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A reliable source of identical (indistinguishable) photons is a prerequisite for exploiting interference
effects, which is a necessary component for linear optical based quantum computing, and applications
thereof such as Boson sampling. Generally speaking, the degree of distinguishability will determine the
efficacy of the particular approach, for example by limiting the fidelity of constructed resource states, or
reducing the complexity of an optical circuits output distribution. It is therefore of great practical relevance
to engineer heralded sources of highly pure and indistinguishable photons. Inspired by magic state
distillation, we present a protocol using standard linear optics which can be used to increase the
indistinguishability of a photon source, to arbitrary accuracy. In particular, in the asymptotic limit of small
error ϵ, to reduce the error to ϵ0 < ϵ requires O(ðϵ=ϵ0Þ2) photons. We demonstrate the scheme is robust to
detection and control errors in the optical components, and discuss the effect of other error sources.
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Introduction.—Linear optical quantum computing
(LOQC) is an attractive paradigm for realizing fault toler-
ance, since photons in free space have extremely long
coherence times, and can be manipulated via high fidelity
linear optics whichmay not require the same level of cooling
as other approaches [1]. In LOQC, qubits are constructed out
of photons which can exist in two modes, common choices
being spatial modes, or using the polarization degrees of
freedom. Fault tolerance can in principle be achieved via the
Knill-Laflamme-Milburn (KLM) protocol with sufficient
numbers of qubits and using error correction [2], or using
cluster states in a measurement-based approach to quantum
computing [1,3–8].
A source of highly indistinguishable photons is required

in order to make use of photons for computational
purposes. The Hong-Ou-Mandel (HOM) effect [9] is the
prototypical example which shows fundamental differences
in which identical versus distinguishable photons interfere
(or do not). In this conceptually simple experiment, two
photons are incident upon a 50∶50 beam splitter, which
results in a bunching of the two photons in the case they are
indistinguishable. On the other hand, when the input
photons are distinguishable, the signal from a HOM
experiment (the HOM “dip”) is diminished by an amount
related to the infidelity of the two photons [10].
The HOM effect is a crucial ingredient for realizing

LOQC, for the interference between identical photons can
be used to create entanglement over computational degrees
of freedom [2,11–13]. For example, fusion measurements
can be used to create large cluster states out of primitive
entangled states, such as Bell states or small Greenberger–
Horne–Zeilinger (GHZ) states [14]. However, the pre-
sence of distinguishability will generally result in less
entanglement generated over the computational degrees of
freedom, compared to the ideal state [15,16].

Similarly, for specific applications of LOQC, such as
Boson sampling [17], multiphoton interference is the key
ingredient to generate a computationally intractable dis-
tribution, which is reduced in complexity with distinguish-
ability [18].
It is therefore necessary to be able to generate photons

with as high an overlap as possible. In this Letter, we present
a technique inspired bymagic state distillation [19], which is
used to “distill” indistinguishable photons from a photon
sourcewhich outputs photons that are partly distinguishable
(or in other words, a source with nonunit purity). This task
can be phrased in a few equivalent ways, and is related to
state purification [20,21] and discrimination [22].
Commonly narrow band filters are used to generate

heralded highly pure photons from pair sources, however,
in practice the photon yield becomes prohibitively small at
high enough target purity [23]. Moreover, naive filtering of
a single photon source, while yielding highly pure pho-
tons, will be unheralded. Our scheme instead works under
a different paradigm, where independent single photons
that are partly distinguishable are used to produce a
source of heralded and pure photons, utilizing multiphoton
interference.
A cartoon example of our general idea is shown in Fig. 1,

whereby n copies of a noisy photon state are used to
produce single photons, with a lower degree of distinguish-
ability. Input photons to the circuit populate spatial modes
(horizontal lines), which we will often refer to as “rails,”
and can be implemented physically via optical fibers, for
example. The black box is a circuit composed of beam
splitters (and possibly other linear optical components), and
the output photon is conditioned on the postselection
of a particular measurement outcome, i.e., the detection
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of n − 1 photons, in some configuration. The key obser-
vation behind our scheme is that identical photons interfere
in a fundamentally different manner than partly distinguish-
able ones, which can be exploited using beam splitters, and
ultimately used to reduce the distinguishability of noisy
photon sources. The scheme works so long as the initial
purity is above around 60%.
Related work.—While preparing this Letter, we became

aware of a morally similar scheme proposed by Sparrow
and Birchall (SB) in Ref. [15], under the name “HOM
filtering.” In this scheme, n ≥ 2 photons are incident upon
n rails, which are postselected upon bunching in a single
rail. Photon subtraction is then used to output a single
photon of a higher fidelity. This scheme is conceptually
elegant, and results in asymptotic scaling of the error
ϵ → ϵ=n. However, it is apparent that the scheme becomes
prohibitive for even modest n, as the probability to measure
the desired outcome falls worse than exponentially in
n [24]; we compute in the Supplemental Material [25],
SM A, the postselection success probability to be asymp-
totically (i.e., at error approaching zero)

PðSBÞ
p:s: ≤

n
2n

Yn

m¼2

m
2m

¼ n2ðn − 1Þ!ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n

2þ3n−2
p ; ð1Þ

meaning huge numbers of photons are required to distill a
single purer one (for n ¼ 2, 3, 4, 5, 6, one requires on
average 8, 42, 341, 4369, 93 206 photons, respectively).
Our scheme overcomes two issues identified by

SB in their protocol, namely, we achieve higher success
probabilities (and therefore use fewer photons), and do not
require explicit multiple photon subtraction [26]. Eventually
we believe a hybrid scheme can be invoked, as in regimes of
higher error, the SB scheme can outperform the present
approach, whereas at lower errors, our scheme is most
efficient. We will discuss this in the Results section.
Theory.—An arbitrary single photon state can be written

as a sum over modes [27,28]:

jψi ¼
X

s∈fh;vg

Z
dωcs;ωjs;ωi ¼

X∞

i¼0

ciâ
†
i j0i ¼

X∞

i¼0

cijψ ii:

ð2Þ

The term after the first equal sign represents the explicit
representation over the polarization (s being, e.g., horizon-
tal h or vertical v) and frequency (ω) domains, and going to
the second equal sign we have picked a countable ortho-
normal basis in the separable Hilbert space to represent the
continuous degrees of freedom (and absorbed the s index
into the new sum). The state j0i is the vacuum state, and â†i
creates a photon in the ith mode, where for now we use the
explicit state representation â†i j0i ¼ jψ ii. By construction,
these basis states are orthogonal hψ ijψ ji ¼ δij, and the
amplitudes ci ∈ C square sum to 1:

P
i jcij2 ¼ 1.

We now describe the model of a noisy photon source
which is used in this Letter. A nonideal photon source will
output photons according to Eq. (2), but with realization
dependent coefficients ci (that is, they are different for each
generated photon). Without loss of generality we can pick
the basis so that the desired mode to populate is the zeroth
one, i.e., jψ0i is the state which would be generated each
time by a perfect photon source. We consider fluctuations
around this ideal by assuming the source can generate
photons in the zeroth mode with probability 1 − ϵ, i.e.,
hjc0j2i ¼ 1 − ϵ, where the angle brackets indicate the
realization average. We will similarly define pi ≔ hjcij2i,
where

P
i>0 pi ¼ ϵ. We further make a random phase

approximation so that hcic�ji ¼ 0 for i ≠ j, which means
the photon source can be equivalently described as a
dephased mixture:

ρðϵÞ ¼ ð1 − ϵÞjψ0ihψ0j þ
X

i>0

pijψ iihψ ij: ð3Þ

This approximation amounts to the “error amplitudes”
cj>0 ¼ jcjjeiϕj receiving a random phase ϕj (independent
of the norm) on each realization. With this, we can therefore
interpret the photon source as generating a photon in the
ideal state jψ0i with probability 1 − ϵ, or with probability ϵ
an orthogonal “error mode” is populated (i.e., from one of
the â†i>0). We will similarly call the jψ i>0i an “error state”
(orthogonal to jψ0i).
We define the indistinguishability within our model as

the mean overlap of pure states generated by the source,
i.e., I ≔ meanðjhϕjψijÞ. Under our assumptions, this is
equivalent to sampling pure states from ρ, from which it is
easy to show I ¼ trðρ2Þ, i.e., it is the purity. The aim of
this Letter is to maximize the indistinguishability by
minimizing ϵ.
To simplify the analysis, we can consider the small error

(small ϵ) limit. At sufficiently small ϵ it is unlikely to
observe more than one error state according to the above
statistical description; if we draw n samples from distri-
bution ρ [29], we either get n copies of jψ0i, or n − 1 copies
of jψ0i, and one copy of some orthogonal error state jψ⊥i
(i.e., jψ⊥i is one of the jψ i>0i). Note, in our subsequent
analysis we will still take into account the cases when more

FIG. 1. Cartoon schematic of distillation scheme. n copies of a
noisy photon state with error rate ϵ [Eq. (3)], incident upon n
spatial rails, are used to distill a single photon of lower error
ϵ0 < ϵ. This is achieved upon postselection of a particular
detection pattern of n − 1 photons in the measured rails. The
black box is at this point unspecified but will be an array of beam
splitters between the rails to enact interference.
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than one error mode is populated, but for now we can work
in the limit of only single errors, for convenience. We can
write the n photon state, to first order as (see SM B)

ρ⊗n ¼ð1− ϵÞnjΨ0ihΨ0jþ ϵð1− ϵÞn−1
Xn

k¼1

jΨkihΨkjþOðϵ2Þ;

ð4Þ

where we have introduced notation jΨ0i ¼ jψ0i⊗n and
jΨki ¼ jψ0i⊗ðk−1Þjψ⊥ijψ0i⊗ðn−kÞ. The error term Oðϵ2Þ
contains the states of n photons composed of n − 2 copies
of jψ0i, and two error states jψ i>0i. The tensor structure
comes from the spatial mode representation, as in Fig. 1.
For now we write the error state generically as jψ⊥i, as we
will later see at first order it is unimportant for our ana-
lysis which particular error mode i > 0 is populated in
state jΨki.
In order to enact interference between photons of the

above form, we will utilize a beam splitter. In our notation a
beam splitter is described by four parameters, and acts on
(spatial) mode creation operators â†; b̂† as follows:

â† → eiðϕ0þϕRÞ sinðθÞâ† þ eiðϕ0þϕT Þ cosðθÞb̂†

b̂† → eiðϕ0−ϕTÞ cosðθÞâ† − eiðϕ0−ϕRÞ sinðθÞb̂†: ð5Þ

We assume the parameters fθ;ϕ0;R;Tg are agnostic to the
impinging photons internal state [30], and therefore any
single photon incident upon such a beam splitter will be
split in the same manner as any other. A 50∶50 beam
splitter refers to the case θ ¼ π=4, where there is equal
transmission to the other mode (T), or reflection to the same
mode (R). Throughout we use the convention for the
phases ϕ0 ¼ π=2;ϕR ¼ −π=2;ϕT ¼ 0.
Since we utilize optical components that are state

agnostic, and any single photon in state jψ i>0i will not
interfere with the ideal state jψ0i (by orthogonality), it has
no bearing on the output statistics of a circuit of form
Fig. 1 which particular error mode i > 0 is actually
populated when state jΨki is sampled from ρ⊗n. For this
reason we can write the single error state simply as jψ⊥i, as
mentioned above.
Now that we have described the basic components in our

construction, all that remains is to outline the postselection
over detection events. We will require access to photon
number resolving detectors which we assume are ideal; it
will always detect the exact number of photons present
(though it will in fact be enough to distinguish between
0,1,2,3 photons, which will be clear later). The postselec-
tion on a detection event of m photons can be described by
taking the partial trace of the measured rail(s) after applying
a measurement operator on the state [15,31]. If before
measurement the state is ρ, and we place a detector at the
kth rail to detect m photons, the postselected state will be

Trk½ΠðmÞ
k ρΠðmÞ

k �=N, where ΠðmÞ
k sums over all rank 1

projectors onto pure states which contain m photons in
the kth rail. N is for normalization.
Results.—The central question we wish to answer is

whether one can engineer the schematic diagram Fig. 1
with a suitable number n of photons, and linear optical
components in the black box, so that the output state has
less error than Eq. (3), upon a suitable postselection. If one
can do this, the process can be repeated indefinitely until
arbitrary accuracy (i.e., ϵ is arbitrarily small).
From our studies, this in fact defines a large class of

optical circuit of varying numbers of photons and linear
optical components. We however will focus our attention
on the “best” performing that we found (where here best
has a precise meaning, in terms of the number of photons
required to distill a photon to some particular accuracy).
Indeed, there is scope for the discovery of improved
circuits. We will assume all components and detectors
are perfect, so that the only source of error is in the photon
generator, but discuss such errors in the SM.
The circuit of present interest is shown in Fig. 2,

composed of three rails (each taking one incident photon),
and three beam splitters, two which are symmetric, and one
which is asymmetric, biased to higher reflectivity (to stay in
same mode). Note permutations of this circuit also perform
identically (keeping the angle of the middle beam split-
ter tan−1

ffiffiffi
2

p
).

First let us consider the ideal input of three identical
photons in state jψ0i sampled from ρ, which we will denote
using occupation number (Fock) representation over the
rails as j1; 1; 1i. This input occurs with probability ð1 − ϵÞ3.
The output of the circuit, before measurement is (up to a
global phase)

1ffiffiffi
3

p j1; 1; 1i −
ffiffiffi
2

p

3
ðij3; 0; 0i − j0; 3; 0i þ ij0; 0; 3iÞ; ð6Þ

FIG. 2. Three photon distillation scheme. A successful meas-
urement corresponds to a single photon registered in each of the
two measured rails (indicated by the “1” subscript on the
detectors). The vertical lines with black circles represent beam
splitters between the rails on which the black circles intersect.
The first and third beam splitters are 50∶50 (π=4 in the diagram),
and the middle is asymmetric with θ ¼ tan−1

ffiffiffi
2

p
≈ 0.955 (less

likely to transmit). In the asymptotic limit of small ϵ, the error is
reduced by a factor of 1=3, and postselection succeeds with
probability 1=3.
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which has probability of 1=3 to obtain the correct post-
selected state [32].
If on the other hand a single error state is present, i.e.,

one of fjΨkig3k¼1 is sampled [each occurring with prob-
ability ϵð1 − ϵÞ2], the output in the relevant subspace before
measurement, is ð1= ffiffiffiffiffi

27
p ÞP3

k¼1 jΨki, up to a phase. The
postselection therefore succeeds with total probability 1=9,
and the outputted (unmeasured) photon is ideal jψ0i
with postselected probability 2=3 (see SM C for more
information).
The key observation behind the scheme is that the ideal

input is successfully postselected upon three times as often
than the case where an error is present (1=3 vs 1=9), which
allows the errors to be filtered out, approximately at a rate
of 1=3 error reduction per round.
One can produce an upper bound on the error reduction

(see SM C), ϵ → ϵ0 under the scheme

ϵ0 ≤
ϵ

3

1þ 2ϵ

1 − 2ϵþ 3ϵ2 − ϵ3
¼ ϵ

3
þ 4ϵ2

3
þOðϵ3Þ: ð7Þ

The reason this is a bound, instead of equality, is that the
error reduction depends on the specifics of the distribution
of errors in Eq. (3). In SM Cwe also produce a lower bound
on the error, ϵ0 ≥ ðϵ=3Þ þ ð2ϵ2=3Þ þOðϵ3Þ. The scheme
can be used to reduce errors (ϵ0 < ϵ) so long as the initial
error ϵ is below around 43%.
The error reduction capabilities of our scheme are shown

in Fig. 3, where we also compare to the SB protocol for
n ¼ 2 which as we will see is the most efficient SB
protocol, and n ¼ 3 (same number of photons per round
as the present approach). We see our scheme outperforms

SB for n ¼ 2 for errors less than around 15%, and that our
scheme converges with SB n ¼ 3 at around 5% error. Note,
for the SB scheme we plot the best case error reduction,
whereas in reality it may perform worse than this, depend-
ing on the distribution of error modes, see Ref. [15] (though
for small ϵ the difference becomes negligible).
In SM C we compute the probability of obtaining a valid

postselection measurement outcome (i.e., detection of a
single photon at each of the two detectors), which scales as
ð1 − 2ϵÞ=3þOðϵÞ2. Figure 2 of SM C compares this to the
SB n ¼ 2, 3 protocols which have a lower postselection
probability, leading to a greater resource requirement. Since
our scheme consumes 3 photons per use, we require around
9 photons to distill a single purer one to 1=3 the error. In
comparison to SB for n ¼ 2, 3, around 8 and 42 photons are
required, respectively, to obtain 1=2; 1=3 error, respec-
tively. In the asymptotic error limit (which practically is for
ϵ≲ 0.05), one can compute the number of photons required
to distill a photon to target error ϵ0 as O(ðϵ=ϵ0Þ2) [33]. In
comparison to SB n ¼ 2, 3, 4, the exponent is 3,3.4,4.2,
respectively. This implies in the asymptotic limit our
scheme is the most efficient.
Lastly, we wish to mention we also discovered an n ¼ 4

photon circuit (see SM D), which is essentially a gener-
alization of the presented n ¼ 3 circuit (though with only
50∶50 beam splitters), which can reduce errors by ϵ=4, at
the expense of a lower success probability—asymptotically
1=4—meaning around 16 photons are required on each
iteration, and still O(ðϵ=ϵ0Þ2) photons to distill to error ϵ0.
Discussion.—We briefly comment here that the scheme

has some attractive properties for experimental implemen-
tation, which is discussed in more detail in SM E. In
particular, there is a natural robustness to detection errors,
as well as control errors. We also mention the protocol can
also be trivially implemented in the case where the
individual photons come from different physical sources
[29]. For example, single photons of modest purity and
reasonably high production rate could be generated from
heralded filtered spontaneous parametric down-conversion
(SPDC) pairs [34], and then boosted to a high target fidelity
via distillation, which crucially, are still heralded.
Overall, in realistic scenarios, various errors will limit

the upper bound on the indistinguishability that can be
reached by our scheme, and a natural follow up can
investigate robustness to these in practical settings.
Additionally, the techniques presented here, we believe,
have a diverse range of application, and can be utilized
directly in resource state generation to construct circuits
that are naturally resilient to distinguishability and loss
errors, using similar mechanisms.
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9 photons, to reduce the error by 1=3. If we wish to obtain
error ϵ0, we require r iterations where ϵ0 ¼ ϵ=3r, which
consumes 9r ¼ ðϵ=ϵ0Þ2 photons. The “big O” notation
captures the constant overhead when ϵ=ϵ0 is not an exact
power of 3.
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