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We study a model of nonidentical swarmalators, generalizations of phase oscillators that both sync in
time and swarm in space. The model produces four collective states: asynchrony, sync clusters, vortexlike
phase waves, and a mixed state. These states occur in many real-world swarmalator systems such as
biological microswimmers, chemical nanomotors, and groups of drones. A generalized Ott-Antonsen
ansatz provides the first analytic description of these states and conditions for their existence. We show how
this approach may be used in studies of active matter and related disciplines.
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Synchronization is a universal phenomenon [1–3] seen
in coupled lasers [4] and beating heart cells [5]. When in
sync, the units of such systems align the rhythms of their
oscillations, but do not move through space. Swarming, as
in flocks of birds [6] or schools of fish [7], is a sister effect
where the roles of space and time are swapped. The units
coordinate their movements in space, but do not synchron-
ize an internal oscillation.
The units of some systems coordinate themselves in

both space and time concurrently. Japanese tree frogs sync
their courting calls as they form packs to attract mates [8,9].
Starfish embryos sync their genetic cycles with their
movements creating exotic “living crystals” [10]. Janus
particles [11–13], Quincke rollers [14–16], and other driven
colloids [17–20] lock their rotations as they self-assemble
in space. The emergent “sync-selected” structures have
great applied power. They have been used to degrade
pollutants [21–24], repair electrical circuits [25], and to
shatter blood clots [26,27].
Theoretical studies of systems which mix sync with

swarming are on the rise [28–32]. Tanaka et al. derived a
universal model of chemotactic oscillators with diverse
behavior [31,33]. Active matter researchers studied a
Vicsek model with self-rotating (synchronizable) units
[28,34,35] which imitate various types of colloid. O’Keeffe
et al. introduced amodel of “swarmalators” [29],whose states
have been found in the lab and in nature [14,36,37], and is
being further studied [38–46].
Analytic results on swarmalators are sparse. Order

parameters, bifurcations, etc. are hard to compute given
the systems’ nonlinearities and numerous degrees of free-
dom. Active matter such as the driven colloids mentioned
earlier (which may be considered swarmalators) are hard to
analyze for the same reasons. The Vicsek model [47], for
example, requires an in-depth use of statistical physics tools
(dynamical renormalization groups, etc.) to be solved [48].
As for generalized Vicsek models, often only the stability

of the simple incoherent state is analyzed, while order
parameters are found purely numerically [28,32,34,35]. As
such, easily and exactly solvable models of active matter
are somewhat rare.
This Letter shows how this gap in active matter and

swarmalator research may begin to be closed using tech-
nology from sync studies. We use Kuramoto’s classic
self-consistency analysis [2] in hand with a generalized
Ott-Antonsen (OA) ansatz [49]—two breakthrough tools—
to study swarmalators which run on a 1D ring. This simple
model captures the essential aspects of real-world swarma-
lators and active matter, yet is also solvable: its order
parameters and collective states may be characterized
exactly. To our knowledge, exact results for the order
parameters of an active matter collective are few; in this
sense our Letter contributes to this vibrant field.
Model.—The model we study is [50]

_xi ¼ vi þ
J
N

XN
j¼1

sinðxj − xiÞ cosðθj − θiÞ; ð1Þ

_θi ¼ ωi þ
K
N

XN
j¼1

sinðθj − θiÞ cosðxj − xiÞ; ð2Þ

where ðxi; θiÞ ∈ ðS1; S1Þ are the position and phase of the ith
swarmalator and (νi, ωi), ðJ; KÞ are the associated natural
frequencies and couplings. The vi, ωi are drawn from a
Lorentzian distribution, gvðωÞðxÞ ¼ ΔvðωÞ=½πðx2 þ Δ2

vðωÞÞ�,
with spreads Δv, Δω and mean set to zero via a change
of frame.
The phase dynamics Eq. (2) are a generalized Kuramoto

model where it now depends on their pairwise distance
Kij ¼ K cosðxj − xiÞ [51]. So for K > 0 neighboring
swarmalators synchronize more quickly than remote
ones (the opposite occurs for K < 0). To treat sync and
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swarming on the same footing, the space dynamics Eq. (1)
are identical to Eq. (2) but with xi and θi switched. Thus for
J > 0 synchronized swarmalator’s swarm (in the sense of
aggregating) more readily than desynchronized ones (the
opposite for J < 0). In short, the equations model location-
dependent synchronization, and phase-dependent aggrega-
tion. One can also think of them as sync on the unit torus
(Fig. 1) or as the rotational piece of the 2D swarmalator
model [52].
Introducing the variables

ζi ≡ xi þ θi; ηi ≡ xi − θi; ð3Þ

let us write Eqs. (1) and (2) as a pair of linearly coupled
Kuramoto models [50]

_ζi ¼ vi þ ωi − JþSþ sinðζi −ΦþÞ − J−S− sinðηi −Φ−Þ;
ð4Þ

_ηi ¼ vi − ωi − J−Sþ sinðζi −ΦþÞ − JþS− sinðηi −Φ−Þ;
ð5Þ

where J� ≡ ðJ � KÞ=2 and

W� ≡ 1

N

XN
j¼1

eiðxj�θjÞ ¼ S�eiΦ� : ð6Þ

These new order parameters measure the systems’ space-
phase order. When there is perfect correlation between
space and phase xi ¼ �θi þ C, S� ¼ 1. When xi and θi
are uncorrelated, S� ¼ 0. In a general case (J ≠ K), the
swarmalator and Kuramoto models belong to different
classes of collective behavior. The coupling dependence
on S� in Eqs. (4) and (5) leads to new collective states such
as a mixed state in which Sþ and S− coexist. This state has
no analogy in the Kuramoto model.

Numerics shows the system has four steady states which
may be categorised by the pair ðSþ; S−Þ. (i) Async or (0,0)
state: swarmalators are fully dispersed in space and phase
as depicted in Figs. 1(a) and 2(c). There is no space-
phase order so ðSþ; S−Þ ¼ ð0; 0Þ. (ii) Phase waves or
ðS; 0Þ=ð0; SÞ state: swarmalators form a band or phase
wave [57] where xi≈ ∓ θi for ðS; 0Þ and ð0; SÞ states,
respectively, as depicted in Figs. 1(b) and 2(d). In ðζ; ηÞ
coordinates, swarmalators are partially locked in ζi and
drift in ηi, or vice versa. (iii) Intermediate mixed state
ðS1; S2Þ with S1 ≠ S2 ≠ 0, see Fig. 2(e): swarmalators form
a band along which clusters of correlated swarmalators are
moving. (iv) Sync or ðS; SÞ state: swarmalators are partially
locked in both ζi and ηi. For most initial conditions, two
clusters of locked swarmalators separated a distance of π in
(ζ, η) emerge spontaneously, as shown in Figs. 1(c) and 2(f)
(single clusters were also observed). This “π state” results
from a symmetry in the model: the transformation x̃i ¼
xi þ π and θ̃i ¼ θi þ π leaves Eqs. (1) and (2) unchanged
which means a locked swarmalator can be assigned to
either cluster without changing the overall dynamics. The
internal symmetry results in the formation of mirrored
groups of synchronized swarmalators, see Ref. [52].

(a) (b) (c)

FIG. 1. Steady states of swarmalators (black dots) projected
onto the unit torus. Data were generated by integrating Eqs. (1)
and (2) with the RK45 solver for T ¼ 500 time units with
adaptive step size for N ¼ 104 swarmalators with Δν ¼ Δω ¼ 1.
(a) Async state for ðJ; KÞ ¼ ð1; 1Þ where swarmalators are
uniformly distributed in both space and phase. (b) Phase wave
state for ðJ; KÞ ¼ ð1; 40Þ where positions and phases of swar-
malators are correlated. (c) Sync state for ðJ; KÞ ¼ ð8; 9Þ, where
clusters of swarmalators synced in both space and time coexist
with drifting swarmalators.

(a)

(c) (d) (e) (f)

(b)

FIG. 2. (a) Phase diagram of the swarmalator model in the
ðJ; KÞ plane [in units of Δ̄ ¼ ðΔv þ ΔωÞ=2]. Regions I, II, III,
and IV correspond to the (0,0) (async), ðS; 0Þ=ð0; SÞ (phase
wave), ðS1; S2Þ (mixed), and ðS; SÞ (sync) states. The black and
blue solid lines represent the critical lines Eqs. (20) and (23). The
purple solid line represents the critical line Eq. (S69) in [52].
The black dashed line describes J ¼ K and the green circle is the
tetracritical point. Symbols, black triangles, purple dots, and red
circles are critical points found in simulations for N ¼ 104,
T ¼ 200 with adaptive time step RK45 solver, and averaged by
20 realizations. (b) Phase diagram of the model with identical
swarmalators (adapted from [50]). (c)–(f) Scatter plots of the
(0,0), ð0; SÞ, ðS1; S2Þwhere S1 < S2, and ðS; SÞ states in the ðθ; xÞ
plane. Magenta diamond, green crosses, cyan crosses, and orange
stars in panel (a) show the points where we made the scatter plots
for (c)–(f), respectively.
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Movies of the evolution of these states and demonstrations
that they are robust to local coupling (i.e., cutoff beyond a
range σ) are provided in [52].
Generalized OA ansatz.—Now we analyze our model by

deriving expressions for the order parameters W� in each
state. Consider the probability fðv;ω; ζ; η; tÞ to find a
swarmalator with natural velocity v, a natural frequency
ω, and coordinates ζ and η at time t

f ≡ 1

N

XN
i¼1

δðv − viÞδðω − ωiÞδðζ − ζiÞδðη − ηiÞ: ð7Þ

Differentiating the left and right hand sides of Eq. (7) over t
gives the continuity equation,

∂f
∂t
þ ∂

∂ζ
f½vþω−JþSþsinðζ−ΦþÞ−J−S−sinðη−Φ−Þ�fg

þ ∂

∂η
f½v−ω−J−Sþsinðζ−ΦþÞ−JþS−sinðη−Φ−Þ�fg¼0:

ð8Þ

Ott and Antonsen showed that for the Kuramoto model, f
has an invariant manifold of Poisson kernels (a remarkable
finding which effectively solves the model) known as the
OA ansatz [49,56]. Since our model is a Kuramoto model
on the torus, we search for a “torodoidal” OA ansatz: a
product of Poisson kernels,

fðv;ω; ζ; η; tÞ ¼ 1

4π2
gvðvÞgωðωÞ

�
1þ

X∞
n¼1

αneinζ þ c:c:
�

×

�
1þ

X∞
m¼1

βmeimη þ c:c:

�
; ð9Þ

where α¼αðv;ω;tÞ and β ¼ βðv;ω; tÞ are unknown func-
tions which must be found self-consistently. Substituting
Eq. (9) into Eq. (8) we find that f satisfies Eq. (8) for all
harmonics n and m if α and β satisfy

dα
dt

¼ −iðvþ ωÞαþ 1

2
JþðW�þ −Wþα2Þ

þ 1

2
J−αðW�

−β
� −W−βÞ; ð10Þ

dβ
dt

¼ −iðv − ωÞβ þ 1

2
JþðW�

− −W−β
2Þ

þ 1

2
J−βðW�þα� −WþαÞ; ð11Þ

in the submanifold kαk ¼ kβk ¼ 1. The order parameters
W� become

Wþ ¼
Z

∞

−∞
dv

Z
∞

−∞
dωgvðvÞgωðωÞα�ðv;ω; tÞ; ð12Þ

W− ¼
Z

∞

−∞
dv

Z
∞

−∞
dωgvðvÞgωðωÞβ�ðv;ω; tÞ: ð13Þ

Equations (10)–(13) comprise a set of self-consistent
equations for W� in the N → ∞ limit.
Analysis of async.—Here, swarmalators are uniformly

distributed in x and θ which corresponds to the trivial
fixed point W� ¼ 0. Equations (10) and (11) give α ¼
exp ½iðvþ ωÞt�, β ¼ exp ½iðv − ωÞt�. Linearizing around
f ¼ ð2πÞ−2 [52] reveals the state loses stability at

Jþ;c ¼ 2ðΔv þ ΔωÞ: ð14Þ

Figure 2(a) plots this condition in the ðJ; KÞ plane.
Analysis of phase waves.—We analyze the ðS; 0Þ phase

wave state. We look for a solution of Eqs. (10)–(13) that at
large time t satisfies _α ¼ 0, _β ≠ 0, Wþ ≠ 0, and W− ¼ 0.
We find

αðv;ωÞ ¼ H

�
vþ ω

SþJþ

�
; ð15Þ

βðv;ω; tÞ ¼ exp

�
−i

JK
Jþ

�
v
J
−
ω

K

�
t

�
; ð16Þ

where we introduced a function

HðxÞ≡ −ixþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
: ð17Þ

Equation (16) gives W− ¼ 0 as desired. Equation (15)
implies

Sþ ¼
Z

∞

−∞
dv

Z
∞

−∞
dωgvðvÞgωðωÞH�

�
vþ ω

SþJþ

�
; ð18Þ

where we assume Φþ ¼ 0 without loss of generality due to
the rotational symmetry. To compute this integral, first
observe that if v and ω are drawn from the Lorentzian
distribution, their sum vþ ω is drawn from a Lorentzian
with spread Δv þ Δω. Then integrate over vþ ω using
the residue theorem. There is a residue iðΔv þ ΔωÞ in the
upper half complex plane where H�ðxÞ is analytic so
Sþ ¼ H�½iðΔv þ ΔωÞ=SþJþ�. Thus,

Sþ ¼
�
1 −

2ðΔv þ ΔωÞ
Jþ

�
1=2

: ð19Þ

We see Sþ bifurcates from 0 at

Jþ;c ¼
1

2
ðJ þ KÞ ¼ 2ðΔv þ ΔωÞ ð20Þ

consistent with Eq. (14) as the system transitions from the
async to the phase wave state [Fig. 3(a)], see the stability
analysis in [52]. The phase wave ð0; SÞ is a solution of
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Eqs. (10)–(13) that at large time t satisfies _α ≠ 0, _β ¼ 0,
Wþ ¼ 0, W− ≠ 0.
Mixed state.—Here, ðS1; S2Þ, where S1 ≠ S2. This state is

intermediate between the phase wave and sync states, see
Fig. 2(a) and compare Figs. 2(d) and 2(e). The state with
either S1 > S2 or S1 < S2 bifurcates from ðS; 0Þ or ð0; SÞ,
respectively. The corresponding order parameters and
phase boundaries in ðJ; KÞ plane are shown in Figs. 2(a)
and 3(c) and discussed in [52]. The special property of the
mixed state is that although S1 and S2 are time independent,
both the functions α and β are time dependent in contrast to
time independent equations (15) and (21) (see below) for
the phase wave and the sync states. Analytical properties of
α and β near the boundary with the phase wave are
discussed in Sec. IV, see Ref. [52].
Analysis of sync.—Here, ðSþ; S−Þ ¼ ðS; SÞ so we seek

fixed points of Eqs. (10) and (11) with W� ≠ 0. We find

αðv;ωÞ ¼H

�
v

JSþ
þ ω

KSþ

�
; βðv;ωÞ ¼H

�
v

JS−
−

ω

KS−

�
:

ð21Þ
We solve the integrals for W� using the residue theorem.
This time the natural frequencies combine as v=J � ω=K
which are Lorentzian distributed with spread Δ̃≡
Δv=J þ Δω=K. Equations (12) and (13) reduce to S� ¼
H�ðiΔ̃=S�Þ and so

S� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2Δ̃

p
; ð22Þ

which bifurcates from 0 at

2Δ̃ ¼ 2

�
Δv

J
þ Δω

K

�
¼ 1: ð23Þ

Figure 2(a) shows this critical curve in the ðJ;KÞ plane.
Notice it intersects with the critical curve of the phase wave
at a point J ¼ K ¼ 2ðΔv þ ΔωÞ. This means the sync state
may bifurcate from the async state directly, without passing
through the phase [Fig. 3(b)], which occurs when J ¼ K. In
this special case, Eqs. (4) and (5) for _ζ; _η decouple and
W�ðtÞmay be solved for all t (see Ref. [52]). In the generic
case J ≠ K, however, the sync state bifurcates from the
intermediate mixed state [Fig. 3(c)]. As is evident from
Fig. 2(a), the point J ¼ K ¼ 2ðΔv þ ΔωÞ is a tetracritical
point, at which four phases (async, sync, phase wave, and
mixed) meet. The appearance of the sync state can be
considered as the separation of dense clusters of locked
swarmalators with time-independent coordinates and dilute
drifting swarmalators in ðx; θÞ space. This phenomenon is
qualitatively similar to motility induced phase separation
observed in self-propelled particles and various micro-
organisms, see for example [58].
To back up these numerical tests of our results we

performed four additional analyses. First, we rederive
S� using a microscopic, swarmalator-level, approach
(as opposed to the macroscopic, density-level approach
the OA ansatz is based on). In the phase wave ðS; 0Þ,
swarmalators are partially locked in _ζi ¼ 0 and drift in
_ηi ≠ 0. Applying these conditions to Eqs. (4) and (5) yields

sinðζi −ΦþÞ ¼
vi þ ωi

SþJþ
; ð24Þ

ηiðtÞ ¼ ηið0Þ þ
1

Jþ
ðKvi − JωiÞt; ð25Þ

where −SþJþ ≤ vi þ ωi ≤ SþJþ and ηið0Þ is an initial
phase. Following Kuramoto [2], the order parameter must
be self-consistent: Sþ ≔ N−1 P

j e
iζj . Plugging Eq. (24)

indeed gives the expression Eq. (19) for Sþ in agreement
with the generalized OA ansatz [similarly, Eq. (25) implies
S− ¼ 0 as expected]. We also attempted a microscopic
analysis of the sync state but the calculations were beyond
the scope of this Letter [52]. Second, we checked the
identical swarmalator limit which has been analyzed
previously (without an OA ansatz) [50]. As Δv;Δω → 0,
0, the critical curve for the phase wave Eq. (20) approaches
J þ K ¼ 0, while that of the sync state Eq. (23) approaches
J; K > 0, 0 in agreement with [50]. Figure 2(b) plots these
in ðJ; KÞ space to allow a visual comparison. Third, we
calculated the stability of async using the OA equations
[Eqs. (10) and (11)] and found it agreed with Eq. (14) [52]
(derived by perturbing the continuity equation [52]).
Fourth, we used the OA equations to derive Ssync and its

FIG. 3. Order parameters S� versus coupling K. (a) Async—
phasewave transition [region II in Fig. 2(a) at J ¼ 1]. (b) Async—
sync transition [along the diagonal line in the region IV in Fig. 2(a)
at J ¼ K]. (c) Async (I), phasewave (II), mixed (III), and sync (IV)
states at J ¼ 9. Black and blue solid lines correspond to theoretical
expressions Eqs. (19) and (22), respectively. Black dashed line
corresponds to the susceptibility peak, see Ref. [52]. Green open
circles and red crosses represent simulation data for the same
parameters as in Fig. 2.
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critical coupling Kc for a simpler distribution gωðvÞðxÞ ¼
ð1=2Þδðx − ΔÞ þ ð1=2Þδðxþ ΔÞ which agreed with simu-
lation perfectly [52]. This completes our analysis.
“Hidden” phase transition.—We close by pointing out a

curious feature of the swarmalator model. At J ¼ 0, the
positions evolves at constant speed _xi ¼ vi ⇒ xi ¼ vit
which means the phases obey

_θi ¼ ωi þ
K
N

XN
j¼1

sinðθj − θiÞ cos½ðvj − viÞt�: ð26Þ

One can think of this equation as a model for a group
of oscillators with random, time-dependent couplings. In
turn, the results presented in this Letter reveal a phase
transition hidden in the time dependence of θi, which
extends to the case where J ¼ 0. This hidden phase
transition causes incoherent oscillators to become phase
locked at θi ¼ −vitþ ζi=2 [the ðS; 0Þ state] or θi ¼ vit −
ηi=2 [the ð0; SÞ], where ζi ðηiÞ is the phase from Eq. (26).
Curiously, if we reinterpret vit as a heterogeneous field
acting on the couplings, we see that the oscillators have
become tuned to the field frequency vi. To the best of our
knowledge, this is a novel result and may provide a useful
means for tuning a population of oscillators to a prescribed
set of frequencies in an experimental setting.
To conclude, we have presented a simple, solvable model

of swarmalators. The model has a rich phase diagram with a
tetracritical point at which four phases meet.The model
also captures the behavior of real-world swarmalators and
active matter such as groups of sperm [59] and vinegar eels
[60,61] (which swarm in quasi-1D rings), and the rotational
component of 2D, real-world swarmalators such as forced
colloids [11,12,14]. Our simulations showed that the cutoff
in the spatial interaction kernel does not qualitatively
change the dynamics of swarmalators in comparison to
global coupling [52]. Thus, the exact solution of the
swarmalator model with all-to-all coupling should have
applicability to a variety of situations with local coupling.
We hope our Letter will be useful to the active matter
community, as it provides a new toy model, and interesting
to the sync community, as the first OA ansatz for oscillators
which are mobile (mobile in a 1D periodic domain,
at least).
Future Letter could study the stability of the phase wave,

mixed, and sync states (note we derived criteria for
their existence only). Incorporating delayed interactions
or external forcing—which are analyzable with our OA
ansatz—would also be interesting. Finally, our model and
predictions could be experimentally tested in circularly
confined colloids or robotic swarms [36,37].
The code used in the simulations for this Letter is openly

available from the Github repository [62].
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