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The thermodynamic uncertainty relation (TUR) has been well studied for systems with few degrees of
freedom. While, in principle, the TUR holds for more complex systems with many interacting degrees of
freedom as well, little is known so far about its behavior in such systems. We analyze the TUR in the
thermodynamic limit for mixtures of driven particles with short-range interactions. Our main result is an
explicit expression for the optimal estimate of the total entropy production in terms of single-particle
currents and correlations between two-particle currents. Quantitative results for various versions of a driven
lattice gas demonstrate the practical implementation of this approach.
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Introduction.—Fluctuating currents and their correla-
tions are a characteristic signature of stationary nonequili-
brium systems. Exact results like the fluctuation theorem
[1–5] and the Harada-Sasa relation [6] represent prominent,
universal predictions that relate currents and their correla-
tions to the arguably most central quantity for such
systems: the rate of entropy production. More recently,
the thermodynamic uncertainty relation (TUR) [7–9] has
revealed an unexpected constraint on the precision of any
current in terms of the total entropy production rate. Being
a trade-off relation between precision and thermodynamic
cost, in the sense that a high precision requires a large
amount of entropy production, the TUR provides valuable
insights into small mesoscopic nonequilibrium systems. It
has opened a variety of promising applications for molecu-
lar motors [10], heat engines [11–15], optimal design
principles for self-assembly [16], or constraints on time
windows in anomalously diffusing systems [17]. From the
perspective of thermodynamic inference, being a simple
tool for estimating entropy production by measuring
experimentally accessible currents and their fluctuations
without knowing interaction potentials or driving forces,
the TUR has been established as an indispensable and
complementary addition to more sophisticated inference
methods [18–21].
To explore these two key properties of the TUR in more

complex situations, subsequent work has focused on
extending its range of applicability to a variety of systems,
including the observation of steady states in finite times
[22,23], underdamped dynamics [24–31], stochastic field
theories [32], observables that are even under time-reversal
[33–35], first-passage times [36,37], relaxation pro-
cesses [38–40], periodically [41,42], and arbitrary time-
dependently driven systems [43,44]. Several of these
generalizations have been (re)derived by using virtual
perturbations or information theoretic bounds [38,45].

Last but not least, various studies have worked on gener-
alizations of the TUR to open quantum systems [46–56].
When dealing with generalizations and refinements of

the TUR, a crucial question is how sharp the corresponding
bounds typically are. Early analyses showed that the TUR
can be saturated in the linear response regime due to
Gaussian fluctuations [7,8,57,58]. More recent studies have
revealed that for the same reason it can become tight in the
short-time limit [59,60]. The same situation has been
observed for the time-dependent TUR in the fast-driving
limit [44,61]. In all these cases, only the current of total
entropy production, or a current proportional to it, leads to
an equality in the TUR. Further works have focused on
finding the optimal observable(s) leading to the tightest
possible bound [58,60,62–67]. More specifically, using a
sum of two observables and, thus, using correlations
between them, can yield a sharper bound [68].
Most of the specific studies so far have treated single-

particle systems or systems with a few degrees of freedom
on a mesoscopic scale with a notable exception of Ref. [69].
As a crucial refinement of the TUR, the multidimensional
thermodynamic uncertainty relation (MTUR) [70] should
become useful when dealing with multiple currents and
their correlations. While this refinement provides, in
principle, the possibility of analyzing systems with many
interacting degrees of freedom, a systematic study of the
thermodynamic limit is still missing.
In this Letter, we analyze the TUR in the thermodynamic

limit and derive the optimal estimate of entropy production
using the MTUR. Our results hold for any driven many-
particle system obeying a Markovian dynamics on a
discrete set of states or overdamped Langevin equations
for which the overall current and its variance scale as the
system size and the correlation between two tagged
particles decays like the inverse one. We will illustrate
our theoretical predictions with various versions of a driven
lattice gas.
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TUR in many-particle systems.—The thermodynamic
uncertainty relation has been proven under quite general
conditions for both continuous-time Markov processes and
systems obeying coupled overdamped Langevin equations.
It is valid for any current and reads [7–9]

σJest ≡ J2=DJ ≤ σ; ð1Þ

where J is the mean current, DJ ≡ T Var½J�=2 is its
diffusion coefficient, and T denotes the observation time.
The precision J2=DJ bounds the total entropy production
rate σ and, hence, yields an operationally accessible
estimate σJest for it. To analyze the sharpness of the
TUR, we define the quality factor as QJ ≡ σJest=σ > 0,
which is 1 if the TUR is saturated. Since the TUR, Eq. (1),
holds for any current in the system, we can use an arbitrary
linear combination of currents to build the estimate σJest.
To study the TUR of interacting many-particle systems,

we use a refinement of the TUR—the so-called MTUR
introduced in Ref. [70]. We consider a system that consists
of N driven interacting particles leading to N linearly
independent time-averaged particle currents fJðiÞg. The
MTUR can be applied by inserting the optimal linear
combination of these currents into Eq. (1). Within this class
of currents, it thus yields the sharpest lower bound on the
entropy production, which is given by

σJest ≡ JTC−1J ≤ σ: ð2Þ

The estimator σJest involves the vector of particle currents
J ≡ ½Jð1Þ;…; JðNÞ� and the inverse of the symmetric corre-
lation matrix C with elements

Cij ≡DðiÞδi;j þ CðijÞð1 − δi;jÞ: ð3Þ

The diagonal element DðiÞ ≡ T Var½JðiÞ�=2 is the diffusion
coefficient of the current JðiÞ of the ith particle and the off-
diagonal elements CðijÞ ≡ T Cov½JðiÞ; JðjÞ�=2 are the scaled
covariances between the currents JðiÞ and JðjÞ (see
Eqs. (A10) and (A11), respectively, in Appendix A).
We use the MTUR to obtain the optimal estimate for

entropy production in the thermodynamic limit for a system
with different species of particles. In the following, we
analyze homogeneous systems in a one-phase region
consisting of indistinguishable particles with pairwise
short-range interactions, where the external and interaction
forces are identical within a species.
First, we consider a system with only one species driven

by a thermodynamic force f. Because of homogeneity, the
mean values JðiÞ ≡ J, diffusion coefficients DðiÞ ≡D, and
correlations CðijÞ ≡ C are independent of the particle
labels. Since the particles are indistinguishable, each
current contributes with the same weight to the optimal
linear combination such that the MTUR reduces to the

ordinary TUR for the total particle current. Hence, the
estimate is given by [71]

σJest ¼
NJ2

D − Cþ NC
; ð4Þ

while the true entropy production reads σ ¼ βfNJ with the
inverse temperature β and kB ¼ 1. We assume that the
diffusion coefficient of the total particle current scales like
N, which is the case for driven overdamped Langevin
systems with pair interactions. This implies that in the
thermodynamic limit N → ∞, the correlations decay like
C ≈ γ=N with amplitude γ. For Langevin systems, the
amplitude γ is given by the difference in the bare diffusion
constant and the self-diffusion constant of a tagged particle
in the interacting system (for details, see Appendix B).
When taking the thermodynamic limit N → ∞, the

quality factor becomes

QJ ≡ σJest
σ

¼ J∞

βfðD∞ þ γÞ ; ð5Þ

where J∞ andD∞ are the values of the current and the self-
diffusion coefficient of a tagged particle, respectively, in the
thermodynamic limit. Equation (5) is our first main result
and shows that the quality of the estimate depends solely on
quantities related to one or two tagged particles.
Next, we study a homogeneous system consisting of a

mixture of N1 particles of species 1 and N2 particles of
species 2. The first and second species are driven by forces
f1 and f2, respectively. Particles interact with a short-range
interaction, which may be different between the species.
The mean particle currents within a species are identical,
i.e., JðiÞ ¼ Jαi , where αi ∈ f1; 2g denotes the species of the
ith particle. Analogously, the diffusion coefficients DðiÞ ¼
Dαi and correlations CðijÞ ¼ Cαiαj depend only on the
particle species. Using Eq. (2) we get the estimate [71]

σJest ¼
η2N1J21 þ η1N2J22 − 2N1N2J1J2C12

η1η2 − N1N2C2
12

; ð6Þ

with ηα ≡Dα þ ðNα − 1ÞCαα and α ∈ f1; 2g. The true
entropy production is given by σ ¼ βf1N1J1 þ βf2N2J2.
When taking the thermodynamic limit N ¼ N1 þ N2 →
∞, we keep the densities ρα ≡ Nα=N fixed. Analogously to
the one-species case, we expect that the correlations
C11 ≈ γ1=N, C22 ≈ γ2=N, and C12 ≈ γ12=N decay propor-
tionally to the inverse system size with correlation ampli-
tudes γ1, γ2, and γ12 (see Appendix B). Thus, the quality
factor in the thermodynamic limit reads

QJ ¼
η∞2 ρ1ðJ∞1 Þ2 þ η∞1 ρ2ðJ∞2 Þ2 − 2J∞1 J

∞
2 ρ1ρ2γ12

½η∞1 η∞2 − ρ1ρ2γ
2
12�βðf1ρ1J∞1 þ f2ρ2J∞2 Þ

; ð7Þ
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where η∞α ≡D∞
α þ ραγα and J∞1;2 andD

∞
1;2 denote the values

of the currents and diffusion coefficients in this limit,
respectively. The quality factor in Eq. (7) is our second
main result. In contrast to the one-species case, this quality
factor differs from the quality factor obtained by using as a
current the total power [71]. In both cases, the MTUR
remains a useful tool to infer entropy production, which, in
particular, does not require the knowledge of any thermo-
dynamic forces, as we will now illustrate for the driven
lattice gas.
Driven lattice gas.—We consider a driven lattice gas [72]

in which N charged particles occupy sites on a periodic
ðL × LÞ–square lattice subject to an exclusion interaction
as shown in Fig. 1. The particles are driven by an electric
field applied in the x direction. Moreover, each particle
interacts with its nearest neighbors either repulsively or
attractively. The occupation variable niðrÞ≡ δri;r at posi-
tion r≡ ðx; yÞ is 1, if particle i at ri ≡ ðxi; yiÞ occupies this
site and is zero, otherwise. The configuration of the system
is denoted by Γ≡ fniðrÞg, which contains information
about all particle positions RΓ ≡ fr1;…; rNg.
In the following, we consider a system consisting of two

species of particles with different charges q1 and q2. The
interaction energy of the total system is given by

EintðΓÞ≡ −
X
i>j

Kαiαj

X
hrr0i

niðrÞnjðr0Þ; ð8Þ

where
P

hrr0i denotes a summation over all nearest-
neighbor-site pairs and Kαiαj is the coupling constant of

species αi and αj with αi;j ∈ f1; 2g. If Kαiαj > 0 the
interaction is attractive; otherwise it is repulsive. The
probability pðΓ; tÞ to find the system in configuration Γ
at time t obeys the master equation

∂tpðΓ; tÞ ¼
X
ri∈RΓ;

r0i∈N ðriÞ

½pðΓrir0i ; tÞkðr0i; ri;Γrir0iÞ

− pðΓ; tÞkðri; r0i;ΓÞ�; ð9Þ

where N ðriÞ denotes a set of all unoccupied nearest-
neighbor sites r0i ≡ ðx0i; y0iÞ of position ri and Γrir0i denotes
a configuration identical to Γ except that particle i occupies
r0i instead of ri. The transition rate for a particle at ri to
move to an unoccupied nearest-neighbor site r0i fulfills the
local detailed balance condition and is given by

kðri; r0i;ΓÞ≡
�
k0 exp ð−βκΔFÞ; ΔF ≥ 0

k0 exp ðβ½1 − κ�ΔFÞ; ΔF < 0
; ð10Þ

with

ΔF≡ EintðΓÞ − EintðΓrir0iÞ þ ðxi − x0iÞqαiE: ð11Þ

The rate amplitude k0 sets the timescale for a transition,
qαi ∈ fq1; q2g denotes the charge of the moving particle,
and the parameter κ determines the rate splitting.
Quality factors.—We now analyze three paradigmatic

models as depicted in Fig. 1. Model I consists of a single-
particle species with density 1=2, which has been intro-
duced in Ref. [72]. In Model II, there are N1 particles of
species 1 (red) and one single particle of species 2 (blue).
Here, we distinguish two subclasses of models, which we
denote as II(a) and II(b). In Model II(a) only the single
particle of species 2 is charged, i.e., q1 ¼ 0 and q2 ≠ 0,
whereas in Model II(b) all particles are charged with, in
general, q1 ≠ q2. The number of particles of the first
species is chosen such that the density is 1=2. Model II(a)
corresponds to, e.g., a driven particle in a colloidal
suspension. Model III consists of two species (red and
blue particles) with different charges, interactions, and
densities ρ1 ¼ ρ2 ¼ 1=4. This model describes a binary
mixture of driven particles. Similar models have been
analyzed in, e.g., Refs. [73,74]. For all models, we fix
the parameters k0 ¼ 0.5, β ¼ 1.0, E ¼ 1.0, and κ ¼ 1.0
and choose an attractive interaction, i.e.,K11; K22; K12 > 0.
Moreover, we choose an observation time of T ¼ 1000.0
to sample trajectories by using the Gillespie algorithm [75].
In the following, we analyze these systems for different
system sizes L × L and an overall density of 1=2.
Figure 2(a) shows the single-particle currents J1 and J2

of the two species for the models II(a) and II(b). The single
driven particle in model II(a) generates a particle current J1
of the N1 nondriven particles by pushing or pulling them in

FIG. 1. Three different models of the driven lattice gas I–III. In
model II(a) there is only one particle (the blue one) driven by the
electric field, whereas in model II(b) all particles are driven.
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the x direction through the exclusion interaction and an
attractive short-range interaction. Since this push and pull
mechanism is a local effect, the number of pushed or pulled
particles saturates in the thermodynamic limit, whereas the
system size grows linearly in N. As a consequence, the
current J1 vanishes like 1=N, whereas the current J2 of
the driven particle is finite as shown in Fig. 2(a). The
optimal estimate of entropy production can be obtained by
setting N2 ¼ 1 and C22 ¼ 0 in Eq. (6) since there is only
one particle of the second species. The true entropy
production is given by σ ¼ βq2EJ2. Combined with the
fact that J1 ∼ 1=N vanishes, these results imply that, in
the thermodynamic limit N → ∞, the quality factor
becomes the quality factor of a single-particle problem
QJ ¼ J∞2 =ðβq2ED∞

2 Þ. The correlations between the par-
ticles do not contribute to the quality factor in contrast to
model I with one single species [cf. Eq. (5)].
In model II(b), both particle currents J1;2 are finite in the

thermodynamic limit as shown in Fig. 2(a). The qua-
lity factor can analogously be obtained by setting for-
mally N2 ¼ 1 and C22 ¼ 0 in Eq. (6) and using
σ ¼ βN1q1EJ1 þ βq2EJ2. When taking the thermo-
dynamic limit N ¼ N1 þ 1 → ∞, only quantities of the
first species contribute such that the quality factor reduces
to the quality factor of a single interacting species of
particles, i.e., QJ ¼ J1=ðβq1E½D1 þ γ11�Þ. Therefore, the
quality factors of the one-species system (a) and of system
II(b) converge to the same value forN → ∞ as illustrated in

Fig. 2(c), which shows the quality factors for the different
models I–III.
In model III, the diffusion coefficients D1 and D2 of the

two species converge to finite values as shown in Fig. 2(b).
In the accessible region of parameters, the correlations C11,
C22, and C12 decay like 1=N since the product with the
number of particles converges to a finite value as shown in
Fig. 2(b). Thus, in this range of accessible system sizes, we
see no signature of logarithmic corrections (yet) predicted
by the corresponding field theory [76]. Furthermore, for a
small number of particles N ≲ 12, model III becomes
similar to model II(a): in both models, species 1 is either
not driven or more weakly driven in contrast to species 2,
which is strongly driven. This explains why the quality
factors of both models in Fig. 2(c) approach each other for
small N. However, for large N model II(a) is effectively a
single-particle problem and differs substantially from
model III, in which many driven particles interact. Thus,
the quality factor reaches the larger value QJ ≃ 0.38 for
model II(b), whereas it reaches QJ ≃ 0.30 for model III.
Most importantly, even though all quality factors shown in
Fig. 2(c) decrease monotonically in N, they approach a
finite value of order 1 for large N. In this limit, model III
has the smallest quality factor since the particles are driven
more strongly due to larger charges. Stronger driving leads
to a smaller quality factor since the particle currents and
their fluctuations saturate for large driving due to the
exclusion interaction [72] while the entropy production
increases.
Inference of entropy production.—We finally compare

different estimates of the entropy production for the most
interesting model III. The optimal quality factor QJ
obtained from the MTUR, Eq. (2), the quality factor using
the total power as a current QP, and the quality factor QJtot
of the total particle current Jtot ≡ N1J1 þ N1J2 are plotted
against N in Fig. 2(d). As expected, the quality factor QJ
beats the other two. The quality factor based on the power is
even smaller thanQJtot and reaches a finite value of order 1.
This is quite remarkable since it shows that the additional
knowledge of thermodynamic forces entering the power
does not yield a better estimate. A situation related to ours
has been discussed in Ref. [63], where the authors have
optimized a state-dependent increment for a current and
found that the best estimate does not coincide with the total
entropy production. In contrast to their approach, we use
constant increments and build the optimal linear combi-
nation of currents via the MTUR.
Conclusion.—In this Letter, we have analyzed the

thermodynamic uncertainty relation for interacting many-
particle systems in the thermodynamic limit. We have
calculated the quality factor using the MTUR for homo-
geneous systems consisting of a single species of particles
and for mixtures of two species. As we have shown, the
TUR remains a useful tool for inferring entropy production
since, crucially, the quality factors approach a finite order

(a) (b)

(c) (d)

FIG. 2. (a) Particle currents of models II(a) and II(b), (b) dif-
fusion coefficients and correlations of model III, (c) quality
factors of all models against N, and (d) different quality factors
QJ, Qσ , and QJtot for model III. For model I, q1 ¼ 1.0 and
K11 ¼ 0.8. For models II(a) and II(b), q1 ¼ 0, q2 ¼ 1.0,
K11 ¼ 0.8, and K12 ¼ 1.2 and q1 ¼ 1.0, q2 ¼ 2.5, K11 ¼ 0.8,
and K12 ¼ 1.2, respectively. For model III in (c), q1 ¼ 1.0,
q2 ¼ 2.5, K11 ¼ 0.8, K12 ¼ 1.2, and K22 ¼ 0.4, whereas in
(d) q1 ¼ 1.5, q2 ¼ 5.0, K11 ¼ 0.8, K12 ¼ 1.2, and K22 ¼ 0.4.
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of 1 in the thermodynamic limit. From an operational
perspective, it is not necessary to know the driving
fields or the interactions between the particles in order
to deduce the optimal estimate for entropy production. For
a given number of particles, it suffices to measure the
currents and correlations between two tagged ones.
Although these correlations vanish with increasing system
size, they are crucial ingredients of our main results in
Eqs. (4)–(7) that depend on the interactions and forces of
the underlying model. Even for a one-component system
like the driven lattice gas, these correlations are nontrivial
and are not analytically accessible. However, they are
operationally accessible through trajectory data and,
hence, enable one to obtain an estimator for entropy
production.
To summarize, by showing that the TUR can be applied,

and how it can be applied, to interacting many-body
systems, we have laid the foundation for future works
analyzing the TUR under various perspectives. For in-
stance, an interesting next issue is to study how the TUR
can be applied to more complex setups, e.g., in systems
with different phases or at a phase transition aiming at
thermodynamic inference. We further stress that our results
apply to continuous overdamped Langevin systems as well.
For such systems, analyzing the TUR for different inter-
action potentials or for systems with more than two species
is a further important next step to explore macro-
scopic effects of the TUR. Since our tools rely on a
widely applicable mathematical framework, our results
should open the way for future research to study the
thermodynamic limit of generalizations of the TUR, e.g.,
for time-dependently driven systems or for open quantum
systems.

Appendix A: Definition of currents.—We define the
currents entering the TUR and the MTUR in Eqs. (1)
and (2), respectively. Since these two relations are valid for
discrete and continuous systems, we define currents for
both system types. For the sake of simplicity, we consider
two-dimensional systems. We first define currents for a
general two-dimensional overdamped Langevin equation
and then for the driven lattice gas as an example for a
system with a discrete set of states.
We consider N particles in two dimensions at positions

r≡ ðr1;…; rNÞ with coordinates ri ≡ ðxi; yiÞ obeying the
overdamped Langevin equation

∂trt ≡ _rt ¼ μ½−∇V intðrtÞ þ f � þ
ffiffiffi
2

p
Gζ t: ðA1Þ

Here, μ is the 2N × 2N mobility matrix, ∇V intðrtÞ is the
gradient of a short-range pair-interaction potential that
depends on the distance between two labeled particles, f ≡
½f ð1Þ;…; f ðNÞ� is a vector containing N nonconservative
forces f ðiÞ ≡ ½fxðiÞ; fyðiÞ� with spatial components fxðiÞ and

fyðiÞ, G is a 2N × 2N matrix used to define the symmetric

diffusion matrix D≡GGT ¼ μ=β, and ζ t ≡ ½ζð1Þt ;…; ζðNÞ
t �

is a vector of N white Gaussian noises ζðiÞt ≡
½ζxðiÞðtÞ; ζyðiÞðtÞ� describing the random forces with
mean hζxðiÞðtÞi ¼ 0 and correlations hζaðiÞðtÞζbðjÞðt0Þi ¼
δa;bδijδðt − t0Þ, where a; b ∈ fx; yg. A general fluctuating
current along the trajectory rt of length T reads

J½rt�≡ 1

T

Z
T

0

dtdðrtÞ∘_rt; ðA2Þ

where dðrtÞ≡ ½dð1ÞðrtÞ;…; dðNÞðrtÞ� is a vector of arbitrary
increments dðiÞðrtÞ≡ ½dðiÞx ðrtÞ; dðiÞy ðrtÞ� and ∘ denotes the
Stratonovich product. The choice dðrÞ ¼ βf in Eq. (A2)
corresponds to the total power

P½rt�≡ 1

T

Z
T

0

dtβf∘_rt: ðA3Þ

Choosing dðrÞ ¼ eðiÞx as the unit vector of particle i in
direction x, we get the current in x direction of particle i as

JðiÞ½rt�≡ 1

T

Z
T

0

dt_xiðtÞ ðA4Þ

with mean value JðiÞ ≡ hJðiÞ½rt�i.
Next, we consider currents for the driven lattice gas. The

fluctuating current of particle i along the trajectory Γt of
length T reads

JðiÞ½Γt�≡ 1

T
½nðiÞxþðT Þ − nðiÞx− ðT Þ�; ðA5Þ

where nðiÞxþðT Þ and nðiÞx− ðT Þ denote the total number of
jumps of particle i in positive and in negative x direction up
to time T , respectively. The mean value in Eq. (A5) is
defined as JðiÞ ≡ hJðiÞ½Γt�i. Using Eq. (A5), we define the
particle currents of species 1 and 2 as

J1½Γt�≡ 1

N1

XN
i¼1

δ1;αi J
ðiÞ½Γt� ðA6Þ

and

J2½Γt�≡ 1

N2

XN
i¼1

δ2;αi J
ðiÞ½Γt�; ðA7Þ

respectively. We denote the corresponding mean values
by J1 ≡ hJ1½Γt�i and J2 ≡ hJ2½Γt�i. The total power is
given by

P½Γt�≡ βq1EN1J1½Γt� þ βq2EN2J2½Γt� ðA8Þ
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with mean value P≡ hP½Γt�i ¼ βq1EN1J1 þ βq2EN2J2.
The total particle current reads

Jtot½Γt�≡
XN
i¼1

JðiÞ½Γt� ðA9Þ

with mean value Jtot ≡ hJtot½Γt�i ¼ N1J1 þ N2J2.
For currents in both, continuous and discrete systems,

the diffusion coefficient and the correlations between two
particle currents are defined as

DðiÞ ¼ T Var½JðiÞ�=2≡ T hðJðiÞ½Xt� − JðiÞÞ2i=2 ðA10Þ

and

CðijÞ ¼ T Cov½JðiÞ; JðjÞ�=2
≡ T ðhJðiÞ½Xt�JðjÞ½Xt�i − JðiÞJðjÞÞ=2; ðA11Þ

respectively, with Xt ∈ frt;Γtg. The mean values of the
power in Eqs. (A3) and (A8) coincide with the mean total
entropy production, i.e., σ ≡ hP½Xt�i. However, for any
finite time T , their fluctuating values and consequently
their diffusion coefficients are different. In contrast, for
long observation times T → ∞, the total fluctuating power
becomes the total entropy production, i.e., P½Xt� ≈ σ½Xt�, as
the contribution of the change in internal energy and in
stochastic entropy vanishes asymptotically.

Appendix B: Generic scaling of correlations.—We dis-
cuss the scaling of the correlations in the thermodynamic
limit. Our analysis is based on the assumption that the
diffusion coefficient of the total particle current scales like
N. First, we prove that this condition is always satisfied for
the general Langevin dynamics defined in Eq. (A1). Then,
we show that the correlations can be expected to decay like
1=N for continuous and discrete systems if this basic
assumption holds true.
As outlined above, the necessary condition for the 1=N

scaling of the correlations is that the diffusion coefficient of
the total particle current scales with the system size. We
first prove this property for overdamped Langevin systems
with two species obeying Eq. (A1), where each particle has
the same mobility. A proof for an arbitrary number of
species or for particles with a different mobility is straight-
forward. In the latter case, it suffices to prove the N scaling
for the diffusion coefficient of a current that is a linear
combination of currents of a tagged particle as we will
show in the next section.
We consider an overdamped Langevin system of two

species of particles with different nonconservative forces
and interactions. We assume that all particles have the same
mobility μ and bare diffusion constant D̃ ¼ μ=β. The
Langevin equation of the ith particle reads

_riðtÞ ¼ μf ðiÞ þ μ
X
j≠i

FðijÞ
ri ðjriðtÞ − rjðtÞjÞ þ

ffiffiffiffiffiffiffi
2D̃

p
ζðiÞt ðB1Þ

with the interaction force FðijÞ
ri ðjriðtÞ − rjðtÞjÞ≡

−∇riV
ðijÞ
int ðjri − rjjÞjri;j¼ri;jðtÞ, ∇ri ≡ ð∂xi ; ∂yiÞ, and VðijÞ

int ðjri−
rjjÞ an arbitrary interaction potential between particle i and
j. For the sake of simplicity, we assume f ðiÞ ¼ ðfðiÞx ; 0Þ, i.e.,
the particles are driven into the x direction. Then, the
particle current in Eq. (A4) is given by

JðiÞ½rt� ¼
1

T

Z
T

0

dt

�
μfðiÞx þ μ

X
j≠i

FðijÞ
xi ðjriðtÞ − rjðtÞjÞ

þ
ffiffiffiffiffiffiffi
2D̃

p
ζðiÞx ðtÞ

�
ðB2Þ

with the interaction force FðijÞ
xi ðjriðtÞ − rjðtÞjÞ≡

−∂xiV
ðijÞ
int ðjri − rjjÞjri;j¼ri;jðtÞ. Summing over all particles in

Eq. (B2) yields the total particle current

Jtot½rt� ¼
1

T

Z
T

0

dt

�
μN1f1 þ μN2f2 þ

ffiffiffiffiffiffiffi
2D̃

p XN
i¼1

ζðiÞx ðtÞ
�

ðB3Þ

with forces f1 and f2 acting on species 1
and 2, respectively. Here, we have used thatP

i;j;i≠j ∂xiV
ðijÞ
int ðjri − rjjÞ ¼ 0, i.e., the sum over all inter-

action forces vanishes. Since the random forces acting on
two different particles are uncorrelated, the diffusion
coefficient of the current in Eq. (B3) is given by DJtot ¼
ND̃ and, hence, it scales linearly with the system size. The
scaling holds also for more than two species since the
nonconservative forces do not fluctuate. Furthermore, for
particles with a different mobility one could construct the
current

J†½rt�≡
XN
i¼1

JðiÞ½rt�=μðiÞ ¼
XN
i¼1

�
fðiÞx þ 1

T

Z
T

0

dt ζðiÞt =β

�

ðB4Þ

that does not coincide with the total particle current.
However, its diffusion coefficient DJ† ¼ N=β scales with
system size as well. We will need this current below.
We first discuss the scaling of correlation functions in the

single species case, where we assume that the diffusion
coefficient of the total particle current scales like N. Using
Eq. (20) in Ref. [71] with Φ1 ¼ 1 and Φ2 ¼ 0 leads to
DJtot ¼ NDþ NðN − 1ÞC. Assuming that DJtot ¼ ND0

with D0 a constant of order 1 and that the self-diffusion
coefficient of a tagged particle D is of order 1, we get
the condition C ¼ ðD0 −DÞ=ðN − 1Þ for the correlations.
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This relation shows that the correlations decay like 1=N in
the thermodynamic limit. For an overdamped Langevin
system with a single species, D0 coincides with the bare
diffusion constant D̃. Thus, for these systems, we get
γ ¼ D̃ −D, i.e., the correlation amplitude is given by the
difference between the bare diffusion constant and the self-
diffusion coefficient of a tagged particle.
For the two species case, we get from Eq. (20) in

Ref. [71] with Φ1 ¼ Φ2 ¼ 1

DJtot ¼ N1D1 þ N2D2 þ N1ðN1 − 1ÞC11

þ N2ðN2 − 1ÞC22 þ 2N1N2C12: ðB5Þ

Assuming that the diffusion coefficient scales like DJtot ¼
ND0 with a constant D0 leads to the following condition:

ðD0 − ρ1D1 − ρ2D2Þ ¼ Nðρ21C11 þ ρ22C22 þ 2ρ1ρ2C12Þ
− ρ1C11 − ρ2C22: ðB6Þ

Under the assumption of vanishing correlations and single-
particle diffusion coefficients of order 1 in the thermo-
dynamic limit, we get

ðρ21C11þρ22C22þ2ρ1ρ2C12Þ¼
ðD0−ρ1D1−ρ2D2Þ

N
ðB7Þ

for large N. We note that for overdamped two-
species Langevin systems, D0 is the bare diffusion coef-
ficient D̃. Equation (B7) shows that the sum of all
correlation functions must decay like 1=N in thermo-
dynamic limit.
For N → ∞, there are two scenarios, in principle. First,

each correlation function decays like C11 ≈ γ1=N,
C22 ≈ γ2=N, and C12 ≈ γ12=N. In analogy with the single
species case, we expect this to be the generic case. Second,
the correlation functions could scale like 1=N plus a term
that decays slower than 1=N. In this case, the amplitudes of
the latter terms must cancel in Eq. (B7) since the right-hand
side scales with 1=N. We note that in the latter case, the
quality factor of the total particle current is of order 1.
Therefore, the quality factor using the MTUR must
also be of order 1 and cannot vanish in the thermodynamic
limit.
Finally, we note that for overdamped Langevin systems,

where the particles have a different mobility, we can use the
current introduced in Eq. (B4) to follow the steps from
above and choose the increments in Eq. (20) in Ref. [71] as
a species-dependent mobility. In this case, we get a similar
condition to Eq. (B7) with additional factors of the
species-dependent mobility. Since these factors are
model-dependent constants, they do not affect the
scaling in N and, thus, the discussion from above applies
similarly.
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