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Some quantum critical states cannot be smoothly deformed into each other without either crossing some
multicritical points or explicitly breaking certain symmetries even if they belong to the same universality
class. This brings up the notion of “symmetry-enriched” quantum criticality. While recent works in the
literature focused on critical states with robust degenerate edge modes, we propose that the conformal
boundary condition (B.C.) is a more generic characteristic of such quantum critical states. We show that in
two families of quantum spin chains, which generalize the Ising and the three-state Potts models, the
quantum critical point between a symmetry-protected topological phase and a symmetry-breaking order
realizes a conformal B.C. distinct from the simple Ising and Potts chains. Furthermore, we argue that the
conformal B.C. can be derived from the bulk effective field theory, which realizes a novel bulk-boundary
correspondence in symmetry-enriched quantum critical states.
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Introduction.—The development of topological states of
matter has greatly deepened our understanding of gapped
phases [1]. For example, one-dimensional (1D) symmetry-
protected topological (SPT) states are fully classified by the
projective representations of the symmetry group and host
degenerate edge modes, which transform as the projective
representations [2,3]. Different SPT phases cannot be
adiabatically connected without either crossing phase
transitions or explicitly breaking the symmetry.
Quantum critical states enjoy scale invariance in the

low-energy limit, and fall into different universality
classes characterized by the operator scaling dimensions.
Surprisingly, somequantumcritical states cannot be smoothly
connected by tuning model parameters without either cross-
ing some multicritical points or explicitly breaking certain
symmetries even if they belong to the same universality class.
This brings up the notion of gapless SPT [4,5] or “symmetry-
enriched” quantum critical states [6]. Robust degenerate edge
states persist in somequantumcritical states [4–20],which are
secured by the symmetry-flux (disorder) operators in the bulk
carrying nontrivial symmetry charges [6]. This indicates a
novel bulk-boundary correspondence. However, a signature
of symmetry-enriched quantum critical states without edge
degeneracy is still lacking.

In this Letter, we shall show that the conformal boundary
condition (B.C.) and the associated surface critical behavior
are more generic characteristics of symmetry-enriched
quantum criticality. For a critical system with boundary,
a conformal B.C. corresponds to a fixed point of the
renormalization group (RG) flow of the boundary states.
Different conformal B.C. can be specified for a given
conformal field theory (CFT) in the bulk, resulting in rich
surface critical phenomena.
The conformal B.C. determines the operator content of

the system [21,22], i.e., the Hamiltonian eigenstates, which
are organized into conformal families, each comprising a
primary state and all its conformal descendants. The
conformal B.C. also determines the universality of the
surface criticality [21,23]. Given a local operator on the
boundary [denoted by ϕðrÞ] and in the bulk [ϕbðRÞ],
the connected correlation functions scale as

Ckðr1 − r2Þ ¼ hϕðr1Þϕðr2Þic ∝ jr1 − r2j−2Δϕ ; ð1Þ

C⊥ðr − RÞ ¼ hϕðrÞϕbðRÞic ∝ jr − Rj−Δϕ−Δb
ϕ ; ð2Þ

in which hABic ¼ hABi − hAihBi. Here, r1 − r2 is parallel
to the surface, while r − R is perpendicular to it.Δϕ andΔb

ϕ

are the scaling dimensions of the boundary and the bulk
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operators, respectively. The surface critical behavior of
classical statistical systems has been extensively studied
[24,25]. The interest in the surface criticality has been
revived recently motivated by the impact of topological
edge states at quantum critical points (QCPs), leading to the
discovery of new universality classes [26–40].
In this Letter, we study two families of quantum spin

chains, which generalize the 1D Ising and the three-state
Potts models [17,18,41], respectively. Each family contains
quantum critical states that are described by the same CFT
but cannot be smoothly connected. While the two Ising
QCPs can be distinguished by the degenerate edge states
[6,17,18], the generalized Potts chain lacks such a distinctive
feature. By examining their surface critical behavior and the
energy and entanglement spectra, we show that in each
family ofmodels, theQCP between an SPTand a symmetry-
breaking order realizes a conformal B.C. distinct from the
simple Ising and Potts models. Moreover, the conformal
B.C. can be derived from the effective field theory of the bulk
states, thus establishing a novel bulk-boundary correspon-
dence in symmetry-enriched quantum critical states.
Warm-up: Quantum Ising chains.—We first study the

following transverse-field Ising (TFI) chain and the cluster
Ising (CI) chain [18],

HTFI ¼ −
XL−1
l¼1

σzlσ
z
lþ1 þ h

XL
l¼1

σxl ; ð3Þ

HCI ¼ −
XL−1
l¼1

σzlσ
z
lþ1 − h

XL−2
l¼1

σzlσ
x
lþ1σ

z
lþ2: ð4Þ

Both models enjoy the Z2 × ZT
2 symmetry generated by

Πx ¼
Q

L
l¼1 σ

x
l and T ¼ K (the complex conjugation).

There is a QCP at hc ¼ 1 in both models separating the
ferromagnetic (FM) order at jhj < hc and the disordered
phase at h > hc. The QCPs are described by the 2D
Ising CFT.
Both models are exactly solvable with the Jordan-

Wigner transformation [18], σzl ¼
Q

l−1
k¼1ðiγkγ̃kÞγl and

σxl ¼ iγlγ̃l, in which the Majorana fermion operators satisfy
fγk; γlg ¼ fγ̃k; γ̃lg ¼ 2δkl, and fγk; γ̃lg ¼ 0. In the
Majorana representation,

H ¼ −
XL−1
l¼1

iγ̃lγlþ1 − h
XL−α
l¼1

iγ̃lγlþα; ð5Þ

in which α ¼ 0 for the TFI and 2 for the CI chain. At the
QCP, both models are mapped to 1D massless Majorana
fermions. However, in the CI chain, there are two
decoupled Majorana modes denoted by γ1 and γ̃L, which
lead to a twofold degeneracy in each energy level [17,18].
These edge zero modes are protected by the ZT

2 symmetry
[6]. In the spin representation, the degeneracy comes
from the conservation of the edge spin operators σz1 ¼ γ1
and σzL ¼ −iγ̃LΠx, which label the edge magnetization.

The energy spectrum falls into four sectors labeled by σz1
and σzL. Therefore, the Z2 symmetry is spontaneously
broken on the edges.
The connected correlation functionsC⊥ðL=2Þ of the spin

operator σzl and the energy operator ϵl ¼ σzlσ
z
lþ1 are used to

characterize the surface critical behavior. These correla-
tions are calculated in the Majorana representation, which
is detailed in Supplemental Material [42], and fitted to
Eq. (2) with the bulk scaling dimensions Δb

σ ¼ 1=8 and
Δb

ϵ ¼ 1 (see Fig. 1). The extracted scaling dimensions of
the boundary operators are listed in Table I. While the TFI
chain is captured by the Ising CFT with free B.C., the
exponents of the CI chain are consistent with the fixed
B.C., which can be attributed to the spontaneous edge
magnetization. This feature should also apply to other 1D
quantum critical states with edge degeneracy.
The energy spectra with open boundaries are shown in

Fig. 2. With proper normalization, the excitation energies
are mapped to the operator scaling dimensions and com-
pared with the operator content of the boundary CFT,
which is explained in the figure caption. These spectra are
fully consistent with the Ising CFTwith free B.C. and fixed
B.C., respectively.

(a) (b)

FIG. 1. Connected correlation functions C⊥ðL=2Þ of (a) the
spin operator σzl and (b) the energy operator ϵl ¼ σzlσ

z
lþ1 of the

critical Ising chains. Dashed lines are the power-law fitting
according to Eq. (2).

TABLE I. Scaling dimensions of the boundary spin and energy
operators. Scaling dimensions in the Ising and Potts boundary
CFTs are also listed for comparison.

Class Model or B.C. Δσ Δϵ

Ising TFI 0.499 2(3) 1.999 57(8)
CI 1.998 4(2) 2.000 08(2)

CFT Free 1=2 2
Fixed 2 2

Potts Disorder-FM 0.665 98(3) 0.799 3(2)
Disorder-NotA 0.662 9(1) 0.791 5(5)
RSPT-FM 0.066 1(3) 0.204(9)
RSPT-NotA 0.060 1(1) 0.21(1)

CFT Free 2=3 4=5
Dual-mixed 1=15 1=5
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Generalized Potts chain: Recapitulation.—We then
study the 1D generalized three-state Potts model introduced
in Ref. [41]. Following their notation, the Hamiltonian is
given by

H ¼ HP þ λH0; ð6Þ

in which HP is the simple quantum Potts model,

HP ¼ −J
XL−1
l¼1

ðσ†l σlþ1 þ σlσ
†
lþ1Þ − f

XL
l¼1

ðτl þ τ†l Þ; ð7Þ

and H0 is given by

H0¼
XL−1
l¼1

3½ðSþl S−lþ1Þ2−Sþl S
−
lþ1þH:c:�−

XL
l¼1

ðτlþτ†l Þ: ð8Þ

The operators are defined by τ ¼ diagð1;ω;ω2Þ with
ω ¼ e2πi=3, and

σ ¼

0
B@

0 1 0

0 0 1

1 0 0

1
CA; Sþ ¼

0
B@

0 0 1

1 0 0

0 0 0

1
CA¼ ðS−Þ†: ð9Þ

S� are the ladder operators of Sz ¼ diagð0; 1;−1Þ. The
model (6) enjoys the S3 symmetry generated by the Z3

rotation R ¼ Q
L
l¼1 τl and the charge conjugation C ¼ Q

l¼
1Lcl, in which

c ¼

0
B@

1 0 0

0 0 1

0 1 0

1
CA: ð10Þ

Let us first recapitulate the phase diagram of the model
(6), and refer to Ref. [41] for the detailed derivation. The
quantum phase diagram parametrized by λ ¼ 1 − α,
J ¼ αþ β, and f ¼ α − β is sketched in Fig. 3(a), which
shows four gapped phases. Each phase is adiabatically
connected to a special point within the phase,
ðα; βÞ ¼ ð�1;�1Þ, where the ground states can be exactly
constructed. The Potts ferromagnetic (FM) ordered phase
has threefold degenerate ground states, which are smoothly
connected to the fully polarized FM states ⊗l jAil, ⊗l jBil
and ⊗l jCil, in which jAi, jBi, and jCi are the eigenstates
of σ with eigenvalues 1, ω, and ω2, respectively. The FM
order is characterized by the order parameter hσli3 > 0. The
disordered phase is smoothly connected to the S3-sym-
metric state ⊗l j0il, in which j0i ¼ ð1= ffiffiffi

3
p ÞðjAi þ jBi þ

jCiÞ is an eigenstate of Sz. The other two phases are quite
unconventional. The “not-A” ordered phase contains
ðα; βÞ ¼ ð−1;−1Þ, where the threefold degenerate ground
states are given by ⊗l jĀil, ⊗l jB̄il, and ⊗l jC̄il, with
jĀi ¼ ð1= ffiffiffi

2
p ÞðjBi þ jCiÞ, jB̄i ¼ ð1= ffiffiffi

2
p ÞðjCi þ jAiÞ, and

jC̄i ¼ ð1= ffiffiffi
2

p ÞðjAi þ jBiÞ. The S3 symmetry is spontane-
ously broken with the order parameter hσli3 < 0. The last
phase is dubbed the representation SPT (RSPT) state.

(a) (b)

FIG. 2. Low-energy spectra of (a) the TFI and (b) the CI chains
with open boundaries. The excitation energy ΔϵnðLÞ ¼ ϵnðLÞ −
ϵ0ðLÞ is normalized to the effective scaling dimension,
dnðLÞ ¼ 1

2
½ΔϵnðLÞ=Δϵ1ðLÞ�, such that the first excited state

(marked with filled circles) maps to 1=2. The conformal family
and the expected degeneracy in the boundary CFT are labeled on
the right. The operator content in (a) is ½I� ⊕ ½ϵ�, consistent with
the Ising CFTwith free B.C. [21]. In (b), the energy levels in blue
come from ðσz1; σzLÞ ¼ ðþ;þÞ and ð−;−Þ sectors, each forming a
conformal family ½I�, while those in red from ðþ;−Þ and ð−;þÞ
sectors, each forming [ϵ]. This is consistent with the
fixed B.C. [21].

(a)

(c) (d)

(b)

FIG. 3. (a) Schematic quantum phase diagram of the general-
ized Potts chain. The special points ðα; βÞ ¼ ð�1;�1Þ are
marked by filled circles. The QCPs studied in this Letter are
indicated on the transition lines, in which αc ¼ −0.505 09.
(b) Global phase diagram of the effective field theory (12). (c)
and (d) Connected correlation functions C⊥ðL=2Þ of the spin
operator σl and the energy operator ϵl ¼ τl þ τ†l at the QCPs.
Dashed lines are the power-law fitting according to Eq. (2) plus a

correction-to-scaling term, bL−Δϕ−Δb
ϕ−1.
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At ðα; βÞ ¼ ð−1; 1Þ, its ground state can be constructed
with the matrix-product state R ¼⊗l Rl, in which

Rl ¼
� j0il jþil
j−il j0il

�
: ð11Þ

Here, j0i, jþi, and j−i are the three eigenstates of Sz. The
ground state is given by trðRÞ for periodic B.C., which is
S3-symmetric and nondegenerate. With open B.C., the
matrix elements of R are fourfold degenerate ground states,
which form a linear representation of the S3 symmetry.
The duality transformation τl ↦ σ†l σlþ1, σl ↦

Q
l
j¼1 τj

exchanges the two terms in HP and leaves H0 invariant,
thus maps the FM to the disordered phase, and the not-A
order to the RSPT phase, and vice versa. There is a
continuous quantum phase transition between each ordered
phase and each disordered phase, all of which correspond
to the spontaneous S3-symmetry breaking and belong to the
2D three-state Potts universality class. These transition
lines join at the multicritical point ðα; βÞ ¼ ð0; 0Þ, which is
self-dual and has the U(1) symmetry generated by
Q ¼ P

l S
z
l .

The phase diagram is captured by the following self-dual
sine-Gordon theory with the Hamiltonian density [see
Fig. 3(b)],

H ¼ 3

4π
ð∂xϕÞ2 þ

3

4π
ð∂xθÞ2 − g cosð3ϕÞ − g̃ cosð3θÞ; ð12Þ

in which ϕ and θ are the scalar field and the dual disorder
field, respectively. The multicritical point is captured by the
free boson theory with a compactification radius

ffiffiffiffiffiffiffiffi
3=2

p
,

which has the same U(1) symmetry and self-duality
[41,55]. The g and g̃ terms are relevant at the multicritical
point. For g > jg̃j > 0, ϕ is polarized to 0 or �2π=3 and
gives the FM order, while for g < −jg̃j < 0, ϕ is polarized
to π or �π=3, i.e., an equal-weight superposition of two
out of the three spin states, and describes the not-A order.

For g̃ > jgj > 0, the disorder field θ is pinned at 0 or
�2π=3, while for g̃ < −jgj < 0, θ is pinned at π or �π=3.
From the duality relation, the former corresponds to the
disordered phase, while the latter is the RSPT phase. The
transition lines are given by jgj ¼ jg̃j, which cannot be
smoothly connected without either crossing the multi-
critical point or explicitly breaking the S3 symmetry despite
that they belong to the same universality class. However,
unlike the CI chain, there are not any degenerate edge states
at these QCPs, thus we must find new characteristics.
Generalized Potts chain: Conformal B.C.—We first

study the surface critical behavior. The connected correla-
tion functions of the spin operator σl and the energy
operator ϵl ¼ τl þ τ†l are calculated with the density-matrix
renormalization group algorithm [56–58] detailed in [42]
and shown in Fig. 3. The scaling dimensions of the
boundary operators are extracted by fitting Eq. (2) with
Δb

σ ¼ 2=15 and Δb
ϵ ¼ 2 and listed in Table I. The four

QCPs fall into two classes. While the disorder-FM and the
disorder-NotA transitions are captured by the Potts CFT
with free B.C. [21], the RSPT-FM and the RSPT-NotA
transitions yield different critical exponents. It turns out that
these exponents can be derived from the Potts CFTwith the
“new” conformal B.C. discovered in Refs. [59,60]. This
B.C. is S3 symmetric and dual to the mixed B.C. [61], thus
we call it the dual-mixed B.C.
In order to support the identification of these conformal

B.C., we show the low-energy spectra at these QCPs with
open B.C. in Fig. 4, which are normalized to the effective
scaling dimensions. The spectra of the disorder-FM and the
disorder-NotA QCPs are consistent with the operator
content of the Potts CFTwith free B.C. On the other hand,
the spectra of the RSPT-FM and the RSPT-NotA QCPs are
consistent with the dual-mixed B.C.
The operator content of a boundary CFTalso shows up in

the entanglement spectrum of the ground state, which is
equivalent to the energy spectrum of the CFTwith a proper
conformal B.C. specified at the entangling surface, i.e., the

(a) (b) (c) (d)

FIG. 4. Low-energy spectra of the generalized Potts chain at the QCPs. The excitation energy ΔϵnðLÞ ¼ ϵnðLÞ − ϵ0ðLÞ is normalized
to the effective scaling dimension, dnðLÞ ¼ 2

3
½ΔϵnðLÞ=ΔϵZðLÞ�, such that the primary state in [Z] (marked with filled circles) is

normalized to 2=3. The conformal family and the expected degeneracy in the boundary CFTare labeled on the right. Red circles indicate
numerically exactly twofold degenerate levels, while blue circles indicate nondegenerate levels. The disorder-FM and the disorder-NotA
QCPs are consistent with the operator content of the Potts CFTwith free B.C. [21], ½I� ⊕ ½Y� ⊕ 2½Z�, while the RSPT-FM and the RSPT-
NotA QCPs are consistent with that of the dual-mixed B.C. [59,60], ½I� ⊕ ½Y� ⊕ ½ϵ� ⊕ ½X� ⊕ 2½σ� ⊕ 2½Z�.
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boundary between the subsystem and the rest of the chain
[62–64]. The entanglement spectra of the generalized Potts
chain are shown in Supplemental Material [42], which
points to the same operator contents as the corresponding
energy spectra.
These distinct conformal B.C. can be derived from the

bulk effective field theory (12). Given that the disorder-FM
transition at g ¼ g̃ > 0 realizes the free B.C. [21], the dual
field θ is pinned at 0 or �2π=3 at the boundary due to the
duality between the free B.C. and the fixed B.C. [65]. At
the RSPT-FM transition for g̃ ¼ −g < 0, the sign of g̃ is
reversed, thus θ is pinned at π or �π=3 at the boundary,
corresponding to the mixed B.C. of the θ field and thus the
dual-mixed B.C. in terms of the ϕ field. On the other hand,
the conformal B.C. is not changed by reversing the sign of
g, because the ϕ field is not polarized at the boundary for
any of these critical states. Therefore, the disorder-NotA
transition at g ¼ −g̃ < 0 realizes the free B.C., while the
RSPT-NotA transition at g ¼ g̃ < 0 shows the dual-mixed
B.C. These arguments are consistent with our numerical
results, thereby we establish a novel bulk-boundary corre-
spondence of the symmetry-enriched quantum critical
states.
Discussions.—The critical exponents of the boundary

correlation functions can be measured with the surface
magnetic susceptibility, etc. [24]. Besides, the characteristic
energy spectrum manifests itself in thermodynamic quan-
tities. The thermal entropy of a critical chain of length L at
temperature T scales as [66]

SðL; TÞ ¼ πc
3v

LT þ ln g; ð13Þ

in which c is the central charge, v is the velocity in the low-
energy limit, and ln g is the Affleck-Ludwig boundary
entropy, which is a universal constant determined by the
conformal B.C. The excess boundary entropy of a con-
formal B.C. compared with the fixed B.C. can be extracted
from the entropy released upon applying a magnetic field
on the boundary. If there are degenerate edge states, they
contribute an integer factor of degeneracy to g, while g is
not an integer for a generic conformal B.C. but may be
taken as an “effective edge degeneracy.” Therefore, the
conformal B.C. generalizes the edge degeneracy in char-
acterizing quantum critical states.
Conclusion.—To summarize, we have studied the gen-

eralized Ising and Potts chains. In each family, we focused
on the quantum critical states that cannot be smoothly
connected even though they are captured by the same CFT.
We showed that a distinct conformal B.C. is realized at the
QCPs of SPT states. The conformal B.C. is a more generic
characteristic of symmetry-enriched quantum critical states
beyond the degenerate edge states.
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