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We consider graviton scattering in maximal supergravity on anti-de Sitter space (AdS) in d + 1
dimensions for d = 3, 4, and 6 with no extra compact spacetime factor. Holography suggests that this
theory is dual to an exotic maximally supersymmetric conformal field theory (CFT) in d dimensions whose
only light single trace operator is the stress tensor. This contrasts with more standard cases like type 1IB

string theory on AdSs x S° dual to A/ = 4 super-Yang-Mills, where the CFT has light single trace operators

for each Kaluza-Klein mode on S°. We compute the one-loop correction to the pure AdS,.; theory in a
small Planck length expansion, which is dual to the large central charge expansion in the CFT. We find that
this correction saturates the most general nonperturbative conformal bootstrap bounds on this correlator in
the large central charge regime for d = 3, 4, 6, while the one-loop correction to CFTs with string and M-

theory duals all lie inside the allowed region.

DOI: 10.1103/PhysRevLett.129.211601

Introduction.—The AdS/CFT duality relates quantum
gravity on anti-de Sitter (AdS) space in d + 1 dimensions
times a compact spacetime factor, to certain supersym-
metric conformal field theories (CFTs) in d dimensions [1].
In the simplest examples, the compact space is simply a
sphere with a similar radius as AdS, and the CFT is
maximally supersymmetric. Compactifying the graviton
on the sphere generates an infinite tower of Kaluza-Klein
(KK) modes in AdS, which are dual to light single trace
operators in the CFT. It is an open question if holographic
duals exist where the radius of the sphere is parametrically
smaller than that of AdS, so that these extra dimensions
would be small (see Refs. [2,3] for a recent discussion). In
the most extreme case, there would simply be no compact
factor at all, and the only single trace operators in the dual
CFT would be the stress tensor multiplet. No such pure AdS
theory has been constructed, despite much effort [4—13].

We will address this question by studying the stress
tensor four-point function, which is dual to scattering of
gravitons in the bulk, in maximally supersymmetric CFTs
in d = 3, 4, 6 dimensions. Consider the large central charge
¢ expansion of this correlator, where ¢ is defined as the
coefficient of the stress-tensor two-point function, and is
related to the bulk as
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¢ ~ (L ads/€planck , (1)
where L 54 is the radius of the AdS,, | factor, and £pj,,cx 1S
the Planck length of the full D-dimensional bulk spacetime,
including a possible compact factor. We can define the
correlator G in any such theory to any order in 1/c as

G =GO + 7GR + ¢ (GRIR 4+ kGF') + ..
oo 0GR 4 BEGPR (2)

where in the first line we wrote the tree level supergravity
term GX and the one-loop term GXIR with supergravity
vertices R, while in the second line we wrote tree level
higher derivative corrections that are allowed by super-
symmetry [14]. The expansion also includes one-loop
terms with such higher derivative vertices, as well as
higher loop terms [21]. The GRIR term has an GX' type
contact term with coefficient « as long as the scaling of the
R* tree level term is smaller than R|R, which is the case for
string and M theory with D = 10, 11 [22], respectively, but
is not for the pure AdS,,; theory where D =d + 1 and
d = 3,4, 6. All tree and loop supergravity terms GXIRI-- can
be computed iteratively using the analytic bootstrap
[27,28], but to fix the higher derivative corrections as
well as loop contact terms such as KQR4, we need a UV
completion like string/M theory. These terms only affect
CFT data with finite spin [29], so at any given orderin 1/c¢
we can unambiguously determine an infinite set of CFT
data for AdS,,; duals with any (or no) compact factor.
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Whether or not a pure AdS,,, theory is also defined
nonperturbatively in ¢ is a separate question that we will
address in the conclusion.

The tree level supergravity correction GX at order 1/c is
unaffected by a compact spacetime factor [27,30-32], but
higher loop terms starting with GRI® at order 1/c¢? are
sensitive to the number of KK modes [28]. We will
compute this one-loop term for pure AdS,,; theories in
d = 3, 4, 6 using the analytic bootstrap, which allows us to
extract all CFT data to O(c™2). We then can compare this
O(1/c?) data to nonperturbative numerical bootstrap
bounds [33-36], which apply to any maximally super-
symmetric CFT, and can be computed for any c. We find
that for all d = 3, 4, 6, the pure AdS,, ; one-loop correction
precisely saturates the bootstrap bounds in the large ¢
regime.

The one-loop correction has also been computed for
maximally supersymmetric CFTs with string/M-theory
duals. In 3D, these CFTs are U(N), x U(N)_, ABIM
theory with k=1, 2, which is dual to M theory
on AdS, x §7/Z, with ¢ ~N3? [37,38]. In 4D, they are
N = 4 super-Yang-Mills (SYM) with gauge group SU(N)
or SO(N) [39], which is dual to type IIB string theory on
AdSs x S3 or AdSs x $/7Z, with ¢ ~ N? [1], respectively.
In 6D, they are Ay_; or Dy (2,0) theories [40,41], which
are dual to AdS; x $* or AdS; x §*/7Z, with ¢~ N3
[42,43], respectively. The one-loop corrections were com-
puted in these various cases in [23-25,44—-46]. In all cases,
we find that these corrections lie inside the allowed region
of the bootstrap bounds for the same regime of large ¢
where the pure AdS,; theory saturates the bound.

Stress tensor correlator—We begin by reviewing the
constraints of maximal supersymmetry in d = 3, 4, 6 on the
stress tensor correlator. We consider the superconformal
primary S(x), which is a scalar with A =d —2 that
transforms in the symmetric traceless representation of
the R-symmetry group SO(8)g, SO(6)g, and SO(5), for
3D, 4D, and 6D, respectively. Conformal and R symmetry
fixes the four-point function to take the form

(S(x1,Y1)S(x2, Y5)S(x3, Y3)S(x4, Yg))

(Y, - Yy)* (Y5 Yy)? .
= |15 [2002) |5, [2002) G(U,V;o,7), (3)

where we define the cross ratios

2 .2 2 .2
X4oX X5,

U =21t V= é4 2
X13X24 X13X24
(Y, - Y3)(Y, - Yy)

(Y- Yy)(Y5-Yy)

c=

with x;; = x; — x;, and Y; are null polarization vectors that
encode the R-symmetry indices. The constraints from
supersymmetry are given by the superconformal Ward

identities [47], which can be satisfied by expanding G in
superconformal blocks as [48]

G(U.Vio. 1) = > 1B Gu(U.V:o.1), (5)
M

where M runs over all the supermultiplets appearing in the
S x S operator product expansion (OPE), the /13\4 are the
squared OPE coefficients for each such supermultiplet M,
and the explicit form of the superblocks can be found for
each d in [34,35,47,49]. In the Supplemental Material [50],
for each d we summarize the multiplets M that appear,
which we label by the scaling dimension A, the spin #, and
the R-symmetry representation of the superprimary. We
exclude free theory multiplets, which for d = 4, 6 restricts
us to interacting theories [51]. The § x S OPE includes
long multiplets in the singlet of the R-symmetry group with
even spin Z and scaling dimension A > d — 2 + £, as well
as protected multiplets such as the stress tensor with fixed
A. The stress tensor 4> is fixed by the conformal Ward
identity [52] to be inversely proportional to the central
charge coefficient ¢ of the stress tensor two-point function:

Agtress & 1/c’ (6)

where the proportionality constant is fixed in 4D so that ¢ is
the conformal anomaly [49], in 6D so that a free tensor
multiplet has ¢ = 1 [34], and in 3D so that the free theory
has ¢ = 16 [35]. In 4D and 6D, the existence of a protected
2D chiral algebra [53] fixes 13\4  1/c for certain protected
multiplets, while the remaining protected multiplets M,
have 42 that remain unconstrained.

An important nonperturbative constraint on the four-
point function can be derived by swapping 1 <> 3 in (3),
which yields the crossing equations

d-2

G(U,V;o0,7) = ?2G(V,U;0/1,1/7), (7)

Vd—2

which we will now use to constrain the correlator.

One loop from tree level—We will now restrict to the
pure AdS,; theory, and consider the large ¢ expansion of
the correlator G shown in (2), where we expand long
multiplet CFT data as

A, =2(d-2) +2n+f+y§f/c+y§\§c2 T
0
Arp = (’1;(1.;)2 + (28 ,)*/c + (,157‘;)2/62 v (8)

A similar expansion exists for the OPE coefficients of the
protected operators, although of course their scaling
dimensions are fixed. The long multiplets that appear in
(8) are all double trace operators [SS], , of the schematic
form
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TABLE L.
AdS,,, theory for d =3, 4, 6.

Fits of the numerical bootstrap bounds at large ¢, compared to exact O(1/c?) values for the pure

3D: Aj,: Exact 4-49.931/c +2713.6/c?
Fit 3.99996 — 49.82/c +2619.4/c?
’1%/4,2)13 Exact 9.7523 — 98.764/c + 570.43 / c*
Fit 9.7523 — 98.772/ ¢ + 580.443 / ¢*
A%A#)o: Exact 71111 + 48.448/c + 97.768/ ¢
Fit 7.1111 + 48.445/c 4+ 103.35/c?
4D: Ag,: Exact 6—1/c+0.12976/c?
Fit 6.0000 — 0.99929/c¢ + 0.14718/ c?
6D: Ao, Exact 10 — 10.909/c — 258.79/c?
Fit 10.000 — 11.209/¢ 4 270.96/ >
Ao 4: Exact 12 -3.1648/c — 17.157/c?
Fit 12.000 — 3.1956/c — 17.832/c?
R0 Exact 0.75757 — 0.98484/c — 4.2372/ >
Fit 0.75757 — 0.98009/ ¢ — 3.9446/ c*
/1%;[02]3: Exact 0.43076 — 0.15440/c — 0.15313 /¢?
Fit 0.43076 — 0.15432/c — 0.17448/ ¢*
[SS]n, e SD"aﬂl .0, S, 9) The Lorentzian inversion formula [58] shows that all

with A) = 2(d = 2) + 2n + £ in the ¢ — oo generalized
free field theory (GFFT). Note that if the bulk theory had a
compact factor, e.g., AdSs x S5, then we could use the
higher KK modes to construct more such long operators,
which would be degenerate in the GFFT and thus mix in the
1/c¢ expansion. The GFFT and tree correlators, which are
insensitive to the bulk factor, were computed in each d in
[31,54-56] and used to extract tree level data, which we
summarize in Table I. For theories with higher KK modes,
we can only extract the average long multiplet anomalous
dimensions (42 7% ,), due to the degeneracy at GFFT.
For protected multiplets, we can obtain the unique CFT
data for all such large c theories.

At one-loop level, we can expand the superblock
expansion (5) to get

G =3 Y SOt oy
n=0 £€even

0)+2, Rk log U RIR
) g 5 o |G+ Y (A0 B,
Mprol

(10)

where the ellipsis refers to other combinations of tree and
loop data, and recall that M, denotes protected multiplets
whose OPE coefficients are not 1/c¢ exact. The significance
of the log? U term is that it is the only term at this order
that has a double discontinuity (DD) as U — 0 [57].

CFT data with sufficiently large £ can be extracted from
the DD as V — 0, so we can obtain this DD from the log?> U
terms after applying crossing (7). We give the details in the
Supplemental Material, and the resulting one-loop correc-
tions for low-lying CFT data are summarized in the
exact formulae part of Table I [59]. Note that in the
string/M-theory cases, the inversion formula does not
converge for low spins, which corresponds to the existence

of the contact terms kGX' in (2). In the pure AdS,, | case we
do not have such contact terms as discussed above, so we
can in fact extract all CFT data at one-loop order. One can
similarly extract higher spin data from our results, but the
one-loop corrections become smaller with spin and so are
harder to compare to the numerical bootstrap results in the
next section, since the CFT data are then dominated by the
tree level correction that is the same for pure AdS and
string/M theory.

Numerical conformal bootstrap.—We will now compare
these one-loop corrections to the numerical bootstrap
bounds on CFT data in the stress tensor correlator for
d =3, 4, 6, which were computed for d = 3, 4 in [23,25],
and which we compute now for 6D following [34]. These
bounds come from optimizing the infinite set of constraints
imposed by the crossing equations (7) on the superblock
expansion in (5), for more details in each case see the
original works [33-35], and [60-63] for recent reviews.
The convergence of these bounds is monotonic and given
by the parameter A originally defined in [35], which counts
how many derivatives are used in the expansion of
conformal blocks around the crossing symmetric point
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[64]. These bounds apply to any theory with maximal
supersymmetry in the given d and are computed as a
function of ¢, which is related to the stress tensor OPE
coefficient as in (6). Since these bounds are nonperturbative
in ¢, we will look at the large ¢ regime where we expect the
1/ ¢ expansion of the previous section to be good. The large
c expansion of CFT data is asymptotic, which means that
after a few orders the expansion will actually get worse,
unless we look at very large values of c. We observe that the
1/c? corrections get smaller relative to 1/c tree corrections
as the spin increases, which implies that the asymptotic
expansion is getting more accurate at this order. We do not
want to look at very high spin data, however, because then
the difference between each order will be hard to observe.
As a compromise, we will focus on the lowest spin CFT
data for which the Lorentzian inversion converges for the
string/M-theory CFTs.

We summarize the comparison of the analytic 1/c
expansion to fits in the large ¢ regime of the bootstrap
bounds in Table I [66], which are obtained from Fig. 1, as
well as plots of other CFT data given in the Supplemental
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6d

Material. In all cases, we find that the pure AdS one-loop
correction at 1/c? noticeably improves the universal tree
correction at 1 /¢ and approximately saturates the numerical
bounds, unlike the string/M-theory dual corrections that lie
inside the allowed region.

In 6D, we also computed an upper bound on ¢ (i.e., a
lower bound on the stress tensor OPE coefficient), which
applies to any interacting 6D (2,0) CFT, and got

c >21.6441, (11)
which is weaker than the bound ¢ 2 25 conjectured in [34].
This latter bound was found by extrapolating bounds
computed at lower values of A to A — oo, and was used
as evidence that these general bootstrap bounds were
saturated by the physical A; theory with ¢ = 25. We use
a different definition of A than [34,67], so it is hard to check
their conjectured extrapolation against our bound, but since
in 3D [68] and 4D [70] we know that the general bounds are
not saturated by the string/M-theory theory duals for the
smallest such values of ¢, it seems likely that this general

Ao, 2
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e
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FIG. 1.
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Numerical bootstrap upper bounds (in black) on the scaling dimension A , of the lowest dimension spin # long multiplets in

various d, made with precision A = 83, 123, 91 for d = 3, 4, 6, respectively. These bounds apply to any maximally supersymmetric
CFT, and are plotted in terms of the stress-tensor coefficient ¢ in the large ¢ regime (the smooth curve comes from interpolating many
raw data points). The gray dotted line denotes the large ¢ expansion to order tree level supergravity O(c™!), which does not depend on
the compact factor in the bulk. The purple, blue, and orange dashed lines also include the one-loop supergravity correction O(c~?) for

the pure AdS and string/M-theory dual theories.
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6D bound is also not saturated by the A; theory even
at A - co.

Discussion.—Our results show that pure AdS,,; maxi-
mal supergravity saturates the most general nonperturbative
bootstrap bounds in the large ¢ regime, while CFTs with
string/M-theory duals lie in the allowed region. This
suggests that to study the latter theories, one needs to
disallow the existence of the pure AdS,, | theory by either
looking at a mixed correlator with other single trace
operators [69,72], or imposing theory specific constraints
like supersymmetric localization [73]. Indeed, in 3D one
can strengthen these general bootstrap bounds by inputting
the OPE coefficients of the (B,2) and (B, +) multiplets for
the U(N),x U(N)_, ABJM theory for k=1, 2, as
computed to all orders in 1/N using the localization in
[74], in which case the one-loop data for the dual AdS, x
S7/Z, theories then saturate the bounds [23,24]. In 4D, one
can input the two localization inputs for SU(N) SYM
derived in [75,76], which are a function of the complexified
coupling z, in which case the bounds in [71] match four-
loop weak coupling results [77] in the appropriate regime,
and exclude the general bootstrap bounds shown here for
all z. In 6D there is no localization, but for correlators of
single trace operators other than the stress tensor one can
input nontrivial OPE coefficients given by the protected 2D
chiral algebra [15,78] for the Ay_; or Dy theories

We can also use the general bootstrap bounds themselves
to further study the pure AdS,,; theory, assuming it
continues to saturate the bounds to higher order in 1/c.
In particular, by applying a fit to the large ¢ regime of the
numerical bounds, one could read off higher derivative

corrections to supergravity such as the GR' term discussed
in the introduction, to help determine a putative UV
completion. Since GR' occurs at the same order as higher
loop corrections in some cases, e.g., ¢~ for pure AdSs (2),
it will be necessary to compute these higher loops, as was
recently recently done for the two-loop correction on
AdSs x $° [79,80]. The pure AdS,, | case should be much
easier due to the lack of mixing, and so could even guide
the calculation in the more physical cases with compact
factors. More ambitiously, we can nonperturbatively define
the pure AdS,, | theory as whatever saturates the bootstrap
bounds at finite c¢; it would be fascinating to find inde-
pendent evidence for or against the existence of such a
theory.

Finally, we can ask what theory saturates the stress tensor
correlator bootstrap bound with less than maximal super-
symmetry. In 3D, the N/ = 6 bootstrap bounds were found
in [81,82] to be saturated by U(1),y x U(1 + N)_,5 ABJ
theory [83] for all N, which has a vectorlike large N limit
dual to supersymmetric higher spin gravity [84-86]. With
no supersymmetry, it was observed in [8§7—-89] that critical
O(N) vector models saturate the bound on ¢ [90], so it is
likely that the 3D stress tensor correlator bounds in general
are saturated by interacting vector model CFTs. In higher

dimensions, however, there are no interacting unitary
vector models [93], so it is possible that the most general
nonsupersymmetric stress tensor bounds could be saturated
by pure AdS,,; Einstein gravity with d > 3. It would be
fascinating to check this by generalizing the nonsupersym-
metric stress tensor bootstrap in 3D [99] to higher d. If such
nonsupersymmetric pure AdS,,; theories exist for any d,
then they suggest that unitary interacting CFTs can be
constructed for any d, unlike supersymmetric CFTs which
only exist for d < 6.
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