
Critical Probability Distributions of the Order Parameter from the
Functional Renormalization Group

I. Balog ,1 A. Rançon ,2 and B. Delamotte3
1Institute of Physics, Bijenička cesta 46, HR-10001 Zagreb, Croatia

2Univ. Lille, CNRS, UMR 8523—PhLAM—Laboratoire de Physique des Lasers, Atomes et Molécules, F-59000 Lille, France
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We show that the functional renormalization group (FRG) allows for the calculation of the probability
distribution function of the sum of strongly correlated random variables. On the example of the three-
dimensional Ising model at criticality and using the simplest implementation of the FRG, we compute the
probability distribution functions of the order parameter or, equivalently, its logarithm, called the rate
functions in large deviation theory. We compute the entire family of universal scaling functions, obtained in
the limit where the system size L and the correlation length of the infinite system ξ∞ diverge, with the ratio
ζ ¼ L=ξ∞ held fixed. It compares very accurately with numerical simulations.
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In many different fields of research, mathematicians,
physicists, and even specialists of quantitative finance have
paid considerable attention to the probability distribution of
the sums of random variables. Here the central limit
theorem (CLT) plays a crucial role [1,2]. It asserts that,
given a large number N of independent identically distri-
buted random variables σ̂i with zero mean and finite
variance, their sum Ŝ ¼ P

i σ̂i has fluctuations of orderffiffiffiffi
N

p
, and the asymptotic probability distribution function

(PDF) of Ŝ=
ffiffiffiffi
N

p
is a Gaussian law with finite variance.

Most importantly, this result is independent of the prob-
ability law of the σ̂’s, and the normal distribution plays the
role of an attractor for the addition of an increasing number
of random variables. The Gaussian distribution is therefore
said to be stable and this is the most basic manifestation of
what physicists call universality. The CLT has been
generalized to the case where either the mean or the
variance of the σi-law diverges: In this case, once it has
been properly normalized, Ŝ is distributed according to one
of the celebrated Lévy-stable laws [3–5] that generalize the
Gaussian law of the CLT.
The CLT can also be generalized to situations where the

σ̂i are correlated [2,6]. If the correlation matrix Gij decays
sufficiently fast with a given “distance” rij between σ̂i and
σ̂j, such that

P
i Gij is finite in the limit N → ∞, the

correlations are said to be weak. Then, the system behaves
as if it were made of uncorrelated finite size clusters of σ̂i
and Ŝ still has fluctuations of order

ffiffiffiffi
N

p
. The CLT applies

again, and the distribution of Ŝ=
ffiffiffiffi
N

p
is still Gaussian.

On the other hand, when
P

i Gij diverges as N → ∞, the
fluctuations of Ŝ=

ffiffiffiffi
N

p
also diverge and the σ̂i are said to be

strongly correlated. Such situations are encountered in

many different contexts, from critical systems to out-of-
equilibrium dynamics such as disease propagation, surface
growth, or turbulence. Our understanding of stable laws is
much scarcer in this case. Nevertheless, it is reasonable to
assume that properly normalized, Ŝ=fðNÞ should here
again follow a stable law. Assuming universality, these
laws, which are neither Gaussian nor Lévy, should depend
only on a small number of parameters, such as the
dimension of the system and its symmetries. These stable
laws for strongly correlated variables have been observed
experimentally or estimated numerically with relative ease
[7–20]. On the theoretical side, a few exact results have
been obtained in some specific models [21–29]. In generic
models, the connections between CLT, stable laws, and the
fixed points of the renormalization group (RG) have been
identified [30–32] since the early days of the Kadanoff-
Wilson version of the RG [33]. However, it appears that
these connections have remained at the conceptual level
and have not been transformed into a set of techniques for
calculating PDFs applicable to strongly correlated systems,
but in isolated cases with ad hoc methods [34–40].
Furthermore, the connection between RG and CLTs raises
two paradoxes: (1) the PDF—being an observable—is RG-
scheme independent, whereas fixed points are not; (2) as
discussed below, there is a family of critical rate functions,
indexed by a real number ζ, but only one RG fixed point.
We show here that the functional RG (FRG) in its modern
version [41,42] is the right framework to solve these
paradoxes and compute quantitatively the PDF of strongly
correlated random variables.
Let us briefly review the concepts fleshed out above in

the context of the Ising model in the vicinity of its second
order phase transition, on which we will focus from now on.
The Hamiltonian of the ferromagnetic Ising model is
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H ¼ −J
P

hiji σ̂iσ̂j with J > 0, σ̂i ¼ �1, and hiji label
nearest neighbor sites on a hypercubic d-dimensional lattice
of linear size Lwith periodic boundary conditions. A second
order phase transition occurs in the Ising model at some finite
temperature Tc in d > 1 (we focus on the non-mean-field
case d < 4). At fixed temperature T ≳ Tc and for rij ≫ a,
where a is the lattice spacing, the correlation function of the
spins behaves as Gij ∼ r−dþ2−η

ij expð−rij=ξ∞Þ, where η ≥ 0

is the anomalous dimension of the spin field, and ξ∞ is the
correlation length of the infinite system (at zero magnetic
field), which diverges at the transition as jtj−ν, t ¼ T − Tc.
The condition of weak correlations is thus equivalent to the
finiteness of ξ∞.
We are interested below in the PDF of the normalized

total spin defined as ŝ ¼ L−d P
i σ̂i, the average of which is

the magnetization m ¼ hŝi. The fluctuations of ŝ are
measured by hŝ2i: hŝ2i ¼ L−dχ, defining the magnetic
susceptibility χ. For fixed T ≳ Tc, χ ∼ ξ2−η∞ independent
of L for L ≫ ξ∞. This implies that the fluctuations of
Ŝ=

ffiffiffiffi
N

p
are of order one: The system is weakly correlated. A

precise calculation of the PDF is obtained from a saddle
point approximation that becomes asymptotically exact
when L → ∞. As expected, it shows that the CLT holds
and that the PDF becomes indeed Gaussian in this limit:
Pðŝ ¼ sÞ ∝ exp½−ðLd=2χÞs2� for T > Tc and L → ∞ (at
fixed sLd=2)] [43].
The argument above collapses at Tc and fixed L, where

ξ∞ ≫ L, because χ scales with L as χ ∼
R
L ddr r−dþ2−η∼

L2−η, which diverges when L → ∞. This implies that
hŝ2i ∼ L−dþ2−η and that the fluctuations of Ŝ=

ffiffiffiffi
N

p
diverge

as Lð2−ηÞ=2 ¼ Nð2−ηÞ=2d. The spins are strongly correlated
and the standard CLT no longer holds: The saddle point
approximation fails and P has no reason to be a Gaussian
anymore. However, the scaling of the fluctuations of ŝ
suggest that P is a universal function of the scaling variable
s̃ ¼ sLðd−2þηÞ=2 [44].
It is rarely stressed that there is not only one PDF at

criticality, but an infinity corresponding to the inequivalent
ways to take the limit L → ∞ and T → Tþ

c , i.e., ξ∞ → ∞,
see Fig. 1 [45]. Indeed, choose any sequence TL > Tc
converging to Tc, such that ζ ¼ L=ξ∞ðTLÞ is constant.
Then, for instance, if ξ∞ðTLÞ ≪ L and from the discussion
above, hŝ2i ∼ L−dχ ∼ L−dþ2−ηζη−2. Once again, and even
though ξ∞ðTLÞ is finite at any L, the spins become more
and more strongly correlated as TL → Tc. Therefore, the
PDF must be nontrivial for all values of ζ even in the limit
ζ ≫ 1 [i.e., ξ∞ðTLÞ ≪ L]. In this limit, we expect to
recover some Gaussian-like features for typical values of
s because the system looks for all TL > Tc as a collection
of uncorrelated small blocks of spins of sizes ξ∞ðTLÞ.
However, some non-Gaussianity should remain in the tails
of the PDF reminiscent of the strong correlations present at
criticality where χ is diverging.
Assuming scaling, the PDF must depend on ξ∞ and L

only through the ratio ζ, which we parametrize as

Pζðŝ ¼ sÞ ≈ e−L
dIðs;ξ∞;LÞ ≈ e−Iζðs̃Þ: ð1Þ

This relation defines the rate function Iðs; ξ∞; LÞ, as it is
known in large deviation theory (also known as the
“constraint effective potential” in quantum field theory
[46–48]), as well as its scaling function Iζðs̃Þ. Notice that
we could define as well a family of universal critical PDFs
when coming from the low-temperature phase, T → T−

c . To
tackle both cases at once, we define ζ ¼ sgnðtÞL=ξ∞ðjtjÞ.
We show in Fig. 1 some of these PDFs obtained nu-
merically (see below) in d ¼ 3 with periodic boundary
conditions.
These probabilistic arguments do not allow for comput-

ing Iζðs̃Þ. In the following, we show that the FRG yields a
general formalism for such calculations. Being interested in
universal PDFs, we replace the lattice Ising model by a Z2-
invariant field theory for which ŝ ¼ L−d

R
x ϕ̂ðxÞ and thus,

Pðŝ ¼ sÞ ¼ N
Z

Dϕ̂δðs − ŝÞ expð−H½ϕ̂�Þ; ð2Þ

withN a normalization factor. Noting that the delta function
can be replaced by a infinitely peaked Gaussian, δðzÞ ∝
expð−M2z2=2Þ with M2 → ∞, the PDF can be interpreted
as the partition function ZM of a system with Hamiltonian
HM½ϕ̂� ¼ H½ϕ̂� þM2=2ðRx½ϕ̂ðxÞ − s�Þ2, that is, PðsÞ ∝
limM→∞ZM. Note that M ¼ 0 corresponds to the standard
partition function Z of the model (at finite size L).
For a critical theory, the computation of ZM is plagued

with the singularities induced by the long-distance (small-
wavelength) fluctuations. The modern version of the FRG,
tailored to deal with this difficulty [49–51], consists of
freezing out these modes in the partition function while
leaving unchanged the others and by gradually decreasing
to zero the scale k that separates the low and high wave
number modes: This generates the RG flow of partition
functions or, equivalently, of Hamiltonians.

FIG. 1. Different critical PDFs of the 3D Ising model as
functions of s̃ ¼ Lðd−2þηÞ=2s, obtained from Monte Carlo simu-
lations with periodic boundary conditions with L ¼ 128 for
various ζ ¼ sgnðT − TcÞL=ξ∞ðjT − TcjÞ, with ζ between −4 and
4 by step of one (from bottom curve to top curve at the center).
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A one-parameter family of models with partition functions
ZM;k½h� is thus built by changing the original Hamiltonian
HM into HM þ ΔHk − h:ϕ̂, where h is a magnetic field (or
source) and the dot in h:ϕ̂ implies an integral over space
or momentum: ZM;k½h� ¼

R
Dϕ̂ expð−HM − ΔHk þ h:ϕ̂Þ.

Here, ΔHk is the term designed to effectively freeze the low
wave number fluctuations ϕ̂ðjqj < kÞ while leaving
unchanged the high wave number modes ϕ̂ðjqj > kÞ. It is
chosen to be quadratic: ΔHk ¼ 1=2ϕ̂:Rk:ϕ̂ with Rkðx; yÞ
such that (i) when k ∼ a−1, Rk∼a−1ðjqjÞ is very large for all
jqj, which implies that all fluctuations are frozen, and
(ii) Rk¼0ðjqjÞ≡ 0 so that all fluctuations are integrated over
and ZM;k¼0½h� ¼ ZM½h�. Varying the scale k between a−1

and zero induces the RG flow of ZM;k½h�, in which
fluctuations of wave numbers jqj > k are progressively
integrated over.
Actual calculations of ZM;k½h� require one to perform

approximations that are known to be controlled only when
working with the (slightly modified) Legendre transform of
logZM;k½h� with respect to h, ΓM;k½ϕ� [52–54], defined as

ΓM;k½ϕ� ¼ − lnZM;k½h� þ h:ϕ −
1

2
ϕ:Rk:ϕ −

M2

2
fϕ − sg2;

ð3Þ

where fϕ − sg2 ≡ ðRx½ϕðxÞ − s�Þ2 and ϕðxÞ ¼ hϕ̂ðxÞi ¼
δZM;k=δhðxÞ. It can also be defined as (see Supplemental
Material [55])

e−ΓM;k½ϕ� ¼
Z

Dϕ̂ e−H½ϕ̂�−1
2
ðϕ̂−ϕÞ:RM;k:ðϕ̂−ϕÞþ

δΓM;k
δϕ :ðϕ̂−ϕÞ; ð4Þ

where RM;kðx; yÞ ¼ Rkðx; yÞ þM2, or in momentum space
RM;kðqÞ¼RkðqÞþM2δq;0, with q ¼ ð2π=LÞn and n ∈ Zd.
Equation (4) has the advantage of explicitly showing that
ΓM;k does not depend on s. Up to the replacement of Rk

by RM;k, ΓM;k is formally identical to the usual scale-
dependent effective action Γk introduced in the FRG [42],
and, indeed, Γk½ϕ� ¼ ΓM¼0;k½ϕ�. The exact RG equation
satisfied by ΓM;k½ϕ� is the usual Wetterich equation in the
presence of the regulator RM;k,

∂kΓM;k½ϕ� ¼
1

2

Z
x;y

∂kRM;kðx;yÞðΓð2Þ
M;kþRM;kÞ−1ðx;yÞ; ð5Þ

where Γð2Þ
M;k ¼ Γð2Þ

M;k½x; y;ϕ� ¼ δ2ΓM;k=δϕðxÞδϕðyÞ.
Defining Γ̌k½ϕ� ¼ limM→∞ΓM;k½ϕ�, the additional

k-independent term M2δq;0 completely freezes the zero-
momentum mode

R
x ϕ̂ðxÞ in Γ̌k½ϕ�, and we show in the

Supplemental Material [55] that, when evaluated in constant
field ϕðxÞ ¼ s, L−dΓ̌k½s� ¼ IkðsÞ is a scale-dependent rate
function such that PðsÞ ∝ limk→0 exp½−LdIkðsÞ�. [In

contrast, when evaluated in a constant field ϕðxÞ ¼ m,
the effective action Γk½ϕ ¼ m� is LdUkðmÞ, where UkðmÞ
is the k-dependent effective potential that becomes the true
effective potential at k ¼ 0. In particular, Γ½ϕ� ¼ Γk¼0½ϕ�
being the Legendre transform of lnZ½h�, the effective
potential UðmÞ ¼ Uk¼0ðmÞ is a convex function of m [42].
Note that both Γ and I are RG-scheme independent by
construction.] Our aim in the following is to compute
Γ̌k½ϕ ¼ s� and to evaluate it at k ¼ 0. For this purpose,
we now study the flow of Γ̌k comparing it with the better
known flow of Γk.
For ζ ≪ 1 and a−1 ≫ k ≫ 1=L ≫ 1=ξ∞, the regulator

Rk effectively freezes the zero-momentum mode in Γk,
which makes its flow identical to that of Γ̌k, up to
corrections of order ðkLÞ−d. In this range of k, the system
is self-similar because both a and L play no role in the
flows. It follows that both Uk and Ik obey a scaling form
IkðϕÞ ≃UkðϕÞ ¼ kdŨ�ðϕk−ðd−2þηÞ=2Þ, where Ũ� is k in-
dependent; that is, it is the dimensionless fixed point
potential of the RG flow of Γk [42]. It is a nonconvex
function that has the typical double well form, see below.
When k becomes of order 2π=L, the flows of Uk and Ik

start to differ significantly. On the one hand, the flow of Uk
becomes essentially that of a zero-dimensional system
(corresponding to the fluctuations of the zero-momentum
mode only), and limk→0UkðmÞ becomes convex with a
curvature at small m given by χ−1 ∝ L−2þη. On the other
hand, the flow of IkðsÞ stops typically for k≲ 2π=L
because in this quantity the zero-momentum mode is
frozen by the M → ∞ term. In particular, this allows for
a nonconvex shape of IðsÞ ¼ Ik¼0ðsÞ, and LdIðsÞ is found
to naturally be a function of s̃ ¼ sLðd−2þηÞ=2.
The above picture is modified when ζ ≫ 1 (T > Tc,

L ≫ ξ∞), because the system size can no longer play any
significant role when ξ∞ ≪ L. In particular, the flows ofUk
and Ik rapidly stop for k≲ 1=ξ∞ and it makes no difference
whether the zero mode is completely frozen or not.
Approaching criticality from the disordered phase, we
therefore find that Ik¼0ðsÞ ≃Uk¼0ðm ¼ sÞ. These functions
are convex with positive curvature χ−1 ∝ ξ−2þη

∞ at s ¼ 0.
Working at fixed ζ, we thus have Ik¼0ðsÞ ∝ ζ2−ηLd−2þηs2 at
small s. The PDF is therefore Gaussian at small s as in the
CLT, which is expected because the system looks like a
collection of uncorrelated clusters of spins of extension ξ∞.
However, since the susceptibility diverges at T ¼ Tc as
ξ−2þη
∞ , the fluctuations are anomalously large compared
with the usual CLT because they are of order L−½ðd−2þηÞ=2�

instead of the standard L−d=2. Varying ζ then generates a
smooth family of rate functions, the shapes of which
depend on the competition between L and ξ∞ in the flow.
Furthermore, Iζðs̃Þ behaves as s̃2d=ðd−2þηÞ at large s̃, a
behavior inherited from Ũ� [55].
To compute in practice the rate function and find its

specific shape depending on ζ, it is necessary to solve the
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flow equation (5). This cannot be done exactly, and it is
necessary to perform approximations. Here, we focus on
the simplest of such approximations, which nevertheless
allows for a functional calculation of the rate function, the
so-called local potential approximation (LPA). It amounts
to using the ansatz Γ̌k½ϕ� ¼

R
xf12 ð∂ϕÞ2 þ Ik½ϕðxÞ�g and

projecting the flow equation onto this ansatz. The corre-
sponding LPA flow equation is then closed for the scale-
dependent rate function and reads

∂kIkðsÞ ¼
1

2Ld

X
q≠0

∂kRkðqÞ
q2 þ RkðqÞ þ I00kðsÞ

; ð6Þ

and we use the “exponential regulator” RkðqÞ ¼ αk2e−q
2=k2

with α ¼ 4.65 [55]. Note that at the LPA, the anomalous
dimension vanishes, η ¼ 0, but since η ≪ 1 for the three-
dimensional Ising model, we expect the approximation to
correctly capture the shape of the rate function. The scaling
functions Iζðs̃Þ ¼ Iζ;k¼0ðs̃Þ obtained from integrating the
LPA flow, Eq. (6), are shown as solid lines in Fig. 2 for
various ζ, see the Supplemental Material [55]. We have
verified that the resulting rate functions obey the expected
scaling, are functions of s̃ and ζ only, and only very weakly
depend on the regulator function Rk [55].
In the same figure, we compare our FRG results to the

rate functions obtained from Monte Carlo (MC) simula-
tions on the cubic lattice with periodic boundary condi-
tions, using a Wolff algorithm [60] with histogram
reweighting [61], also used to generate Fig. 1, see
Ref. [55]. Since lattice and field theory calculations use
different units, it requires rescalings of the x axis (magni-
tude of the total spin s) and y axis (associated with the
microscopic length scales, since IðsÞ is a density) in the plot
of IðsÞ, Fig. 2. Importantly, these model-dependent lengths
are independent of ζ and should be determined from only
one value of ζ (we use ζ ¼ 0). We find that to compare the
rate function obtained from MC simulation for a given ζMC

to that obtained from LPA at ζLPA necessitates a rescaling
of ζLPA, with ζMC ≃ 0.9ζLPA [55]. We attribute this to errors
in the computation of ξ∞ induced by LPA. With this small
caveat, we find a very good agreement between simulations
and FRG on the whole range of ζ ∈ ½−4; 4�. Note that the
rate functions become strictly convex for ζ ≳ 2.2.
It is interesting to note that Iζ¼0 is very similar to the

fixed point potential, when properly normalized, see Fig. 3.
This could explain why the fixed point of the RG has long
been thought to describe the critical PDFs [34,38,40].
However, this cannot be true exactly because the depend-
ence of the fixed point effective potential Ũ� on the choice
of regulator Rk cannot be normalized out. This can be
shown explicitly in the large N limit of the critical OðNÞ
model [62]. Reciprocally, our Letter confirms that the RG is
deeply related to probability theory, since computing a
fixed point is actually almost synonymous to computing the
Iζ¼0 but for the zero mode, which is excluded in the rate
function. This elucidates the long-standing paradoxes
arising from the confusion between the fixed point potential
Ũ� and Iζ¼0, which, although very closely related, are
conceptually different.
Our Letter raises many questions and paves the way to

many applications that we want to briefly review below. For
instance, the method can be generalized to all pure
statistical systems at thermal equilibrium, with probably
very good results, at least when the LPA is accurate, that is,
when η is small. The generalization to disordered and/or
out-of-equilibrium systems, where very little is known
about the computation of critical PDFs, certainly requires
one to adapt the formalism. This should be feasible since
the FRG already yields fairly accurate results for such
problems like the random field OðNÞ models [63–65],
reaction-diffusion models [66,67], and the Kardar-Parisi-
Zhang equation [68–71] to mention just a few [42]. Also,
the coexistence region in the low-temperature phase is
highly nontrivial, scaling as a surface term, and necessitates

FIG. 2. Normalized rate functions Iζðs̃Þ of the 3D Ising model
obtained from the FRG (full line) and MC simulations (symbols)
performed on the cubic lattice with periodic boundary conditions
for ζ between−4 and 4 (from bottom to top, same color code as in
Fig. 1). The normalization point s̃0 is the position of the minimum
of Iζ¼0. The rate functions have been shifted for better visibility.

FIG. 3. Scaling rate function at ζ ¼ 0 obtained from the FRG
(blue) as a function of s̃, and the fixed point potential obtained
with the same regulator as function of ϕ̃ ¼ s̃. Both have been
normalized such that their minimum is −1 at 1. The difference is
only visible in the tail.
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one to go beyond the LPA, which does not capture domain
walls. This could explain why our results do not agree as
well with MC simulations for large and negative ζ.
However, the LPA can be systematically improved via a
derivative expansion or the Blaizot–Mendez-Galain–
Wschebor approximation scheme [72,73]. The study of
the convergence along the lines of [53,54] for the rate
function is left for future work.
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Poincaré 52, 146 (2016).
[30] G. Jona-Lasinio, Nuovo Cimento Soc. Ital. Fis. 26B, 99

(1975).
[31] G. Gallavotti and A. Martin-Löf, Nuovo Cimento Soc. Ital.

Fis. 25B, 425 (1975).
[32] M. Cassandro and G. Jona-Lasinio, Adv. Phys. 27, 913

(1978).
[33] K. G. Wilson and J. B. Kogut, Phys. Rep. 12, 75 (1974).
[34] A. D. Bruce, T. Schneider, and E. Stoll, Phys. Rev. Lett. 43,

1284 (1979).
[35] E. Eisenriegler and R. Tomaschitz, Phys. Rev. B 35, 4876

(1987).
[36] R. Hilfer, Int J. Mod. Phys. B 07, 4371 (1993).
[37] R. Hilfer and N. B. Wilding, J. Phys. A 28, L281 (1995).
[38] A. Esser, V. Dohm, and X. Chen, Physica (Amsterdam)

222A, 355 (1995).
[39] A. D. Bruce, Phys. Rev. E 55, 2315 (1997).
[40] J. Rudnick, W. Lay, and D. Jasnow, Phys. Rev. E 58, 2902

(1998).
[41] J. Berges, N. Tetradis, and C. Wetterich, Phys. Rep. 363,

223 (2002).
[42] N. Dupuis, L. Canet, A. Eichhorn, W. Metzner, J.

Pawlowski, M. Tissier, and N. Wschebor, Phys. Rep.
910, 1 (2021).

[43] J. Zinn-Justin, Phase Transitions and Renormalization
Group (Oxford University Press, 2007).

[44] J.-P. Bouchaud and A. Georges, Phys. Rep. 195, 127 (1990).
[45] The shapes of the family of PDFs also depend crucially on

the boundary conditions [8]. Here we focus on periodic
boundary conditions only.

[46] R. Fukuda and E. Kyriakopoulos, Nucl. Phys. B85, 354
(1975).

[47] L. O’Raifeartaigh, A. Wipf, and H. Yoneyama, Nucl. Phys.
B271, 653 (1986).

PHYSICAL REVIEW LETTERS 129, 210602 (2022)

210602-5

https://doi.org/10.1103/PhysRevLett.47.693
https://doi.org/10.1007/BF01293604
https://doi.org/10.1103/PhysRevLett.68.193
https://doi.org/10.1103/PhysRevLett.68.193
https://doi.org/10.1088/0305-4470/21/1/028
https://doi.org/10.1103/PhysRevLett.73.2015
https://doi.org/10.1103/PhysRevD.60.034504
https://doi.org/10.1103/PhysRevD.60.034504
https://doi.org/10.1103/PhysRevE.62.73
https://doi.org/10.1103/PhysRevE.62.73
https://doi.org/10.1038/25083
https://doi.org/10.1103/PhysRevLett.84.3744
https://doi.org/10.1103/PhysRevLett.84.3744
https://doi.org/10.1088/0305-4470/35/5/307
https://doi.org/10.1088/0305-4470/35/5/307
https://doi.org/10.1103/PhysRevLett.104.230601
https://doi.org/10.1103/PhysRevLett.104.230601
https://doi.org/10.1103/PhysRevE.85.041110
https://doi.org/10.1103/PhysRevE.89.042103
https://doi.org/10.1103/PhysRevE.89.042103
https://doi.org/10.1103/PhysRevE.101.023315
https://doi.org/10.1103/PhysRevE.101.023315
https://doi.org/10.1007/BF01645907
https://doi.org/10.1007/BF01645604
https://doi.org/10.1007/BF01645604
https://doi.org/10.1214/aop/1176992155
https://doi.org/10.1016/0378-4371(89)90494-9
https://doi.org/10.1016/0378-4371(89)90494-9
https://doi.org/10.1088/0305-4470/37/5/001
https://doi.org/10.1103/PhysRevLett.104.230602
https://doi.org/10.1103/PhysRevLett.104.230602
https://doi.org/10.1214/14-AIHP643
https://doi.org/10.1214/14-AIHP643
https://doi.org/10.1214/14-AIHP643
https://doi.org/10.1007/BF02755540
https://doi.org/10.1007/BF02755540
https://doi.org/10.1007/BF02737692
https://doi.org/10.1007/BF02737692
https://doi.org/10.1080/00018737800101504
https://doi.org/10.1080/00018737800101504
https://doi.org/10.1016/0370-1573(74)90023-4
https://doi.org/10.1103/PhysRevLett.43.1284
https://doi.org/10.1103/PhysRevLett.43.1284
https://doi.org/10.1103/PhysRevB.35.4876
https://doi.org/10.1103/PhysRevB.35.4876
https://doi.org/10.1142/S0217979293003711
https://doi.org/10.1088/0305-4470/28/10/001
https://doi.org/10.1016/0378-4371(95)00264-2
https://doi.org/10.1016/0378-4371(95)00264-2
https://doi.org/10.1103/PhysRevE.55.2315
https://doi.org/10.1103/PhysRevE.58.2902
https://doi.org/10.1103/PhysRevE.58.2902
https://doi.org/10.1016/S0370-1573(01)00098-9
https://doi.org/10.1016/S0370-1573(01)00098-9
https://doi.org/10.1016/j.physrep.2021.01.001
https://doi.org/10.1016/j.physrep.2021.01.001
https://doi.org/10.1016/0370-1573(90)90099-N
https://doi.org/10.1016/0550-3213(75)90014-0
https://doi.org/10.1016/0550-3213(75)90014-0
https://doi.org/10.1016/S0550-3213(86)80031-1
https://doi.org/10.1016/S0550-3213(86)80031-1


[48] M. Göckeler and H. Leutwyler, Nucl. Phys. B350, 228
(1991).

[49] C. Wetterich, Nucl. Phys. B352, 529 (1991).
[50] C. Wetterich, Phys. Lett. B 301, 90 (1993).
[51] C. Wetterich, Z. Phys. C 60, 461 (1993).
[52] L. Canet, B. Delamotte, D. Mouhanna, and J. Vidal, Phys.

Rev. B 68, 064421 (2003).
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