite sampling variance.
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that, first, those twomodels for pΓl
provide slightly different

fits to the measured gradient statistics; therefore, the
comparison of the corresponding npðtÞ provides a first
glance at how the choice of parameters affects those spectra.
Second,pΓl

extends to values ofΓl beyond the rangewhere it
can be measured in the simulation, allowing, in particular,
for unbounded gains in momentum over a finite timescale
lg=c; to regularize this, we multiply φðpjp0Þ by a cutoff
exp½−ðlnp − lnp0Þ2�, which bounds the maximum gain to
the order of unity on that timescale. This theoretical
maximum is well motivated here, since vA is not small
compared to c [24]; different choices are possible, but the
overall influence does not exceed that associated with
the uncertainty affecting pΓl

. Third, the model predicts
the evolution of momentum in the frame R=E; hence the
comparison to the experimental npðtÞ requires a boost to the
simulation frame, which slightly broadens the particle
distribution. To minimize this effect, we inject particles at
a given momentum p0 in the R=E frame at time t ¼ 0,
integrate the equation, then boost the theoretical spectrum to
the simulation frame.We thus effectively measure a Green’s
function convoluted with this boost. Finally, the numerical
distributions of thevelocity gradients have small yet nonzero
mean values, implying a slight advection drift toward
increasing momenta; it has been taken into account in
adjusting pΓl

to the data. Further details on these procedures
are provided in the Supplemental Material, Sec. B [26].

Those theoretical models (red and blue curves, following
the conventions of Fig. 1) are compared in Figs. 2 and 3 to
the momentum- and time-dependent Green’s functions
obtained by tracking a large number of test particles in
the simulation cube. The test particles have been propa-
gated in the time-dependent snapshots of the simulation;
i.e., the time evolution of the electromagnetic fields has
been properly taken into account. In Fig. 2, the spectra are
plotted vs p=p0 for increasing values of the initial
momentum p0, from p0=pc ¼ 0.067 to p0=pc ¼ 2.1, thus
covering a dynamic range of 1.5 decades; pc denotes the
momentum such that lgðpcÞ ¼ lc, i.e., the coarse graining
becomes comparable to the coherence scale. At p0 > pc,
the spectrum narrows down: the acceleration decreases
because the particle then sees the turbulence as a collection
of incoherent cells of small extent relative to its gyroradius.
In Fig. 3, the spectra are plotted for p0=pc ¼ 0.067
up to the maximal integration time of the simulation
t ¼ 2.8lc=c. This rather satisfactory comparison between
theoretical and experimental Green’s functions supports the
present picture.
Discussion and perspectives.—As in the original Fermi

picture, the efficiency of acceleration scales with the
turbulent Alfvén velocity vA [44], which controls the
magnitude of the random force through its influence on
Γlc . At lower vA, one observes a softer spectrum at a
given time, but as time passes, the spectrum becomes
harder; two different values of vA eventually give compa-
rable spectra at times rescaled by 1=v2A. Figures 2 and 3

FIG. 2. Particle spectra obtained at the final time t ¼ 2.8lc=c
for various initial momenta as indicated in units of pc; pc is such
that lgðpcÞ ¼ lc. The red and blue lines correspond to the two
models shown in Fig. 1.

FIG. 3. Same as Fig. 2, now showing the particle spectra at
various times, for the smallest initial injection momentum, as
indicated.
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indicate that power-law spectra are generic, as observed in
kinetic simulations [10,11]. Those power laws find their
origin in the large excursions that particle momenta can
undergo in sparse regions of intense gradients [24,45], here
captured by the extended wings of φðp0jpÞ. In the absence
of those, a Kramers-Moyal expansion would indeed reduce
Eq. (8) to the Fokker-Planck form with diffusion coefficient
Dpp ¼ R

dp0ðp0 − pÞ2φðp0jpÞ=tp and advection coeffi-
cient Ap ¼ R

dp0ðp0 − pÞφðp0jpÞ=tp.
The present scenario naturally accounts for the recent

observation that some particles can see their energy
increase exponentially fast in localized regions, up to an
energy gain of a few [9], by virtue of _p ¼ pΓl with Γl
varying on scales of extent l; see also [24,46]. As scattering
is here dominated by magnetic mirrors, which become
intermittent on small scales, one also anticipates anomalous
spatial transport. Inspection of numerical data confirms that
some particles preserve their pitch angles over long dis-
tances ≳lc, while others suffer strong deflection on short
distances. This might account for spatial superdiffusion
events observed in recent simulations [47] and trapping in
others [8].
The present approach differs from that of Ref. [13],

which extracts from numerical experiments empiri-
cal momentum-dependent functions Ap ¼ hΔpi=Δt and
Dpp ¼ hΔp2i=Δt. It also differs from Ref. [48], which
models transport in momentum space through a fractional
Fokker-Planck equation, describing the random walk as a
Lévy process. The present φðp0jpÞ is more akin to a
truncated Lévy flight, which contains flat tails but well-
defined high-order moments. This implies that, at asymp-
totic times, the random walk will behave as some Brownian
motion, due to central-limit convergence; however, the
extended wings of φðp0jpÞ slow down this convergence
quite appreciably, as expressed by the Berry-Esséen
theorem [49]; hence, for practical matters, the present
non-Fokker-Planck form remains required. This transport
equation remains amenable to extensions: for instance,
wave-particle resonant interactions, if effective [50,51],
could be included by adding an extra diffusion term and,
similarly, for particle heating in small-scale nonideal
electric fields, which ensures injection into the Fermi
process in kinetic simulations [10–14]; finally, including
standard radiative and escape terms would allow to model
the emerging spectra from astrophysical sources.
In summary, the present Letter has established a novel,

general framework for implementing stochastic Fermi
acceleration in a realistic, collisionless turbulent bath,
opening a connection between the statistics of the inter-
mittent gradients of the velocity of magnetic field lines and
the rate of energization. Improved insight on turbulence
intermittency could ultimately allow a first-principles
calculation of particle spectra. The applicability of this
formalism thus extends beyond that of the numerical

simulation of incompressible MHD turbulence against
which it was successfully tested.
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