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Amorphous solids such as coffee foam, toothpaste, or mayonnaise display a transient creep flow when a
stress Σ is suddenly imposed. The associated strain rate is commonly found to decay in time as _γ ∼ t−ν,
followed either by arrest or by a sudden fluidization. Various empirical laws have been suggested for the
creep exponent ν and fluidization time τf in experimental and numerical studies. Here, we postulate that
plastic flow is governed by the difference between Σ and the transient yield stress ΣtðγÞ that characterizes
the stability of configurations visited by the system at strain γ. Assuming the analyticity of ΣtðγÞ allows us
to predict ν and asymptotic behaviors of τf in terms of properties of stationary flows. We test successfully
our predictions using elastoplastic models and published experimental results.
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Amorphous materials including atomic glasses, colloidal
suspensions, dense emulsions, or foams are important in
industry and engineering [1,2]. From a fundamental view-
point, their properties are mesmerizing: (i) under quasistatic
loading they can display an avalanche-type response [3] near
their yield stress Σc. (ii) For Σ > Σc, they can present a
singular flow curve, corresponding to the so-called Herschel-
Bulkley law [4] where the strain rate follows _γ ≈ cðΣ − ΣcÞβ
with c a material-specific constant and β > 1, see, e.g., [5].
We restrict ourselves to materials with such flow curves.
(iii) Depending on the system preparation the transient
response to an applied strain can be smooth, or discontinuous
if a narrow shear band appears [6–8]. Here, we focus on
(iv) creep flows, another transient phenomenon observed
when a constant stressΣ is imposed at time t ¼ 0 on an initial
state at zero applied stress. Transiently, a flow rate _γ ∼ t−ν is
observed. At low Σ, flow eventually arrests. However, at
sufficiently high Σ, _γðtÞ can be nonmonotonic: a sudden
fluidizationmay occur at some time τf. Commonly, the creep
flow exponent ν is measured preceding the fluidization and
reported in the range 0.34− 1.2 in experiments [9–14] and
particle simulations [15–17]. By contrast, the creep flow
arrest is much less studied [12], and τf is often reported using
phenomenological fitting functions, including (a) a power law
τf ∼ ðΣ − Σ0Þ−b (with both b and Σ0 fitting parameters) in

experiments on carbopolmicrogel [11], protein gels [14], and
colloidal glasses [12]; and particle simulations [15]. (b) An
exponential ln τf ∼ −Σ in experiments on carbon black gels
[13,18] and silica gels [19].
From a computational viewpoint, studies of creep flow in

athermal elastoplastic models [20] report (a) τf ∼ ðΣ − Σ0Þ−b
with a preparation-dependent exponent b ≃ 1.7 − 2.2 in a
two-dimensional model [21] and b ≃ 1.3 − 2.2 in a mean-
field model [22]. At finite temperature, both models are
consistentwith (b) ln τf ∼ −Σ [23]. The creep exponent νwas
observed to be unity [24] or to be preparation dependent [23].
Theoretical approaches supporting particular fitting choices
are mostly lacking. A notable exception is the continuum
model of shear banding [25] that proposes b ¼ 9β=4.
Here, we introduce a theoretical framework that predicts

the exponent ν, the asymptotic properties of τf, and their
dependence on temperature. We focus on long time scales
and assume that flow is then essentially plastic, thus
neglecting the elastic contribution to the strain. We expect
this assumption to hold in the materials we consider here,
coined “simple yield stress fluids” [26] such as foams,
emulsions, or repulsive colloidal glasses. It does not hold in
materials with a very slow linear viscoelastic response that
can contribute to creep [14,27,28]. We also exclude loosely
connected colloidal gels, which can display nonmonotonic
flow curves and sudden transition between distinct struc-
tures [29,30]. Our central hypotheses are that the plastic
flow is governed by Σ − ΣtðγÞ, where ΣtðγÞ is a smooth
function of plastic strain γ that characterizes the stability of
configurations visited by the system at a strain γ. These
assumptions lead to a comprehensive description of creep
flows in terms of the Herschel-Bulkley exponent β, as is
summarized in Table I for athermal and Table II for thermal
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systems. We confirm our predictions in two-dimensional
and mean field elastoplastic models. We find that our
athermal predictions are also in good agreement with
experiments on carbopol microgel and colloidal glasses,
while our thermal predictions are consistent with experi-
ments on kaolin suspensions and ketchup.
Theory.—The transient response of amorphous materials

strongly depends on preparation. For example, the quasi-
static stress vs plastic strain curve can increase monoton-
ically or overshoot [1,6,31] as the stability of the system
preparation increases. During quasistatic loading the sys-
tem is at the stress which the material can withhold without
flowing at plastic strain γ. Here, we define the transient
yield stress Σtðγ;Σ; TÞ that characterizes the stability of the
material for nonquasistatic loading. At zero temperature T,
its definition is

_γ ≡ c½Σ − Σtðγ;Σ; T ¼ 0Þ�β; ð1Þ

To lighten notations, when possible we omit the depend-
ence of Σt on Σ and T and simply write it ΣtðγÞ. From
Eq. (1), it follows that the flow arrests at the finite strain γa
for which ΣtðγaÞ ¼ Σ, while in the steady state
Σtðγ → ∞Þ ¼ Σc. Note that ΣtðγÞ so defined can be
measured by observing the creep flow dynamics and
inverting Eq. (1), as performed below. Our central result
is that simply assuming that ΣtðγÞ is a smooth function is
sufficient to determine the creep flow exponent ν and the
fluidization time τf, see Fig. 1(b). ΣtðγÞ in general depends
on the preparation of the system, similar to the quasistatic
stress vs strain curve. Here, we focus on the creep flow in
systems where ΣtðγÞ overshoots to a maximal value ΣM
before reaching its steady state value Σc, as illustrated in
Fig. 1(a). The case where ΣtðγÞ does not overshoot, and
instead grows monotonically can be treated with the same

arguments. As shown in Supplemental Material (SM) [32],
the strain rate monotonically decreases to the steady
state value.
At low imposed stresses Σ < ΣM, the flow arrests at a

finite γa [see Fig. 1(a)] where ΣtðγaÞ ¼ Σ. By expanding
Σt ≃ ΣtðγaÞ þ ∂γΣtðγaÞðγ − γaÞ and using Eq. (1), one
obtains _γ ∼ ðγa − γÞβ implying _γ ∼ t−β=ðβ−1Þ. Instead, for
Σ ¼ ΣM ¼ maxγΣtðγÞ ¼ ΣtðγMÞ, a second order expansion
implies that ΣtðγÞ ≈ ΣM þ ∂

2
γΣtðγMÞðγ − γMÞ2=2. Using

again Eq. (1) one gets _γ ∼ ðγM − γÞ2β and therefore
_γ ∼ t−2β=ð2β−1Þ. Finally, for Σ > ΣM the flow transiently
slows down, reaching its minimum at γM. In the vicinity of
γM, one has _γ ∼ ½Σ − ΣM þ ∂

2
γΣtðγMÞðγM − γÞ2=2�β.

The fluidization time τf is the time at which γM is reached.
It is dominated by the time spent approaching γM
in an interval of strain of order Δγ ∼ ðΣ − ΣMÞ1=2, at a
pace _γ ∼ ðΣ − ΣMÞβ, leading to a time τf ∼ Δγ=_γ∼
ðΣ − ΣMÞ1=2−β. We summarize the athermal creep flow
results in Table I.
For a small finite temperature T [37], Σtðγ;Σ; TÞ can

now be defined from the finite temperature stationary
flow curves. Our qualitative results are robust to
details of the functional form chosen for these curves.
Quantitatively, theoretical arguments and elasto-
plastic models [38–41] support that the steady state flow
follows a scaling relation: _γ ¼ Tψf½ðΣ − ΣcÞ=T1=α�. Here,
ψ ¼ β=α, where the parameter α describes the microscopic
potential [42].
The scaling function f must be such that _γ converges to

_γ ∼ ðΣ − ΣcÞβ (the Herschel-Bulkley law) in the limit
T → 0, i.e., fðxÞ ∼ xβ for x → ∞. For negative arguments,
f describes thermal activation so that fðxÞ ∼ expð−C0xαÞ
for x → −∞, where C0 > 0.

TABLE I. Main results for athermal creep flow, illustrated in
Fig. 1(a). The corresponding creep flow scenarios are illustrated
in Fig. 1(b), and corresponding numerical tests are shown in
Fig. 2.

Σ < ΣM ν ¼ β=ðβ − 1Þ
Σ ¼ ΣM ν ¼ 2β=ð2β − 1Þ
Σ > ΣM τf ∼ ðΣ − ΣMÞð1=2Þ−β

TABLE II. Main results for thermal creep flow. The corre-
sponding numerical tests are shown in Fig. 3.

Athermal to thermal
transition width

δγ ∼ T1=α

Athermal to thermal
transition time

τa ∼ Tð1−βÞ=α

Thermal creep flow ν ¼ 1
Fluidization time τf ∼ ½T=ðΣM − ΣÞα−1�1=2−βecT ½ðΣM−ΣÞα=T�

(a) (b)

(c) (d)

FIG. 1. Left: sketch of Σtðγ;Σ; TÞ for (a) T ¼ 0 and (c) T > 0.
Arrows indicate different applied stresses Σ that lead to creep
flow scenarios discussed in the text. Right: the corresponding
sketch of the creep flow, respectively in (b) and (d). γaðΣÞ is
defined by Σ ¼ Σtðγa;Σ; TÞ and γM ¼ γaðΣMÞ.
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We thus define the transient yield stress at finite T as

_γ ≡ Tψf

�
Σ − Σtðγ;Σ; TÞ

T1=α

�
: ð2Þ

Here, we discuss systems where ΣtðγÞ overshoots, as
illustrated in Figs. 1(c) and 1(d), see SM [32] for the
monotonic case. Initially at small strains thermal fluctua-
tions are negligible and the creep flow exponent follows the
athermal prediction _γ ∼ t−β=ðβ−1Þ. This regime is valid until
a plastic strain γa for which Σ ≃ ΣtðγaÞ, where Eq. (2)
implies that the flow rate follows _γ ∼ Tψ . Comparing these
two expressions, the crossover time where thermal activa-
tion starts to play a role follows τa ∼ Tð1−βÞ=α. This cross-
over occurs on a strain increment δγ [see Fig. 1(c)], which
corresponds to the argument of f in Eq. (2) becoming
negative and Oð1Þ. Expanding this argument using
Σ − ΣtðγÞ ∼ γa − γ leads to δγ ∼ T1=α. Beyond the cross-
over γ − γa ≫ δγ, flow is dominated by thermal activation.
This corresponds to the exponential behavior of fðxÞ for
large negative arguments. It is then straightforward (see
SM [32]) to obtain from Eq. (2) and the linearization
Σ − ΣtðγÞ ∼ γa − γ that the strain grows logarithmically in
time, implying that _γ ∼ t−1 at long times. Finally, for γ >
γM the flow rate rises and fluidization occurs. In contrast to
athermal systems, fluidization also occurs for Σ < ΣM. We
can estimate the fluidization time in the limit of small
temperatures, as the time spent in the vicinity of γM. For
Σ < ΣM, expanding ΣtðγÞ around γM in Eq. (2) and using
the scaling function form we derived previously [41], we
find τf ∼ ½T=ðΣM − ΣÞα−1�1=2−β exp½C0ðΣM − ΣÞα=T�. For
Σ > ΣM the flow is predominantly athermal, except for
ðΣ − ΣMÞα ≤ T where _γ ∼ Tψ for strains near γM on an
interval that scales as Δγ ¼ γM − γ ∼ T1=ð2αÞ, leading to a
fluidization time τf ∼ Δγ=_γ ∼ Tð1=2−βÞ=α.
Numerical simulations.—To test the proposed creep

exponents we simulate creep flow using a two-dimensional
elastoplastic model [41] (see SM [32]), whereby we benefit
from previously measured exponent β ¼ 1.52 [5] and
scaling function f [41].
To estimate the athermal transient yield stress function

Σtðγ;Σ; T ¼ 0Þ, we measure _γðtÞ at a tiny temperature
T ¼ 0.002 and then numerically invert Eq. (2) using the
previously measured f [41], as shown in Fig. 2(a). We use a
tiny but finite temperature to probe Σt beyond the strain γa
at which athermal creep would arrest. We find that Σt
changes with Σ, but this dependence is weak. More
importantly, our observations are consistent with our
smoothness assumption. For comparison, we show the
quasistatic stress vs plastic strain curve in the same system,
which is clearly different from ΣtðγÞ.
We simulate the athermal creep flow at stresses Σ ≤ ΣM,

see Fig. 2(b). The measured creep flow dynamics is
consistent with predictions summarized in Table I. To

further test our predictions, we use a mean-field version
of elastoplastic model [43], which corresponds to a version
of the Hébraud-Lequeux model [44] where β ¼ 2. We
again find that creep flow dynamics is consistent with our
predictions, see Fig. 2(c).
Finally, for imposed stresses Σ > ΣM we measure the

fluidization times τf as a function of the imposed stress Σ in
both models, as shown in Fig. 2(d). Although the range of
data is less than a decade, the changes in the asymptotic
behavior of τf are consistent with our predictions, for both
values of β.
We next turn to thermal systems. We first study the

transition from the athermal to the thermal creep regime,
sketched in Figs. 1(c) and 1(d). In Fig. 3(a) we show creep
curves for α ¼ 3=2 at Σ ¼ 0.45 in a system with an
overshoot in ΣtðγÞ. As the temperature is decreased toward
T ¼ 0, the transition between the athermal regime
(_γ ∼ t−β=ðβ−1Þ) and thermal creep (_γ ∼ t−1) is indeed
observed, and occurs at later times following Tð1−βÞ=α, as
confirmed in Fig. 3(b).
Finally, we measure fluidization times of thermal

creep flow at different temperatures and imposed stresses
both for α ¼ 1 [Fig. 3(c)] and α ¼ 3=2 [Fig. 3(d)].
Following [10], we define the fluidization time as the time
corresponding to the minimum of the flow rate. We find an
excellent collapse of the data, confirming our predic-
tion τf ∼ ½T=ðΣM − ΣÞα−1�1=2−β expf½C0ðΣM − ΣÞα=T�g.
Note that our theory predicts asymptotic fluidization and

creep exponents in the limit of vanishing flow. Therefore,

(a) (b)

(c) (d)

FIG. 2. Creep flow in athermal elastoplastic models. (a) Tran-
sient yield stress curves ΣtðγÞ at stresses indicated by the dashed
lines, at T ¼ 0.002. For reference, the quasistatic stress vs plastic
strain curve is shown in black. (b),(c) Median values of creep flow
at two imposed stresses: blue circles (Σ < ΣM), green triangles
(Σ ¼ ΣM). Black lines indicate the corresponding predicted
power laws, see Table I. (d) Fluidization times in 2d (yellow
circles) and mean field (cyan squares). In all plots shaded regions
correspond to the 25th–75th percentile range.
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the effective values extracted from the whole range of
measured fluidization times will in general differ from our
measurements. This could account for the differences to the
preparation dependent effective exponents reported in the
extensive numerical simulations of athermal creep in
elastoplastic models [21].
Experimental tests.—We compare our results the exper-

imental data from carbopol microgel creep experiments
[11], reproduced in Fig. 4(a). At imposed stress values just
below the fluidization stress, the creep exponent is con-
sistent with our prediction ν ¼ 2β=ð2β − 1Þ, where we use
1=β ¼ 0.53 measured by [11]. We then extract the fluid-
ization times from the minima of the flow curves both in
this experiment and in the colloidal glass experiment of
[12]. As shown in Fig. 4(b), it is consistent with our
athermal prediction [45] τf ∼ ðΣ − ΣMÞ1=2−β, as indicated

by the black line, where the value of ΣM is estimated as the
highest reported stress value for which no fluidization is
observed, and we use β ¼ 1.89 from [11].
Note that another definition of fluidization time τ�f,

corresponding to the inflection point of the creep curve,
was used in [11,13,18]. τ�f is associated with the emergence
of shear banding [11,25]. Our theory for fluidization, which
assumes a homogeneous flow and does not capture shear
banding, may thus apply as long τf ≤ τ�f. This inequality is
fulfilled in the cited examples, and also in theoretical
treatment supporting that the flow remains homogeneous
before τf [46].
Concerning thermally activated creep flow, we predict an

exponential dependence of τf on Σ, which was indeed
reported in carbon black gels [13,18], and in numerical
simulations of thermally activated flow in elastoplastic
models [23]. Likewise, our prediction for the thermal creep
flow regime _γ ∼ t−1 is found in numerical simulations of
thermally activated flow [24]. This behavior is also found in
kaolin suspensions [47] and ketchup [10]. However, the
validity of our approach to these materials is less clear, as
their flow curves need not follow a Herschel-Bulkley law as
we assume. They can be instead thixotropic materials with
nonmonotonic flow curves [48], known to shear band in
stationary flows.
Discussion.—We have provided a theoretical framework

in which creep flows are controlled by the stress Σt at which
configurations visited at time t would stop flowing. Our
treatment is similar in spirit to the Landau theory of a phase
transition: assuming the analyticity of Σt enables one to
express the asymptotic behaviors of creep flows in terms of
the better understood stationary flows. Our analysis pre-
dicts a rich set of regimes, which is consistent with
observations in elastoplastic models and in experiments.
Usual mean-field approaches, both for the yielding

transition in amorphous solids [44,49] and for the depin-
ning transition [50], consider the dynamics of the distri-
bution PðxÞ, where x is a local variable indicating how
much additional shear stress is required to have a
plastic event. In such models, the rate of plastic activity
following some initial condition was computed at Σ ¼ 0
and T ¼ 0 [51,52]. These results are consistent with our
prediction for ν, supporting that our assumption of analy-
ticity is equivalent to mean-field approaches as is the case
in Landau theory.
Our assumption should thus break down when spatial

correlations are large, which occurs, in particular, if
avalanches are compact objects. It is the case for short-
range depinning phenomena if the spatial dimension
satisfies d < 4; in that case an alternative real space scaling
approach summarized in SM [32] is needed. By contrast,
we expect our analysis to hold if d ≥ 4, or in amorphous
solids since in that case avalanches are not compact: the
density of plastic events within them vanishes as the
avalanche linear extension grows [5,20].

(a) (b)

(c) (d)

FIG. 3. Creep flow in thermal 2d elastoplastic model. (a) Athe-
rmal and thermal creep regimes follow the predicted flow rate
exponents. (b) Rescaling flow rate and time collapses the crossing
point of all curves, confirming the existence of a crossover time
scale τa ∼ Tð1−βÞ=α. (c) and (d) Fluidization times τf measured
with α ¼ 1 (c) and α ¼ 3=2 (d) at different temperatures are
consistent with our prediction.

(a) (b)

FIG. 4. (a) Creep flow of carbopol microgel [11] at Σ½Pa� ¼ 35,
36, 37, 38, 40, 43, 45, 50, 55, 60 (from bottom to top). The
arresting curves are consistent with our prediction (black line).
(b) Fluidization times (see main text for measurement) of
carbopol microgel [11] (blue circles) and colloidal glass [12]
(green squares) together with our prediction.
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