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We show that the ponderomotive force associated with laser speckles can scatter electrons in a laser-
produced plasma in a manner similar to Coulomb scattering. Analytic expressions for the effective collision
rates are given. The electron-speckle collisions become important at high laser intensity or during
filamentation, affecting both long- and short-pulse laser intensity regimes. As an example, we find that the
effective collision rate in the laser-overlap region of hohlraums on the National Ignition Facility is expected
to exceed the Coulomb collision rate by 1 order of magnitude, leading to a fundamental change to the
electron transport properties. At the high intensities characteristic of short-pulse laser-plasma interactions
(I ≳ 1017 Wcm−2), the scattering is strong enough to cause the direct absorption of laser energy, generating
hot electrons with energy scaling as E ≈ 1.44ðI=1018 Wcm−2Þ1=2 MeV, close to experimentally observed
results.
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Intense lasers are used in the laboratory to generate
plasmas as a route to understanding the physics of high
energy-density systems, with applications ranging from
inertial confinement fusion (ICF) and particle acceleration
to laboratory studies of astrophysics. The dominant elec-
tron transport processes that describe the flow of thermal
energy and magnetic field in the plasma are mediated by
Coulomb collisions between electrons and ions [1]. In this
Letter, we show that electrons can also undergo scattering
with the laser electromagnetic field, which introduces an
additional collisionality to the plasma and modifies the
transport properties. Modern high-power lasers use
smoothing techniques, such as random phase plates [2]
and smoothing by spectral dispersion (SSD) [3], to produce
smooth intensity profiles at large spatial and temporal
scales (relative to hydrodynamic scales), thereby limiting
the growth of hydrodynamic instabilities. However, laser
intensity profiles still exhibit small-scale time-dependent
intensity nonuniformities (speckles) whose size and life-
time are determined by the smoothing technique, typically
characterized by spatial scales of a few microns and
timescales of a few picoseconds. Each speckle exerts a
ponderomotive force on the electrons which acts to scatter
them. The electrostatic field induced in the plasma by the
speckles acts in a similar way and may cause additional
scattering, depending on the circumstances. The cumula-
tive effect of electrons interacting with multiple speckles
results in the loss of electron directed momentum. In some
important applications, such as the laser-overlap region in
ICF hohlraum plasmas, electron-speckle collisions can
dominate over Coulomb collisions. Fig. 1 shows a con-
ceptual illustration of this process for a simple two-beam

hohlraum, with an example stochastic electron trajectory
represented by the cyan curve (labeled “e”). In this Letter,
we derive the rate of directed momentum loss and show
how it affects electron transport and laser absorption.
Applying the theory to the region of crossing beams on
the National Ignition Facility (NIF) laser, we estimate a
reduction in the electron thermal conductivity by a factor of
≈ 20. Understanding the plasma conditions in the laser
overlap region in hohlraums is important because this
region determines the energy transfer between beams by
the cross beam energy transfer effect [4–6] and the growth
rates for laser filamentation [7,8], which in turn determine
the symmetry of the radiation drive onto the capsule. The
plasma conditions are primarily determined by the inverse
bremsstrahlung absorption (a process that is relatively well
understood, see e.g., Ref. [9]) and thermal transport in the
kinetic regime [10,11]. Given the dominance of electron-
speckle collisions, we make the case that these interactions
should also be considered for a complete description of
heat flow.
If the electromagnetic wave is speckled, the Lawson-

Woodward theorem [12] no longer applies, and when the
intensity approaches relativistic (I ≳ 4 × 1017 Wcm−2)
electrons can gain energy from the laser directly, without
the involvement of space-charge fields. This effect can be
motivated phenomenologically by making an analogy with
inverse-bremsstrahlung absorption [9], in which the aver-
age thermal momentum of electrons, hΔp2i is related to
the oscillatory momentum posc via dhΔp2i=dt ≈ υpp2

osc,
where υp is the effective collision rate for electrons
interacting with speckles. As with inverse bremsstrahlung,
electrons gain energy because of the change in phase
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induced by the collision. As a result of the effective
collisionality introduced by speckles, the accelerated elec-
tron spectrum is expected to be quasithermal, as observed
in experiments [13–17].
To derive the electron-speckle collision rates, we use an

analogy with electron-ion Coulomb scattering, replacing
the ions with speckles. A laser speckle with intensity I
encountered by an electron moving in the x-y plane is
approximated by an intensity profile with ponderomotive
potential of the form φp ¼ 1

4
mv2oscf1 − ½ðx2 þ y2Þ=R2�g,

where vosc ¼ eE0=mω0 is the electron oscillatory velocity
in the laser field of frequency ω0, E0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2I=cε0

p
is the

peak laser electric field strength, and R is the speckle
radius. One can consider a correction factor of order unity
to this potential to account for the electrostatic response of
the plasma to the SSD, and kinetic effects (discussed
below). The equation of motion of an electron in this
potential is md2r=dt2 ¼ −∇φp. In reference to Fig. 6, an
electron incident on the speckle with impact parameter
b ¼ yð0Þ at xð0Þ ¼ x0 ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 − b2

p
and initial velocity v

in the x direction has solutions xðtÞ ¼ 1
2
eωtðv=ω − x0Þ −

1
2
e−ωtðv=ωþ x0Þ and yðtÞ ¼ 1

2
bðeωt þ e−ωtÞ, where

ω ¼ vosc=
ffiffiffi
2

p
R. The electron is scattered by the speckle

through angle θ, returning to the initial radius R at
time tR ¼ ln ðWþ=W−Þ=ðR=

ffiffiffi
2

p
voscÞ, whereW� ¼ Rv2osc�

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðR2 − b2Þ

p
voscvþ 2Rv2. The angle θ can be found

from the electron velocity at t ¼ tR: θ ¼ arctan
f2bx0v2osc=½2b2v2osc þ ð2v2 − v2oscÞR2�g. Since the scatter-
ing angle is known, we can calculate the directed

momentum-loss rate [18] νp defined via the equation
hΔvx=Δtib ¼ −νpvx, where Δvx is the change in the
electron velocity along its initial direction (vx) in time
Δt. The angular parentheses h…ib denote an average over
all impact parameters. The directed momentum loss of an
electron with impact parameter b, after the interaction with
a single speckle of intensity I ∝ v2osc and radius R, is
mΔvx ¼ mvxð1 − cos θÞ. The integration over the impact
parameter depends on the speckle shape, and we consider
two limits: when the beam is tightly focused (correspond-
ing to beam F number F ¼ 1) or multiple beams overlap,
we treat the speckles as spherically symmetric, with rates
denoted by subscript “s” (νp;s etc), and when the beam is
straight (F ¼ ∞), speckles are treated as potentials with
cylindrical symmetry, with rates denoted by subscript “c”.
Examples of cylindrical and spherical speckles are indi-
cated in Fig. 1. In the case of cylindrical speckles, only the
electrons moving perpendicular to the beam direction are
heavily scattered, but in the case of spherical speckles the
scattering is isotropic. The case of spherical scatterers is
deferred to the Supplemental Material [19]; here we focus
on the cylindrical case. In time Δt, cylindrical scatterers
with number nA per unit area will undergo velocity change
Δvx ¼

R
R
0 vxð1 − cos θÞnAvΔtdb. Carrying out the integral

gives νp;cðw; voscÞ ¼ 24w3 − 4w −
ffiffiffi
2

p ð12w4 − 4w2 − 1Þ
lnΛðwÞnARvosc=ð32w2Þ, where Λ ¼ ð2w2 þ 2

ffiffiffi
2

p
wþ 1Þ=

ð2w2 − 2
ffiffiffi
2

p
wþ 1Þ, and w ¼ vx=vosc. This expression for

νp;c can be simplified by carrying out a fit to a rational
approximant. We choose a fitting function of the form
gðwÞ ¼ p1w=ð1þ p2w4Þ, which is the simplest function
exhibiting the same dependence on w in the small (w ≪ 1)
and large (w ≫ 1) limits. The coefficients pi are found by
equating the coefficients of the first-order Taylor (in w) and
asymptotic (in 1=w) expansions of νp;cðw; voscÞ with the
coefficients of the same expansions of gðwÞ, giving
ν̃p;cðw; voscÞ ≃ 4

3
nARvoscw=ð1þ 20w4Þ as an approximate

form for νp;c. This agrees well with the full expression for
νp;c in the range 0.15≳ w≳ 1.
In the Appendix we average ν̃p;c over the speckle

intensity distribution giving

ν̃p;cðvÞ ¼
4

3πR
v

1þ acðv=v0Þ4
ð1Þ

where ac ≈ 1.1. In order for multiple scattering to apply,
we require the mean-free path of electrons λmfp ¼
v=ν̃p;c=sðvÞ to exceed the speckle size. In most regimes
of interest for transport, v ≫ v0, and in this limit λmfp ¼
ð3πR=4Þac=sðv=v0Þ4 ≫ R. Eq. (1) can be further averaged
over a Maxwellian velocity distribution (see the Appendix)
and expressed in practical units:

FIG. 1. A simple hohlraum illuminated by two speckled laser
beams (with incident k vectors k1 and k2). Speckles approxi-
mated with cylindrical (“cyl.”) and spherical (“sph.”) symmetry
are shown. The colorbar corresponds to the laser intensity
(normalized to the average), and the cyan curve (labeled “e”)
shows an example electron trajectory.
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νp;c;M ≈ I215λ
4
3R

−1
μmT

−3=2
keV ln ð46TkeVI−115 λ

−2
3 Þ4.3 × 109 s−1

ð2Þ

where I15 is the average laser intensity in units of
1015 Wcm−2, λ3 the laser wavelength in units of
0.351 μm, TkeV the electron temperature in units of keV,
and Rμm the speckle radius in μm.
At intensities of ∼1015 Wcm−2, the effective collision

rates are relatively weak, but some important applications
in ICF involve high intensities. For example, taking
conditions representative of the laser entrance hole region
in hohlraums on the NIF laser (ne ≈ 0.05nc, Te ≈ 5 keV,
Z ≈ 2) [10], where 96 overlapping beams [26] generate
speckles at the wavelength scale λ0 ¼ 0.351 μm,
with average intensity ≈ 2.4 × 1016 Wcm−2, we find
νp;s;M ≈ 1 × 1012 s−1. This estimate is over 1 order of
magnitude greater than the Coulomb collision rate
(≈ 4.5 × 1010 s−1), indicating electron-speckle collisions
may be the dominant scattering mechanism. The collision
rate relative to the Coulomb rate (νp;c;M=υei) is plotted as a
function of intensity in Fig. 2 for the NIF conditions and a
typical scenario relevant to the OMEGA laser (ne ≈ 0.1nc,
Te ≈ 3 keV, Z ≈ 5.3, R ≈ 3 μm).
When the ponderomotive force acts on the plasma, an

electrostatic field is also generated, and we consider now
the characteristics of this field. In the case of a time-
independent intensity, the electrostatic field can be deter-
mined by the force balance between the ponderomotive
force Fp ¼ −e2=ð4mω2

0Þ∇jE0ðrÞj2 and the plasma pressure
gradient −Te∇ne=ne, where ne is the electron number
density, Te is the electron temperature (assumed uniform),
e is the electron charge, m is the electron mass, ω0 is the
laser frequency, E0 the electric field of the laser, and I the
intensity. The velocity-averaged electron equation of
motion is medue=dt ¼ −eE − Te∇ne=ne þ Fp, where E
is the electrostatic field and ue is the average electron

velocity. The effect of the laser field has been averaged over
the laser cycle and is included only in the term Fp, while
the field E results from charge separation. The ions reach
equilibrium by balancing the induced electric field with the
ion pressure gradient:midui=dt ¼ ZeE − Ti∇ni=ni, where
Z is the ion charge. In equilibrium these equations can be
combined, assuming quasineutrality ne ≃ Zni, to show
E ¼ ð1þ ZTe=TiÞ−1Fp=e, i.e., the speckle induces a field
with spatial characteristics closely related to its intensity
profile. However, this analysis ignores time dependence
associated with the SSD. In the Supplemental Material [19]
we describe Vlasov-Fokker-Planck simulations that
account for this effect, resulting in a similar scaling for
the induced field: E ≈ αFp=e, where α is a parameter,
determined by the simulations, lying in the range
0.5≲ α≲ 2. The field E therefore adds corrections of
order α to the theory.
The effect on electron transport can be estimated from

the v ≫ v0 limit of Eq. (1), ν̃p;sðvÞ ≈ 4v40=ðas3πRv3Þ,
which represents the directed momentum loss rate of the
electons involved in determining most transport coeffi-
cients of interest (vt ≲ v ≲ 5vt), including the important
effects of thermal conductivity and Nernst convection [1].
Low velocity effects such as electron-ion thermal equili-
bration and collisional damping of ion acoustic waves are
unaffected due to the dominance of Coulomb scattering.
Since this form for ν̃p;s has the same dependence on
velocity as electron-ion Coulomb scattering (v−3), the
effect of electron scattering with spherical speckles can
be approximately accounted for by making the replacement
νei → νei þ νp;s;M in the coefficients, where νei is the
Maxwellian-averaged electron-ion Coulomb collision rate
and νp;s;M is given in the Supplemental Material [19]. For
example, the thermal conductivity κ ∝ 1=νei is straightfor-
wardly replaced with κ ∝ 1=ðνei þ νp;s;MÞ. Note that for
cylindrical speckles, the thermal conductivity is only
affected in the direction perpendicular to the laser k vector
(k), so only the perpendicular conductivity κ⊥ is modified:
q ¼ κ⊥k × ð∇Te × kÞ. According to the above discussion,
we would therefore expect a reduction in the effective
thermal conductivity in the NIF laser entrance hole region
by a factor of ≈ 20.
We have so far neglected processes that can significantly

alter the characteristics of the speckles and induced fields,
notably the refraction of speckled light at oblique incidence
[27] and thermal filamentation [7,28]. The latter effect can
enhance the scattering rate substantially. The ponderomo-
tively induced electrostatic field (E ≈ Fp=e) associated
with an average laser intensity of 1015 Wcm−2 and speckles
of radius R0 ¼ 3 μm has root mean square (rms) magnitude
≈ 107 Vm−1, which is the field strength expected in
the absence of filamentation. The field associated with
density perturbations driven by filamentation is jEj¼
−∇Pe=ene ≈ðδne=neÞTe=Re, whereR is the speckle radius

FIG. 2. The speckle collision rate relative to the Coulomb rate
(νp;c;M=υei) as a function of laser intensity. The intensity in the
laser overlap region on the NIF is indicated by the asterisk (*).
The dashed red line corresponds to the same conditions as the red
line but accounts for thermal filamentation.
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after filamentation. Considering the typical density pertur-
bation associated with a speckle (δne=ne ≈ 0.1) is approx-
imately doubled during filamentation (δne=ne ≈ 0.2) so that
R ≈ R0=2, and assuming the number of filaments approx-
imately doubles as the beam breaks up results in an increase
in the rms field strength by a factor of ≈ 25. The electron-
speckle collision rate (∝ E2=R) therefore increases by a
factor of ≈ 103, which makes it comparable to the Coulomb
collision rate for a CH plasma at I ¼ 1015 Wcm−2. The
dashed red line in Fig. 2 corresponds to the OMEGA laser
conditions but with the inclusion of this estimate for the
enhancement caused by filamentation.
Speckles are also a common feature of laser-matter

interactions at relativistic intensities [29,30], and in many
ways they are unavoidable due to the difficulty of main-
taining perfectly smooth targets and beams throughout the
pulse. They invalidate the plane wave approximation, but
their effect has until now been unexplored theoretically in
this regime. Using the relativistic formula derived in the
Appendix for the case of λ0 ¼ 1 μm, I ¼ 1018 Wcm−2 and
an electron with momentum p ¼ mc, we find a collision
time of just ν−1p;s;rel ≈ 8 fs, which is comparable to the laser
period. The large magnitude of this collisionality indicates
the perturbations induced by speckles on the electron
trajectory are non-negligible. Particle-in-cell simulations
of electron acceleration in the underdense plasma fre-
quently show energetic (E≲ 1 MeV) electrons undergoing
stochastic motion in the corona (see, e.g., Ref. [15]), and
this behavior is consistent with our 8 fs estimate for the
collision time. The collisions have the undesirable effect of
increasing the electron beam divergence angle, which is a
key metric for most applications (e.g., x-ray backlighting)
and a crucial parameter in the fast ignition approach to
inertial fusion [31]. The decreased scattering rate of the
higher energy electrons predicted by our theory may
explain why higher energy electrons are emitted with a
reduced divergence angle [32].
To study electron energy gain at relativistic intensities,

we consider a Gaussian plane wave reflecting off a
nonuniform critical surface, which generates a speckled
reflected wave. The electric field (Ex) in this scenario is
plotted in Fig. 3. The wavelength is λ0 ¼ 1 μm, the peak
incident intensity is 4 × 1017 Wcm−2, and the critical
surface is assumed to generate a speckled beam (moving
in the −z direction) with Gaussian statistics whose mean
radius is 1 μm. For illustrative purposes, the Gaussian
envelope on each beam in Fig. 3 has a relatively short full-
width half-max length of 10 μm, and the envelopes on the
incident and reflected waves are centered on z ¼ −5 μm
and z ¼ 5 μm, respectively. The oscillatory energy of
electrons in the incident plane wave can be thermalized
by the interaction with the reflected, speckled beam,
resulting in a nonadiabatic interaction of the electrons with
the beams. The speckles can be thought of as introducing a
stochastic force, and the presence of even small stochastic

forces is well known to lead to energy transfer at high
intensity [33]. Although the case of two plane waves
interacting does lead to absorption due to the nonlinearity
of the interaction [34] at intensities ≳1018 Wcm−2,
accounting for speckles leads to much greater energy gains
even at relatively low intensity (≳1017 Wcm−2). We have
studied this process numerically by integrating the electron
equations of motion in the laser interference fields. We do
not include the electrostatic field generated by the plasma in
order to clearly demonstrate large energy gain can be
produced by the laser fields alone. An example of the
energy gained is shown in Fig. 4(a) for the case of two
Gaussian pulses each with FWHM pulse length of 300 fs
and intensity I ¼ 4 × 1017 Wcm−2, initially separated by a
large distance, interacting with electrons initially located at
the midpoint of the two beams with temperature 16 keV.
For comparison, the case of two uniform beams is also
shown. The average energy gained by the electrons is
≈ 0.22 MeV for the case with speckles, significantly above
the ponderomotive scaling [29] (Tpond ≈ 0.07 MeV) and a
factor of ≈ 6 greater than the case with uniform beams.
Quasithermal electron energy spectra are generated, shown
in Fig. 4(b) with a comparison to Tpond. In Fig. 5 we show
the hot electron energy scaling from these simulations for a
range of intensities, along with recent experimental mea-
surements at relatively low intensity [15,16].
In order for electrons to gain energy from a pump wave

via electron-speckle scattering, the deflection has to occur
on timescales comparable to or shorter than the oscillation
period in the pump [9]. This becomes the case at relativistic
intensities for small scale speckles (R ≈ λ0). The thermal

FIG. 3. The electric field (Ex) that results from the interference
of an incident Gaussian plane wave (moving in the z direction)
reflecting off a nonuniform critical surface.
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energy gain scaling can be estimated by considering the
simplified scenario in which an electron is moving in the
direction of the pump, so that the pump oscillation time
is long compared with the speckle interaction time and
the collision can be assumed to be instantaneous. We
decompose the electron momentum w into components
w ¼ pþ u, where p is the thermal momentum and u is the
oscillatory momentum in the pump, and consider the square
change in thermal momentum Δðp2Þ in time Δt when
scattering through angle θ: Δðp2Þ=Δt ¼ 2u:wð1 − cos θÞ−
uw sin θ cosϕ sin θ0, where θ0 is the angle between u and w
and ϕ is the azimuthal angle. The term in ϕ can be
neglected due to symmetry. The scattering angle is
expressed in terms of the impact parameter θðbÞ and as
above we integrate over all impact parameters, assuming
v ≈ c, Δðp2Þ=Δt ¼ 2u:w

R
R
0 ½1 − cos θðbÞ�ns2πvbdb ¼

2ðu2 þ 2up cos χÞnsI1v, where ns ¼ ð4πR3=3Þ−1 is the
density of speckles, χ is the angle between u and p, and
I1 ¼

R
R
0 ½1 − cos θðbÞ�2πbdb follows a similar form to

the nonrelativistic case I1 ≈ πR2=ð1þ 12v̄4Þ, with v̄2 ≈
w=uosc and uosc ¼ e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2I=cε0

p
=ω0 the peak oscillatory

momentum in the speckle at intensity I (assumed equal
to the pump intensity). Averaging over all solid angles gives
Δðp2Þ=Δt ¼ 2u2nsI1c. For electrons with initially low
energy w=uosc ≪ 1, the cross section is I1 ≈ πR2, i.e.,
the speckles are effective scatterers. In the time Δt,
assumed short in comparison to the relatively long oscil-
latory time in a relativistic pump, the oscillatory momen-
tum gained from the pump averaged over all laser phases is
u ≈ eE0Δt=2 (see Appendix), where E0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2I=cε0

p
is the

peak electric field of the pump. Considering a deflection
timescale equal to the speckle crossing time R=c, and a
speckle size R ¼ λ0, the thermal energy gain is E ≈ffiffiffiffiffiffiffiffiffiffiffiffiffi

Δðp2Þ
p

c ¼ ffiffiffiffiffiffiffiffi
3=2

p
πa0mc2 per interaction, where a0 ¼

eE0=mcω0 is the normalized vector potential of the pump.
Once the energy gained is of this order, the speckle cross
section decreases rapidly, and the heating is cut off.
Expressed in terms of intensity for λ0 ¼ 1 μm, the energy
gained is E ≈ 1.44ðI=1018 Wcm−2Þ1=2MeV, which is
close to the well-known relativistic scaling [35] E ≈
1.5ðI=1018 Wcm−2Þ1=2 MeV observed in a variety of
simulations and experiments [13–17]. The stochastic nature
of the acceleration is expected to give rise to quasithermal
electron spectra, and in Fig. 5 we show our analytic scaling
alongside the simulation results, with good agreement in
the relativistic regime. Electron-speckle scattering therefore
offers an alternative explanation for the hot electon temper-
atures observed at high intensity.
In summary, we have shown that the ponderomotive force

generated by laser speckles can scatter electrons in much the
same way as electron-ion Coulomb scattering. The scatter-
ing rate ν ∝ I2=R can exceed the Coulomb scattering rate in
some important laser-plasma interaction applications, and
this will lead to significant corrections to plasma transport
properties. At intensities approaching relativistic,
I ≳ 1017ðλ0=1 μmÞ2Wcm−2, electron scattering in speckles
results in large energy gains with characteristic hot electron
temperature scaling as E ≈ 1.44ðI=1018 Wcm−2Þ1=2 MeV.
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FIG. 4. (a) Average electron energy as a function of time and
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FIG. 5. Hot electron energy scaling with intensity from sim-
ulations with 300 fs pulses (black dots). The ponderomotive
scaling is shown in red, alongside our analytic expression
E ≈ 1.44ðI=1018 Wcm−2Þ1=2 MeV in blue and recent experi-
ments (green).
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Appendix A: The average over the speckle intensity
distribution.—The analysis in the main text considers
electrons interacting with speckles of fixed intensity, but
in reality a beam contains a statistical distribution
of intensities, which can be described by a probability
(P) density function dP=du ¼ pðuÞ, where u ¼ I=I0
is the speckle intensity normalized to the beam
average I0. We use a slightly modified form of Garnier’s
expression [36] for the probability density: pðuÞ ¼
Aeuc−uð20u2 − 36uþ 3Þ=2u1=2 with

R
∞
uc
pðuÞdu ¼ 1

and A ¼ ½3ð7 ffiffiffiffiffi
66

p þ 57Þ�−1=2. The modification simply
excludes negative values of the probability, which only
occur at low intensities u < uc ¼ ð9þ ffiffiffiffiffi

66
p Þ=10 ≈ 1.7.

This introduces negligible error in our calculations
because the higher intensity speckles, in the range
2≲ u≲ 7, dominate the scattering. When the number
density of speckles is expressed as a probability, the
rates are given by integrals over u in the form υðvÞ ¼R
Gðv; uÞpðuÞdu because the number density of speckles

within du of u is dnA ¼ A−1
sp pðuÞdu, with Asp ¼ πR2 the

speckle cross sectional area. To carry out this integral,
the approximate rates ν̃i are first expressed in terms of u
and w by using vosc ¼ u1=2v0 and w ¼ v̄=u1=2, where v0
is the value of vosc when u ¼ 1 (i.e., v0 is the
oscillatory velocity when I ¼ I0) and v̄ ¼ v=v0. The
intensity-weighted momentum-loss collision rate is given
by ν̃p;cðv̄Þ ¼

R ½ν̃p;cðv̄; uÞ=nA�dnA ¼ R∞
uc
ν̃p;cðv̄; uÞpðuÞdu,

where the function in the integrand fðv̄; uÞ ¼
ν̃p;cðv̄; uÞpðuÞ is

fðv̄; uÞ ¼ 2Aeuc−uu3=2ð20u2 − 36uþ 3Þv̄v0A−1
sp R

3ð20v̄4 þ u2Þ : ðA1Þ

This function can be approximated in the low velocity
“L” (v̄ ≪ 1) and high velocity “H” (v̄ ≫ 1) limits by
replacing the denominator term with 20v̄4 þ u2 ≈ u2 and
20v̄4 þ u2 ≈ 20v̄4, respectively, giving functions in both
limits: fL ¼ 2Aeuc−uð20u2 − 36u þ 3Þv̄v0A−1

sp R=3u1=2

and fH ¼ Aeuc−uu3=2ð20u2 − 36u þ 3Þv̄−3v0A−1
sp R=30.

Carrying out the integrals of these approximate functions
gives the total collision rate in the low (“L”) and
high (“H”) velocity limits: ν̃p;cðv̄ÞL ¼ ð4=3Þv̄v0 and

ν̃p;cðv̄ÞH ¼ ðBc=1500Þv̄−3v40 where Bc ¼ 308
ffiffiffiffiffi
66

p
−

793þ 220euc
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5ð57–7 ffiffiffiffiffi

66
p Þπ

q
ErfcðucÞ and ErfcðxÞ is the

complementary error function. Since the approximations
ν̃p;cðv̄ÞL and ν̃p;cðv̄ÞH have the same functional form with
respect to v̄ as does ν̃p;cðwÞ with respect to w, we can use
the same technique as shown in the main text to combine
both limits in a single approximate function again of the
form gðv̄Þ. This yields

ν̃p;cðvÞ ¼
4

3πR
v

1þ acðv=v0Þ4
ðA2Þ

where ac¼2000=½308 ffiffiffiffiffi
66

p
−793þ220euc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5ð57−7

ffiffiffiffiffi
66

p Þ
q

πErfcðucÞ−793�≈ 1.1. We have numerically verified good
accuracy of Eq. (A2) in the v ≪ 1 and v ≫ 1 limits.
A guide to the parameters used in the main text to

calculate the scattering angle is shown in Fig. 6.

Appendix B: The average over a Maxwellian.—
The expression in Eq. (1) can be averaged over
a Maxwellian velocity distribution 4πð2πv2t Þ−3=2
exp ð−v2=2v2t Þ, where vt ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Te=me

p
to obtain the

thermal collision rate νp;c;M ¼ ffiffiffi
2

p
HKv40=ð3π3=2acRv3t Þ,

where HK ¼ ½π − 2SiðKÞ� sinðKÞ − 2CiðKÞ cosðKÞ, K ¼
v20=ð2

ffiffiffiffiffi
ac

p
v2t Þ, the sine integral is SiðxÞ ¼ R

x
0 t

−1 sinðtÞdt,
and the cosine integral is CiðxÞ ¼ R

x
0 t

−1 cosðtÞdt. In
most experimental regimes of interest, K ≪ 1 so this can
be simplified to νp;c;M ≈ 2

ffiffiffi
2

p
lnðK−1Þv40=ð3π3=2acRv3t Þ.

Note that this is a similar form to the Coulomb
scattering rate, but with the replacement Z2ni lnΛ →
I2R−1 lnK−1.

FIG. 6. Schematic diagram showing the key parameters in the
analytic treatment of an electron interacting with a speckle of
radius R.
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Appendix C: Relativistic theory.—In the ultra-
relativistic limit (Lorentz factor γ ≫ 1), the pondero-
motive force is Fp ¼ −ðc= ffiffiffi

2
p Þ∇posc, where posc ¼

eE0ðrÞ=ω0 is the oscillatory momentum [37]. This
allows us to write the ultrarelativistic ponderomotive
potential as φp ¼ poscc=

ffiffiffi
2

p
. The equation of motion of

an electron interacting with this potential is there-
fore dp=dt ¼ −∇φp, with p ¼ γmdr=dt. We make
the simplifying assumption, common in relativistic
mechanics, that the Lorentz factor is approximately
constant during the interaction γ ≈ γ0, so that d2r=dt2 ¼
−ðc= ffiffiffi

2
p

mγ0Þ∇posc. We again assume a parabolic
potential profile, and if we define a new velocity
variable uosc ¼ ð4posc;0c=

ffiffiffi
2

p
mγ0Þ1=2, the equation of

motion becomes identical to the nonrelativistic case with
the replacement vosc → uosc. The solutions are then
xðtÞ ¼ − 1

2
ðeωt þ e−ωtÞx0 þ 1

2
ðeωt − e−ωtÞðpx0Rω=posc;0cÞ

and yðtÞ ¼ 1
2
bðeωt þ e−ωtÞ, where ω ¼ ð21=4=RÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðposc;0c=γ0mÞp
. We have verified that the assumption

γ ≈ γ0 is good by comparing this analytic solution
for the trajectory to fully relativistic numerical
calculations. Following along the nonrelativistic
derivation, but with these new variables, we find
ν̃p;s ≃ πR2nuoscv̄=ð1þ 12v̄4Þ, where v̄ ¼ v=uosc, which
characterizes the electron momentum relative to the
oscillatory momentum, since v̄2 ¼ ðv=uoscÞ2 ¼ ð ffiffiffi

2
p

=4Þ
ðv=cÞðpx0=posc;0Þ ≈ px0=posc;0. The integral over the
intensity distribution is similar to the nonrelativistic case
except that we take into account the fact that the scaling

with u is now uosc ¼ u1=4u0 and w ¼ v̄=u1=4. These
changes lead to the relativistic collision rate

ν̃p;s;relðvÞ ¼
3

4R
v

1þ asðv=u0Þ4
ðC1Þ

with as ≈ 3.0.
The solutions to the equations of motion of an electron in

a plane electromagnetic wave have been obtained by many
authors in terms of the proper time (e.g., Refs. [38,39]). To
obtain useable expressions for the electron momentum u,
valid for times short compared to the oscillation period, we
Taylor expand Yang’s [39] expressions in time to first order,
which results in

ux ≃ ux0 − a0Δc ðC2Þ

uz ≃
1þ u2x0 − 2a0ux0Δc

2α0
−
α0
2

ðC3Þ

where ux is the momentum in the direction of laser
polarization in units of mc (initially ¼ ux0), uz is the
momentum in the direction of laser propagation in units of
mc (initially ¼ uz0), α0 ¼ γ0 − uz0, γ0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2x þ u2z

p
,

Δc ¼ tðω0 − kvz0Þ sin ðkvz0Þ, vz0 ¼ uz0=γ0, a0 ¼ eE0=
mcω0 is the normalized wave amplitude, and k is the wave
number. Note that here the symbol u refers to the
normalized momentum. The square change in momentum
Δðu2Þ ¼ ðux − ux0Þ2 þ ðuz − uz0Þ2 after time t is

Δðu2Þ ¼ a20t
2ðω0 − kvz0Þ2sin2ðkvz0Þ þ

�
1þ u2x0 − 2ux0a0tðω0 − kvz0Þ sin ðkvz0Þ

2α0
−
α0
2
− uz0

�
2

: ðC4Þ

Assuming the electron momentum distribution function
is initially isotropic in the x − z plane, we adopt a polar

coordinate system u0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2x0 þ u2z0

q
, ux0 ¼ u0 sin θ, uz0 ¼

u0 cos θ and average Δðu2Þ over all angles θ to obtain

Δðu2Þ ¼ a20t
2ð1þ 2u20Þ2sin2ðφz0Þ

1þ u20
ðC5Þ

where φ0 ¼ −kvz0 is the initial phase. We carry out the
trivial average over all initial phases φ0, assuming electrons
are initially evenly distributed along the wave axis. Further
assuming an initially thermal distribution characterized
by a thermal momentum ut, of the form fðu0Þ ¼ffiffiffiffiffiffiffiffiffiffiffiffið2=πÞp

u−3t exp ð−u20=2u2t Þ we can calculate the average
hΔðu2Þi ¼ R∞

0 Δðu2Þfðu0Þu20du0:

hΔðu2Þi ¼ a20t
2

4u3t

� ffiffiffiffiffiffi
2π

p
Erfc

�
1ffiffiffi
2

p
ut

�
þ 4u3t − 2ut

�
: ðC6Þ

If the electrons are initially cold, ut ≪ 1, then we obtain
the scaling

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hΔðu2Þi

p
≃ a0t=2, which agrees well with

numerical simulations for short times. Note that a similar
scaling can be found for exponential energy distributions.
This scaling is used to estimate the energy gain of a cold
isotropic distribution of electrons in a wave.
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