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What is the final state of turbulence when the driving parameter approaches infinity? For the traditional
Rayleigh-Bénard convection, a possible ultimate scaling dependence of the heat transport (quantified by
the Nusselt number Nu) on the Rayleigh number (Ra), which can be extrapolated to arbitrarily high Ra, is
predicted by theories. The existence of the ultimate scaling has been intensively debated in the past
decades. In this Letter, we adopt a novel supergravitational thermal convection experimental setup to study
the possible transition to the ultimate regime. This system is characterized by the combined effects of
radial-dependent centrifugal force, the Earth’s gravity, and the Coriolis force. With an effective gravity up
to 100 times the Earth’s gravity, both Ra and shear Reynolds number can be boosted due to the increase of
the buoyancy driving and the additional Coriolis forces. With over a decade of Ra range, we demonstrate
the existence of ultimate regime with four direct evidences: the ultimate scaling dependence of Nu versus
Ra; the appearance of the turbulent velocity boundary layer profile; the enhanced strength of the shear
Reynolds number; and the new statistical properties of local temperature fluctuations. The present findings
will greatly improve the understanding of the flow dynamics in geophysical and astrophysical flows.
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Thermally driven turbulent flows ubiquitously occur in
meteorological [1], geophysical [2,3], and astrophysical
[4,5] flows and industrial processes [6]. A paradigm for
modeling the thermally driven turbulent flows is Rayleigh-
Bénard convection (RBC) (see Refs. [7–9] for reviews),
which is a layer of fluid confined between two horizontal
plates heated from below and cooled from above. The
direction of gravity is the same as the temperature gra-
dient. In those aforementioned natural phenomena, the
driving strength of the flow is extremely high and far beyond
the accessible regime in the lab scales. A powerful approach
for the investigation of these natural phenomena and
industrial processes using laboratory experiments is to find
the asymptotic laws that can extrapolate the laboratory
findings to the unattainable parameter regimes in the natural
and industrial systems. One example of such asymptotic
laws is the dependence of the Nusselt number Nu (dimen-
sionless convective heat flux) on the Rayleigh number Ra
(dimensionless strength of driving buoyancy) in the limit of
intense thermal forcing. In 1962, Kraichnan’s seminal work
predicted as Ra increases, thermal convection will reach an
ultimate regime with Nu ∝ Ra1=2ðln RaÞ−3=2 ∝ Raγ [10],
which yields a steeper effective scaling exponent (γ > 1=3,
and asymptotically approaches to 1=2) as compared to the
scaling exponent (γ ≲ 1=3) in the classical regime before the
transition,where the turbulent transport is limited by laminar
boundary layers (BLs).

In the past 40 years, a large number of studies attempted
to search for this ultimate scaling in high Ra regimes [11–
21]. For the reported experimental results, most NuðRaÞ
measurements are consistent below Ra ≃ 1011–1012, while
the situation at larger Ra becomes puzzling. At Ra≳ 1011,
the compensated heat transport NuRa−1=3 decreases or
levels out with Ra in some studies [11,13,14,17,19,22]
while it increases in others [12,15,16,18,20,21]. For
numerical simulations, limited by the power of super-
computers, three-dimensional direct numerical simulations
(DNS) can only reach Ra ¼ 2 × 1012 for a moderate aspect
ratio between the diameter and height of the convection cell
[23], which does not show the transition to the ultimate
regime. For both experiments and simulations, it is noto-
riously difficult to arrive at very high Ra while keeping
other parameters as constants. Recently, signatures of the
transition to ultimate regime have been reported in the
experimental studies of traditional RBC [16].
In this Letter, we explore the ultimate regime of thermal

turbulence in a supergravitational thermal convection
system through rapid rotation. We adopt a supergravita-
tional system (Annular Centrifugal RBC, ACRBC)
[sketched in Fig. 1(a)], which is a cylindrical annulus with
cooled inner and heated outer walls under a rapid solid-
body rotation [24–27]. The direction of centrifugal force
(effective gravity) is the same as the temperature gradient,
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which is consistent with classical RBC. The details about
the experiments and DNS can be found in the Supplemental
Material, Secs. I–III [28]. A similar system has been used to
study baroclinic waves, zonal flow, and convection in the
low Ra regime [29–33,51–56]. Here, we exploit the rapidly
rotating system to study high Ra thermal turbulence.
The flow dynamics in ACRBC are determined by the

following control parameters, namely the Rayleigh number

Ra ¼ 1

2
ω2ðRo þ RiÞβΔL3=ðνκÞ; ð1Þ

the inverse Rossby number

Ro−1 ¼ 2½βΔðRo þ RiÞ=ð2LÞ�−1=2; ð2Þ

the Prandtl number Pr ¼ ν=κ, and radius and aspect ratios
η ¼ Ri=Ro, Γ⊥ ¼ H=L, and Γk ¼ 2πr=L. Here β,Δ, ν, and
κ are the thermal expansion coefficient, the temperature
difference between hot and cold walls, the kinematic visco-
sity, and the thermal diffusivity of the working fluid, res-
pectively. The angular velocity ω is canceled out and does
not appear in the definition of Ro−1. The key response para-
meter is Nusselt number Nu ¼ J=Jcon ¼ −JRo ln η=ðαΔÞ,
where J, Jcon, and α denote the total heat flux, the heat flux
through pure thermal conduction, and thermal conductivity,
respectively.
According to the definition of Ra, we can push Ra to

higher values through increasing ω of the system and
increasing β=ðνκÞ of the working fluid. The range of
rotation rate is from 211 rpm to 705 rpm, corresponding
to an effective gravity [8.9 g, 100 g]. The Earth’s gravity
does not play an important role in the current parameter
regime (see Ref. [24] for detailed discussion). Next to the
degassed water at around 40 °C, we use Novec 7200 (3M
Inc. Engineered Fluid) at around 25 °C as the working fluid,
which has roughly 14.4 times of β=ðνκÞ as compared with
water. The properties of the Novec 7200 are listed in the
Supplemental Material, Sec. III [28].
The explored parameter space is shown in Figs. 1(b) and

1(c). We have performed 62 experiments and 44 numerical
simulations in total. The details about the experimental and
numerical cases are documented in the Supplemental
Material, Sec. XI [28]. Combining experiments and simu-
lations, the range of Ra explored here extends almost six
and a half decades, i.e., from 106 to 3.7 × 1012. In experi-
ments, the Earth’s gravity, lids, and inhomogeneity of
centrifugal force have been studied in Ref. [24], which
shows that their effects on Nu are negligible. In addition,
the non-Oberbeck-Boussinesq (NOB) effects [57] are
negligible for all of our data, and we discuss the NOB
effects in the Supplemental Material, Sec. X [28].
Figure 2(a) shows the obtained Nu as a function of Ra

from experiments and numerical simulations. For most
experiments, the measurement lasts at least 4 hours after the

system has reached a statistically stationary state (for the
detailed measurements, see the Supplemental Material,
Sec. III) [28]. Since two kinds of working fluids are used
in the experiments, the difference in Pr should be taken into
account. A previous study suggested that Nu has a weak
dependence on Pr in this Pr range [4, 10.7] and the scaling
law can be written as Nu ∼ Pr−0.03 [50,58,59]; therefore, all
Nu data, including the data at Pr≈10.4 (Novec 7200) and
the data at Pr≈4.3 (water), have been corrected with
Nu=ðPr =4.3Þ−0.03 to coincide with the data for water at
40 °C. It is evident that the experiments for Novec 7200 and
water and numerical simulations are all in an excellent
agreement. In the range of Ro−1 from 9 to 58, the datasets
show a consistent dependence of Nu on Ra. To better
demonstrate the local scaling exponent, Fig. 2(b) shows the
same plot as Fig. 2(a) but in a compensated way. In
ACRBC, an effective scaling of Nu ∝ Ra0.27 is observed
when Ra < 1010, and the scaling exponent is close to the
value found in two-dimensional (2D) RBC [44,60] where
the viscous BLs are laminar. Note, in ACRBC, the flow has
a quasi-2D structure at the current Ro range (Ro−1⩾9) for
Nu measurements [24]. The findings of classical regime in
ACRBC give independent support for the previous results
on RBC [15,61] and Taylor-Couette turbulence [62,63].
Once the Ra increases beyond 1010, the system enters a

transition regime with local effective scaling exponent γ of
Nu ∝ Raγ increasing from γ ¼ 0.27 to γ > 1=3 as evident
from the arc bottom in the compensated plot. Surprisingly,
following the transition regime, there is a steep scaling regime
with a local scaling exponent γ ¼ 0.40� 0.01, which spans
more than one decade from Ra ∼ 1011 to Ra ¼ 3.7 × 1012.
This steep scaling exponent is consistent with the prediction
for NuðRaÞ of the Grossmann-Lohse theory in the ultimate
regime with logarithmic corrections [66]. We also perform a
direct fitting in the range of 1011 ≤ Ra ≤ 4 × 1012 according
to the Kraichnan’s theory Nu ∼ Ra1=2ðln RaÞ−3=2, and the
fitting result is acceptable basically (see Fig. 15 of the
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FIG. 1. Experimental configuration and explored parameter
space. (a) Schematical diagram of the system, which defines the
coordinate frame and geometric parameters. (b) Phase diagrams
of Ro−1 and Ra, where solid symbols and open symbols denote
the experimental data and DNS data, respectively. (c) Phase
diagrams but in the Pr-Ra plane.
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Supplemental Material, Sec. V [28]). Here, we should note
that the maximum Ra (Ra ¼ 1011) for the present simulation
is not sufficient to study the ultimate regime. (The limits of the
simulation are discussed in the Supplemental Material,
Secs. VII [28] and XI [28]).
What is the reason for the enhanced Nu scaling? Could

this be due to the transition of the flow structure from a two-
dimensional flow state to a three-dimensional state, which
results in a locally higher Nu? The minimum Ro−1 ¼ 9
corresponds to the temperature differenceΔ ¼ 20 K, which
suggests Coriolis force still dominates the flow dynamics. In
addition, the flow transition from two-dimensional to three-
dimensional is not likely to occur as this process is
complicated [24], while a scaling law (Nu ∼ Ra0.4) is found
for different Ro−1 and Ra ∈ ½1011; 3.7 × 1012�. So the
enhancement of local scaling exponent is probably not
attributed to the change of flow state from two-dimensional
to three-dimensional. We note that there exist four pairs of
rolls in ACRBC both in the classical (Fig. 17 in the
Supplemental Material) and ultimate (Fig. 16 in the
SupplementalMaterial) regime, indicating that the transition

does not result from the change of large-scale 2D pattern
[67,68]. Thus we consider the physical reason might be that
the transition Ra to the ultimate regime in ACRBC is lower
than that in the traditional RBC (to be discussed below).
He et al. [69–71] found that the wall-normal profiles of

the temperature variance in the ultimate regime (logarith-
mic profile) are different from that in the classical regime
(power-law profile). Here, we explore the normalized root-
mean-square temperature fluctuation θrms in the bulk region
as a function of Ra [Fig. 2(c)]. It is evident that there is a
transition in the variation trend of θrms vs. Ra at exactly the
critical Rayleigh number Rat ≃ 1011 where the Nu scal-
ing changes. The obtained scaling θrms ∼ Ra−0.13�0.02 for
Ra < Rat is consistent with previous studies for the
classical RBC [11,13,72], while it gives a notably steeper
scaling with θrms ∼ Ra−0.36�0.05 when Ra > Rat. The bulk
temperature fluctuation is suggested to be dominated by
contributions of detached plumes from the BLs [11]. This
change of the scaling exponent of θrms versus Ra in the
ultimate regime indicates the significant change in the
properties of the BL where the plumes are emitted.
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FIG. 2. Global heat transport, temperature fluctuation, and shear Reynolds number. (a) Nusselt number Nu as a function of Rayleigh
number Ra; (b) the compensated plots of Nu=Ra1=3 versus Ra; (c) the normalized rms of temperature fluctuation θrms in the bulk region
versus Ra; (d) the shear Reynolds number Res as a function of Ra. In panel (a), the solid lines are the best fitting of the experimental and
DNS data in ACRBC at two different regimes. To eliminate the weak influence of Pr difference, Nusselt numbers are corrected with
Nu=ðPr =4.3Þ−0.03 [50,58,59]. In panel (b), the inset shows the enlarged part near the transition Ra. In panel (d), the extrapolations of the
fitting of DNS results for water (Ro−1 ¼ 18 and 58) and Novec (Ro−1 ¼ 16) indicate that the BL becomes turbulent (Res ¼ 420, dashed
line) at Ra ≃ 1011. Shear Reynolds numbers from experiments [64] and from DNS [65] in classical RBC system are also plotted for
comparison.
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The next key question is why is the transition Rayleigh
number (Rat ∼ 1011) 3 orders of magnitude lower than that
in the traditional RBC system [16] (Rat ∼ 1014)?
The key ingredient of the transition from classical regime

to ultimate regime is the change of BL properties, i.e., the
transition from laminar BL to a turbulent one [10,66,73].
The properties of BL critically depend on the shear
Reynolds number. A typical value for the onset of turbu-
lence is Recrits ≈ 420 [74]. We now analyze Res as a function
of Ra in the current system and compare it to that in the
classical RBC system. It is difficult to directly measure
the shear Reynolds number from the experiments due to the
rapid rotation and very small scale of the BL. Fortunately,
we can evaluate Res using the DNS data. Figure 2(d) shows
the calculated shear Reynolds number, Res ¼ Uλu=ν,
based on the DNS results; here U is the maximum of
temporally and spatially averaged azimuthal velocity, and
λu is the viscous BL thickness estimated with the com-
monly used “slope method” [75]. As shown in Fig. 2(d), the
shear Reynolds number monotonously increases with Ra
with an effective scaling around Res ∼ Ra0.41�0.01 for Pr ¼
4.3 and Res ∼ Ra0.38�0.01 for Pr ¼ 10.7. These scaling
exponents are much larger in the current system than that
in the classical RBC. The magnitude of Res is also much
larger than that in the classical RBC. It already arrives at the
critical shear Reynolds number of 420 [74] at Ra ≃ 1011,
whereas the shear Reynolds number at the same Ra in the
classical system is around 80 [64,65].
To understand the steep scaling of the shear Reynolds

number in rapidly rotating ACRBC, we derive the theo-
retical scalings according to the dominated forces in both
the traditional RBC and ACRBC. Regarding the scaling of
Res with Ra, we consider the force balance of the BL flow
based on the momentum transport equation in the large-
scale circulation plane. For traditional RBC, the balance of
the inertial term u⃗ ·∇u⃗ and the viscous term ν∇2u⃗ gives the
classical scaling of the viscous BL, λu=L ∼ Re−1=2 and
Res ∼ Re1=2. Whereas in ACRBC, when rotation is rapid
enough such that the Coriolis force 2ω⃗ × u⃗ plays an
important role in the BL flow, one would expect a balance
between the Coriolis force and the viscous force, which
results in a new scaling behavior, λu=L ∼ Re−1=3 and
Res ∼ Re2=3. Together with the effective scaling law
Re ∼ Ra0.55, the new scaling gives rise to the scaling law
Res ∼ Ra0.37, close to the observation in Fig. 2(d). The
detailed derivation of Res ∼ Ra scaling can be referred to
the Supplemental Material, Sec. VIII [28]. Thus, the
dominance of Coriolis force yields the steep scaling of
Res with Ra and thus results in the early transition of
ACRBC to the ultimate regime at Rat ∼ 1011.
Figure 3 shows the temporally and spatially averaged

azimuthal velocity profiles in wall units for different Ra
from DNS. In wall units, the mean azimuthal velocity jujþ
is normalized by the friction velocity uτ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ν∂rhuijRi;Ro

q

,

and radial position rþ is normalized by the viscous length
scale δν ¼ ν=uτ [76]. The profiles of viscous sub-
layer (jujþ ¼ rþ) and Prandtl-von Kármán type BL
[jujþ ¼ ð1=κÞ lnðrþÞ þ B] [77] are also plotted for com-
parison. We show that when Ra is small, the profile behaves
as the laminar Prandtl-Blasius type. With Ra increasing, the
BL profile progressively approaches towards a Prandtl-von
Kármán (logarithmic) type. At Ra ¼ 4.7 × 1010 and 1011, a
logarithmic range is notable over one decade of rþ, which
is an essential indication of the emergence of turbulent BL.
The inverse slope κ ¼ 0.44 of the obtained logarithmic law
is quite close to the typical von Kármán constant κ ¼ 0.41
despite the different flow configurations. The parameter
B ¼ 0.10 is different from the classical Prandtl-von
Kármán value for canonical turbulent BLs over smooth
walls, which may be attributed to the finite values of Ra
reached in the DNS and the complicated interactions
between velocity shear, unstable thermal stratification,
the Coriolis force, and curvature effect in ACRBC.
Nevertheless, the fact that the velocity profile shows the
typical characteristics of a turbulent BL illustrates the onset
of turbulence in the BL flow. Unfortunately, higher Ra
simulation has not been achieved in the present study. The
above analysis gives an indication that the strong shear and
Coriolis effects induced by rapid rotation promote the BL
transition to the turbulent Prandtl-von Kármán type [25].
In summary, by means of dramatically increased driving

force and strong shear induced by rapid rotation, the
transition to the ultimate regime of thermal convection is
observed in an annular centrifugal Rayleigh-Bénard con-
vection system. We have performed extensive experiments
and numerical simulations to study the heat transport and
flow dynamics in ACRBC from classical regime to ultimate
regime. For Ra≲ 1010, NuðRaÞ is consistent with classical
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RBC as expected. For Ra≳ 1011, the measured local
effective Nu scaling exponent γ increases to 0.40, spanning
more than one decade of Ra range, which testifies to the
possible transition to ultimate regime. As a response to the
transition to ultimate regime, the dependence of temper-
ature fluctuations on Ra demonstrates different scaling
behaviors before Rat and beyond Rat. The steep Ra
dependence of the shear Reynolds number leads to a
smaller transition Rayleigh number Rat at which the shear
Reynolds number crosses Res ¼ 420. Approaching the
transition Rat, the mean velocity profile has a log layer
spanning over one decade of rþ in wall units. In view of
these above evidences, it could be concluded that transition
to the ultimate state of thermal convection has been realized
for the supergravitational thermal convection system.
While our data suggest that the transition to the ultimate
state is determined by the critical shear Reynolds number of
the velocity BL, some recent studies found Rat is also
affected by the Prandtl number [22] and aspect ratio [78,79]
in traditional RBC. Some unique effects in ACRBC like
curvature effect, the Coriolis force, the radial-dependent
supergravity, and the Earth’s gravity may also change the
onset of the transition. Hence, more studies are needed to
further verify this transition to ultimate regime of thermal
turbulence.

We thank Guenter Ahlers, Eberhard Bodenschatz, Detlef
Lohse, Roberto Verzicco, Ke-Qing Xia, Yantao Yang, Quan
Zhou, and Xiaojue Zhu for insightful discussions over the
years, and thank Gert-Wim Bruggert and Sander Huisman
for the technical assistance with the setup. This work is
financially supported by the National Natural Science
Foundation of China under Grants No. 11988102 and
No. 91852202, and Tencent Foundation through the
XPLORER PRIZE.

*These authors are equally contributed to this work.
†chaosun@tsinghua.edu.cn

[1] J. C. Wyngaard, Annu. Rev. Fluid Mech. 24, 205 (1992).
[2] W.M. Telford, Nature (London) 216, 143 (1967).
[3] M. Yoshida, Phys. Fluids 30, 096601 (2018).
[4] J. Schumacher and K. R. Sreenivasan, Rev. Mod. Phys. 92,

041001 (2020).
[5] S. M. Hanasoge, H. Hotta, and K. R. Sreenivasan, Sci. Adv.

6, eaba9639 (2020).
[6] J. M. Owen and C. A. Long, Journal of turbomachinery 137,

11 (2015).
[7] G. Ahlers, S. Grossmann, and D. Lohse, Rev. Mod. Phys.

81, 503 (2009).
[8] D. Lohse and K. Q. Xia, Annu. Rev. Fluid Mech. 42, 335

(2010).
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