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Hydrodynamic flows in compliant channels are of great interest in physiology and microfluidics. In
these situations, elastohydrodynamic coupling leads to (i) a nonlinear pressure-vs-flow-rate relation,
strongly affecting the hydraulic resistance; and (ii), because of the compliance-enabled volume storage, a
finite relaxation time under a stepwise change in pressure. This latter effect remains relatively unexplored,
even while the timescale can vary over a decade in typical situations. In this study we provide time-resolved
measurements of the relaxation dynamics for thin and soft, rectangular microfluidic channels. We describe
our data using a perturbative lubrication approximation of the Stokes equation coupled to linear elasticity,
while taking into account the effect of compliance and resistance of the entrance. The modeling allows us to
completely describe all of the experimental results. Our Letter is relevant for any microfluidic scenario
wherein a time-dependent driving is applied and provides a first step in the dynamical description of
compliant channel networks.
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To force the movement of fluid through a channel, a
pressure drop must be applied across its ends. If the
bounding walls of this simple flow domain are compliant,
a pressure-induced deformation can strongly affect the flow
as compared to the noncompliant case. This elastohydro-
dynamic (EHD) coupling is often encountered, and the
pipe-flow case is referred to as soft hydraulics [1].
Particularly, the flow modification can give a nonlinear
pressure-vs-flow-rate relation [2,3], with the flow resis-
tance changing by an order of magnitude or more. Upon a
pressure change, however, the relaxation to a new defor-
mation profile is not instantaneous. The pipe thus settles
into a new configuration over a little-investigated, pressure-
dependent timescale at the focus of this Letter.
Elastohydrodynamics was historically studied in the

context of lubrication of rough, solid contacts [4–6], often
for heavy mechanical applications and remains a key
ingredient in modern tribology [7]. Conversely, the lubri-
cation of soft materials has attracted increasing attention in
the last decades [8–12] due in part to its relevance in
biology and microtechnologies. Examples include joint
lubrication [13], eyelid wiper mechanics [14], and the
deformation of blood vessels under flow-induced pressure
[15–19]. At microscales, EHD interactions may affect
the transport of blood cells [20] because of the emergent
lift forces arising from the fluid-mediated soft-substrate
deformation [21].
Concerning soft technologies, microfluidics is of sig-

nificant interest [22]. Indeed, microchannels are typically
made with soft elastomers—e.g., polydimethylsiloxane
(PDMS)—allowing for fast prototyping, design fidelity,

and transparency [23,24]. Compliance is a key attribute for
applications such as organ on a chip [25,26] or wearable
technologies [27,28]. Targeted actuation of deformable
pipes also enables the generation and manipulation of
flows at the scale of a single channel [29–31], or in
complex networks [32] as in the plant kingdom [33].
Finally, soft components can be used as pressure-controlled
valves serving as building blocks for the logic gate
components in state-of-the-art microdevices [34–36].
While many soft-hydraulics studies focus on the steady

state, compliance is also expected to have dynamic effects.
This deformability leads to volume storage capacity [37],
schematically indicated in Fig. 1(a), which in addition to
changing the resistance of a narrow channel, implies a
characteristic response time of the system by analogy with
electronics [38,39], see Fig. 1(b). This dynamic response
was used for example to attenuate parasitic fluctuations in
syringe-pump driven flows [40], and limits the production
rate in stop-flow lithography [41].
With dynamical aspects of soft hydraulics already

finding applications, it is imperative to characterize the
temporal response of compliant microchannels. Here we
experimentally and theoretically investigate the response of
thin, soft microfluidic channels to stepwise pressure per-
turbations. We use an EHD model in the lubrication limit
applied to such devices. As previously [2,3,42], this
approach allows us to rationalize the nonlinear relation
between pressure and flow rate. Performing a perturbation
analysis and, crucially, specifying the capacitance and
resistance of the peripheral components, the pressure-
dependent relaxation dynamics of the entire experimental
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system are revealed. Our approach includes an asymptotic
analysis of the general high- and low-pressure limits, along
with the full crossover requiring complete specification of
the microsystem.
The microfluidic chips used here consisted of

rectangular channels with length L ¼ 4.0 cm between
the inlet and outlet centers of radius dc ¼ 1.0 mm (cf. the
Supplemental Material, Sec. I [43], for a full list of
symbols). The channel widths were w ¼ f200; 500;
1000; 2000g μm, with uncertainty of order a few microm-
eters, and undeformed heights h0 ¼ 5.0� 0.1 μm. The
molds were characterized with a mechanical profilometer
(Bruker Dektak). Liquid reservoirs were connected to chips
using tubing with negligible hydraulic resistance and
compliance (PEEK, IDEX 1581, ID 0.25 mm, OD
1=32,” length ca. 50 cm). Microchannels were fabricated
[23] from PDMS (Momentive RT 615 A & B) including
10 wt.% cross-linker, and cured at 170 °C for 15 min.
Flow and pressure sensors (Elveflow MFS1 and MPS2)

provided time-resolved measurements of the flow rate q
and pressure p0, relative to atmospheric pressure, at the
chip inlet. Ultrapure water (Milli-Q, 18.2 MΩ cm, viscosity
η ¼ 1.00� 0.02 mPa s) at room temperature was driven
using a pressure controller (Elveflow OB1 mk3+), with
constant pressure, pin, imposed across the input sensors and
the microchannel, see Fig. 1(a). After reaching steady state,
pin was suddenly dropped and the temporal responses qðtÞ
and p0ðtÞ recorded until a new steady state was reached; a
selection of raw data is also shown in the Supplemental
Material, Sec. II [43].
Figure 1(c) shows a set of recorded signals for pinðtÞ,

p0ðtÞ, and qðtÞ after a single pressure drop. Each signal is

shifted to its long-time, steady value, denoted pin;∞, p0;∞,
and q∞, respectively. While pin varies on a timescale of just
0.1 s, p0 and q reach new steady states after a much longer
transient time, τt, of order 10 s, depending on the initial
input pressure and channel geometry. In the following we
study the dependence of q∞ and τt, on p0;∞ and w.
In Fig. 2 is shown the scaled relation between the

dimensionless, steady-state flow rate Q∞ and pressure
P0;∞ for all of the chip geometries used here. While the
raw data are shown in the Supplemental Material, Sec. III
[43], here the pressure is normalized by the natural
scale p� ¼ E�h0=w. The semi-infinite slab case [2,44]
gives E� ≈ EY=0.5427ð1 − ν2Þ, where ν and EY are the
Poisson ratio and Young’s modulus of the material [45].
The flow rate is normalized by p�=rc, with rc ¼ 12ηL=wh30
the hydraulic resistance of an undeformed rectangular
channel [46]. Such a normalization gives a single master
curve after adjusting the data to the fitting parameters
for each chip, p� and rc. These latter follow the expected
scaling with w, as seen in the insets, the top one
with no fitting parameter on the line. The slope of the line
of the bottom inset finally gives a measurement of
EY ¼ 1.07� 0.03 MPa, consistent with the typical value
for this PDMS [47]. In contrast to rigid pipe flow [46,48],
the flow-rate response of these channels is highly nonlinear.
Indeed, when the pressure is increased, the channel’s
resistance decreases due to its dilation.
Considering the dynamics, in Fig. 3 is shown p0 − p0;∞

as a function of time in a 200 μm-wide channel for several
p0;∞; straight lines in semi-log axis indicate exponential
relaxations, allowing a precise determination of τt. The
inset of Fig. 3 thus shows the characteristic time τt as a
function of p0;∞, the relaxation time decreasing by a factor
of 5 across the accessed range of p0;∞. As deformation
allows the channel to store a pressure-dependent fluid

FIG. 2. Dimensionless steady-state flow rate Q∞ ¼ q∞rc=p�
as a function of the dimensionless steady-state inlet pressure
P0;∞ ¼ p0;∞=p� for channels of the indicated widths. The solid
line indicates the model of Eq. (5). Error bars are smaller than
symbol size; insets show fitting parameters p� and rc.

(a)

(b) (c)

FIG. 1. (a) Schematics of the microfluidic setup, including a
flow sensor, a pressure sensor and a soft channel. (b) Equivalent
electronic circuit, the flow sensor modeled as an ideal resistance
r0, the pressure sensor as a capacitance c0, and the soft channel as
a series of infinitesimal resistances and capacities as in a trans-
mission line. (c) Shifted, imposed pin, and measured p0 and q as a
function of t, with long-time values of pin;∞ ¼ 1301 mbar,
p0;∞ ¼ 862 mbar, and q∞ ¼ 1058 nL=min.
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volume, a microfluidic chip is a liquid-storage capacitor.
Furthermore, the channels exhibit resistance, so that they
are RC fluidic circuits [38,46]. To rationalize the non-
linearity of q∞ with p0;∞, as well as the dependence of
τt on p0;∞, we propose the following elastohydrodynamic
model.
Considering the one dimensional limit since h0 ≪

w ≪ L, we denote hðx; tÞ the time-dependent height of
the microchannel along the center line and along the
flow direction x and pðx; tÞ the pressure field within the
channel. In the lubrication limit, the Reynolds equation [49]
expresses conservation of volume for incompressible,
Newtonian fluids:

∂th ¼ 1

12η
∂xðh3∂xpÞ: ð1Þ

Since the former equation introduces the unknown fields
hðx; tÞ and pðx; tÞ, an elastic model is needed to connect the
height profile to the pressure field. Even though the height
profile varies in both the streamwise x and transverse y
directions, as detailed by Christov and co-workers [3,42],
we consider a local, linear elastic response of the surround-
ing material along the center line:

hðx; tÞ ¼ h0 þ
w
E� pðx; tÞ; ð2Þ

neglecting possible viscous losses in the PDMS [50].
To close the problem, we consider the boundary con-

ditions. At the outlet we simply have pðL; tÞ ¼ 0. At the
inlet, we account for the peripheral sensors. Using the
classic analogy between microfluidics and electronics
[38,39,46], the setup is akin to the circuit depicted in
Fig. 1(b). The flow sensor, composed of a thin hard glass
capillary, is modeled as an ideal resistance r0. The pressure
sensor, including deformable parts, is modeled with a

negligibly resistant capacity c0 ¼ dΩ=dp0, where Ω is
the volume of fluid stored in the sensor with pressure
playing the role of the electric potential. Flux conservation
then reads as the electrical current flowing through a
resistance and the discharge current of a capacitor on
one side, and the current at the entrance of a nonlinear
transmission line (cf. Ref. [51]) on the other:

pin − p0

r0
− c0

dp0

dt
¼

�
−
wh3

12η
∂xp

�����
x¼0

: ð3Þ

Nondimensionalizing, we take h ¼ h0H, x ¼ LX, t ¼
τcT with τc ¼ 12ηwL2=h30E

� as in Ref. [41], and pressures
take the form p ¼ p�P. Combining Eqs. (1) and (2), we
obtain the elastohydrodynamic equation for the pressure
field within the chip:

∂TP ¼ ∂X½ð1þ PÞ3∂XP�: ð4Þ

In the steady state, with a constant inlet pressure P0;∞
and null outlet pressure, a single integration of Eq. (4)
gives P∞ðXÞ¼ ½ð1−XÞðð1þP0;∞Þ4−1Þþ1�1=4−1. From
this pressure profile, we compute the steady flux Q∞ using
the square-bracketed term of Eq. (4):

Q∞ ¼ 1

4
½ð1þ P0;∞Þ4 − 1� ¼ 1

4
Π; ð5Þ

having introducedΠ ¼ ð1þ P0;∞Þ4 − 1. Equation (5) has a
similar form to the expressions given previously [3,42], and
we note the excellent agreement between this model (black
line) and the data of Fig. 2.
Addressing the time-dependent problem now, we lin-

earize Eq. (4), introducing δPðX; TÞ ¼ PðX; TÞ − P∞ðXÞ.
At OðδP1Þ and after the linear change of variables X̃ ¼
ð1 − XÞΠþ 1 and T̃ ¼ Π2T, we obtain

∂T̃δP ¼ ∂
2
X̃
½X̃3=4δP�: ð6Þ

Looking for separable solutions of Eq. (6), we propose
δPðX̃; T̃Þ ¼ AðX̃ÞBðT̃Þ. Using the boundary condition
for δP ¼ 0 at X̃ ¼ 1, we obtain BλðT̃Þ ¼ expð−λT̃Þ, con-
firming the experimentally observed exponential pressure
decay; determining the eigenvalues λ remains. For the spatial
part, we have [52] AλðX̃Þ ¼ αλX̃−1=4C4

5
ðð8 ffiffiffi

λ
p

=5ÞX̃5=8Þ,
where αλ is an integration constant. The function Cν
is a linear combination of Bessel functions, here of the
form CνðxÞ ¼ Y4

5
ð8 ffiffiffi

λ
p

=5ÞJνðxÞ − J4
5
ð8 ffiffiffi

λ
p

=5ÞYνðxÞ, satisfy-
ing pðL; tÞ ¼ 0.
For the boundary condition at the channel entrance, the

full solution P∞ðXÞ þ δPðX̃; T̃Þ can be injected into the
dimensionless version of Eq. (3). Such a substitution gives
a constraining equation on the eigenvalues, λ, after evalu-
ation at X̃0 ¼ 1þ Π, i.e., the channel entrance

FIG. 3. Inlet pressure p0 − p0;∞ as a function of time t in a
200 μm-wide channel, the color bar indicating p0;∞. The inset
shows the exponential relaxation time, obtained from best fits, as
a function of p0;∞. Error bars are smaller than symbol size.
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p
5
X̃5=8
0 Þ

; ð7Þ

with R ¼ r0=rc and T ¼ τ0=τc, where τ0 ¼ r0c0 is the
inlet timescale. Recalling that the experimentally measured
pressure relaxations of Fig. 3 are well described by simple
exponential decays, and denoting λs smallest eigenvalue
satisfying Eq. (7), the experimentally measured timescale is
then assumed to be

τt
τc

¼ 1

Π2
λ−1s ðΠ;R; T Þ; ð8Þ

in accordance with the definition of T̃. This relation shows
that the relaxation timescale is a function of the pressure
through Π, and in particular depends on the details of the
input resistance and capacitance, here reflected through the
dimensionless variables R and T .
We are not aware of analytic solutions for Eq. (7);

nevertheless, the asymptotic behavior can be assessed. At
low pressure, there is no significant channel deformation
(p0 ≪ p�) such that the chip is an ideal resistance. We do
not expect the relaxation time to be pressure dependent in
this limit. Conversely, at high pressure, the deformation
makes the resistance of the chip pressure dependent.
According to Eq. (5), we have a chip resistance, and thus
a timescale proportional to P−3

0;∞. We thus look for
asymptotic, power-law solutions to Eq. (7), λs ≈ β2Πγ ,
with constant β and γ. Using asymptotic developments
of the Bessel functions (Supplemental Material, Sec. IV
[43]), we confirm the power laws

τt
τc

¼ 1

β2
∶ Π ≪ 1; ð9Þ

τt
τc

¼ 1

β2P3
0;∞

∶ Π ≫ 1: ð10Þ

Here, β satisfies T β2 −Rβ cotðβÞ − 1 ¼ 0 and T β=R ¼
J−1

5
ð8β=5Þ=J4

5
ð8β=5Þ in the low- and high-Π limits; we also

note that T and R may differ in these limits.
For intermediate pressures, Eq. (8) is solved numerically

for prescribed values of fΠ;R; T g, thus necessitating
characterizations of the input r0 and c0. The former was
determined by measuring pin;∞, versus q∞ in the presence
of the flow meter only. The data (Supplemental Material,
Sec. V [43]) are well described by a straight line, giving
r0 ¼ 2.50� 0.01 kPa s=nL, consistent with a rigid glass
capillary of diameter 25 μm and length 2.4 cm filled with
water of viscosity η ¼ 1.0 mPa s=nL [46]. The value of c0
is assessed by plugging the circuit at the pressure sensor
outlet and removing the microchannel, assuming that the
resulting relaxation time satisfies τ0 ¼ r0c0. The inset of

Fig. 4 shows τ0 as a function of p0;∞ for such a plugged
experiment, indicating a clearly nonlinear inlet capacity.
Assuming that the nontrivial capacity at the channel inlet

is dominated by trapped air, we use the ideal gas law to
estimate c0 ¼ c1ð1þ p0;∞=patmÞ−2 þ c2. Here patm ¼
101 kPa is the atmospheric pressure, c1 ¼ Ωa=patm, with
Ωa the trapped air volume at atmospheric pressure. The
second term, c2, describes any other linear capacity, is
assumed to be connected to the atmosphere and is thus in
parallel with c1. The solid line in the inset provides an
excellent fit using this ideal-gas-like inlet capacity, with
c1 ¼ 20.9� 0.1 and c2 ¼ 0.2� 0.1 nL kPa−1 ≪ c1. The
value of c1 corresponds to a resting gas volume of 2.1 μL,
which compares reasonably to the internal volume of the
pressure sensor of 7.5 μL as provided by the manufacturer.
Making a full test of the model for our complete

microfluidic system, Fig. 4 shows the normalized relaxa-
tion time τt=τc as a function of P0;∞ for all channel widths
used here. The solid lines represent the solution of the
problem [Eqs. (7) and (8)], where Eq. (7) is solved
numerically using the aforementioned ideal resistance
value and the ideal-gas, pressure-dependent capacitance.
For these data the best-fitting values were c1 ¼ 8.6� 0.4
and c2 ¼ 2.1� 0.2 nL kPa−1, respectively. Here the larger
value of c2 corresponds well to the linear capacity of
the circular channel inlet, approximated by c2 ≈ d3c=E� ≈
1 nL kPa−1. The smaller value of c1 suggests that less air
was trapped compared to the calibration. We additionally
show the asymptotic behaviors, where the equations for

FIG. 4. Normalised transient relaxation time as a function of
dimensionless steady-state pressure of different widths, color
map as in Fig. 2. Single, typical error bars are shown for each
dataset. Solid lines represent numerical solutions of the model of
Eq. (8) using ideal input resistance and an ideal-gas-like input
capacitance, with dashed lines the asymptotic developments
[Eqs. (9) and (10)], for the 200 μm-wide channel. Inset: τ0 as
a function of p0;∞ for the plugged experiment. Error bars are
smaller than symbol size. The solid line is a fit to the model
including an ideal gas capacitance.
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prefactors β were solved graphically using the limiting
values of T andR. Our model describes the data well over
more than one decade of normalized pressures and four
chip geometries, all fitted using the same c1 and c2, the
experiments having been performed sequentially.
In conclusion, we have used time-resolved pressure and

flow-rate measurements to characterize the relaxation
dynamics of compliant microfluidic channels. We recover
the well-known, quartic pressure-vs-flow-rate relation for
straight, rectangular channels. Additionally, we measured a
full series of pressure-dependent relaxation timescales
resulting from stepwise pressure perturbations in a series
of chip widths. Our main results are (i) the chip inlet
impedance cannot be neglected; and (ii), there is a strong
pressure dependence on the relaxation timescale that cannot
be simply predicted by dimensional analysis. A perturba-
tion analysis of the lubrication-approximated microflow
problem, coupled to a linear elasticity of the channel walls
and considering the inlet impedance, accounts fully for the
measured timescales. In a more general context, ours is a
simple unit of any potential compliant flow network. Our
analysis could thus be exploited in a broad range of
microbiological, and microtechnological contexts already
finding applications.
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