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Motivated by recent theoretical and experimental interest in the spin and orbital angular momenta of
elastic waves, we revisit canonical wave momentum, spin, and orbital angular momentum in isotropic
elastic media. We show that these quantities are described by simple universal expressions, which differ
from the results of Chaplain et al. [Phys. Rev. Lett. 128, 064301 (2022)] and do not require separation of
the longitudinal and transverse parts of the wave field. For cylindrical elastic modes, the normalized z
component of the total (spin + orbital) angular momentum is quantized and equals the azimuthal quantum
number of the mode, while the orbital and spin parts are not quantized due to the spin-orbit geometric-phase
effects. In contrast to the claims of the above article, longitudinal, transverse, and “hybrid” contributions to
the angular momenta are equally important in general and cannot be neglected. As another example, we
calculate the transverse spin angular momentum of a surface Rayleigh wave.
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Introduction.—Recently, there was a great renewed
interest in the spin and orbital angular momenta of acoustic
waves, i.e., sound waves in fluids or gases [1-8] and elastic
waves in solids [9-16]. Although general field-theory
principles of the momentum and angular momentum of
sound and elastic waves have been known [17-19], and the
orbital angular momentum of sound waves was extensively
studied both theoretically and experimentally [20-29], new
observable phenomena involving spin-polarization proper-
ties of sound waves, as well as the spin and orbital angular
momenta of elastic waves, prompted a new wave of
investigations in these fields.

This Letter is motivated by the recent papers [15,16]
which calculated the orbital angular momentum of elastic
wave modes in an isotropic cylinder and reported its
observation. We revisit the canonical momentum, spin,
and orbital angular momentum of elastic waves in an
isotropic medium using the field-theory approach
[4,8,10,18], which has been successfully employed in optics
[30-35]. We find that theoretical results of Refs. [15,16]
should be corrected, and show that the canonical momentum
and angular momentum of elastic waves are described by
rather simple general expressions, which do not require
separation of the longitudinal (compression) and transverse
(shear) parts of the wave field. Moreover, the longitudinal,
transverse, and “hybrid” contributions contained in these
general expressions are equally important and cannot be
neglected (as it was done in Refs. [15,16]).

We apply general theory to the important case of elastic
eigenmodes of a cylindrical waveguide, and find that their
momentum and angular momentum properties are entirely
analogous to those of optical guided modes [36]. As
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another example, we calculate the transverse spin (pre-
viously explored in electromagnetic and sound evanescent
waves [1,32-34,37-40]) of a surface Rayleigh wave
[11,13,14]. Our results illuminate the universal character
of the canonical momentum, spin, and orbital angular
momentum of classical waves: not limited to transverse
electromagnetic or longitudinal sound waves but equally
applicable to mixed elastic waves.

It is worth remarking that the canonical momentum and
angular momentum of acoustic waves are sometimes called
“pseudomomentum” and “angular pseudomomentum,”
because these quantities are associated with translations
and rotations of the wave field with respect to the motion-
less medium [10,12,41-46].

Canonical momentum, spin, and orbital angular
momentum of elastic waves.—To start with, elastic waves
in an isotropic medium can be described using the
Lagrangian density [10,15]

|
Ezipa2—UET—U, (1)

where p is the density of the medium, a(r,?) is the
displacement field, the dot stands for the time derivative
(so that a = v is the velocity), U is the potential energy
density (involving spatial derivatives of a and not used
explicitly in the calculations below), and T is the kinetic
energy density.

The energy density W and canonical momentum density
P can be derived from the Lagrangian (1) by applying
Noether’s theorem with respect to space-time translations
t—>t+otand r - r+ or [10,18,31,35]. This yields
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Similarly, the canonical angular momentum density J
follows from the Lagrangian density (1) and Noether’s
theorem with respect to spatial rotations [10,18,31,35]:

oL oL
J__g.(rxV)a—gxa=L+S, (3)

where the orbital and spin parts are

L=rxP, S=—pvxa. (4)
Equations (1)—(4) are in agreement with the results of
[10,12] for the pseudomomentum and angular pseudomo-
mentum of phonons. They also have forms entirely similar
to the canonical momentum and angular momentum of
sound waves in fluids or gases [1,4,8,17], but in contrast to
the purely longitudinal sound waves (with V x a = 0),
elastic waves can have both longitudinal and transverse
contributions: a =a; +ap, Vxa; =0, V-a; =0.

At the same time, Egs. (2)-(4) differ from the recent
results of Refs. [15,16]. To show this, from now on we
consider monochromatic wave fields and introduce the
complex-amplitude representation for the wave fields:
a(r,7) = Re[a(r)e '], v(r,7) = Re[v(r)e ], where
V = —iwa. Substituting this representation into Egs. (2)—
(4) and performing time averaging over oscillations with
frequency @, we obtain the time-averaged kinetic energy,
momentum, and angular momentum densities:

These are universal forms (also appearing for electromag-
netic and sound waves [1,4,8,30-34]) which resemble local
expectation values of quantum-mechanical momentum
(—1V), orbital angular momentum (—ir x V), and spin-1
(—ix) operators with the “wave function” y = \/pw/2 a,
vy =2T/w.

Equations (5) are self-sufficient for an arbitrary elastic
wave field, including longitudinal and transverse parts.
Substituting @ = a@; + a7 into Eqs. (5), one can see that all
the quadratic quantities include longitudinal, transverse,
and hybrid contributions [11,15]. For example, the canoni-
cal momentum density takes the form P = P, + P, + Py:

_ pw . - pw B

P, = TIm[aL -(V)ay], Py = Tlm[aT - (V)ar],

— [0] @

Py = 1mfa; - (V)ay] + 2 Imlaj - (V)ay). (6)

These equations differ significantly from Egs. (12) in
Ref. [15] and the corresponding orbital angular momentum
calculated there. First, Eqgs. (12) have extra prefactors of
squared speeds of the longitudinal and transverse waves,
c%, and c2. These prefactors appeared due to a confusion
between the momentum densities and the energy flux
densities, and this resulted in the incorrect dimensionality
of the main angular-momentum equation (15) in Ref. [15].
Second, Egs. (12) in Ref. [15] contain incorrect quadratic
forms Im[(a*-V)a] instead of Im[a*-(V)a]. Since
a*-(Vla=(a*-V)a+a* x (Vxa), these forms are
equivalent only for the longitudinal contribution, but not
for the transverse and hybrid ones.

Next, Refs. [15,16] neglected the transverse and hybrid
contributions to the orbital angular momentum of cylin-
drical eigenmodes. We argue that this is unjustified for two
reasons: (i) calculations were performed using erroneous
general equations and (ii) it was assumed that the properly
defined orbital angular momentum should be quantized and
proportional to the azimuthal quantum number . Below
we show that this is not so: the azimuthal number ¢
determines the quantized total angular momentum (where
the longitudinal, transverse, and hybrid contributions
are equally important), while the properly defined orbital
angular momentum necessarily contains Z-independent
part due to the spin-orbit coupling; this phenomenon is
well known for optical and sound waves [36,38,47,48].

Momentum and angular momentum of cylindrical
modes.—We now consider eigenmodes of an isotropic
elastic cylinder [15,49]. Notably, the calculations below
are applicable to any cylindrically symmetric modes and
universal quadratic forms (5), independently of the nature
of waves. The only property we use is that the cylindrical
field has the form

a = [a,(r).a,(r). a (n]ets, (7)

where (7, ¢, z) are the natural cylindrical coordinates, k. is
the longitudinal wave number, and ¢ 1is the integer
azimuthal quantum number. For the straightforward appli-
cation of Egs. (5), it is instructive to use the Cartesian field
components (a,, a,, a,) and the associated basis of circular
polarizations in the (x,y) plane: a* = [(a, F ia,)/V2] =
[(a, F ia,)/\/2]eT [36]. Here, the geometric-phase fac-
tors e originate from the rotation of the cylindrical
coordinates with respect to the Cartesian ones [38]. In the
circular basis, the operator of the z component of the spin
becomes diagonal: diag(1,—1,0).

Substituting the field (7) in the circular-Cartesian basis
into Egs. (5), we obtain the normalized z components of
the momentum, spin, and orbital angular momentum
densities:
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Equations (8) are entirely similar to their optical counter-
parts derived in Ref. [36] (apart from the normalization to
the double-kinetic energy density 27 instead of the total
energy density W), which reflects their universal character.
These equations show that the total (spin + orbital) angular
momentum is quantized, and £ is the fotal rather than
orbital angular momentum quantum number [36]. The
division of the total angular momentum into the orbital
and spin parts is closely related to the geometric and
dynamical phases calculated for the vector field a along
circular contours r = const. This is explained in detail in
Refs. [36,50], so we do not repeat these considerations here
and only note that the /-independent spin-dependent
second term in the orbital angular momentum L, in
Egs. (8) can be regarded as a manifestation of the spin-
orbit interaction [38,47].

We emphasize that Eqgs. (8) have simple meaningful
forms in terms of the total elastic wave field a, including
both longitudinal and transverse parts, and it does not make
much sense to separate the longitudinal, transverse, and
hybrid contributions there. These are all equally important
for the resulting momentum and angular momentum
densities. Furthermore, although longitudinal and trans-
verse elastic waves in a bulk solid propagate with different
velocities ¢, and c;, the cylindrical guided mode is a single
mixed mode which propagates with the phase velocity
Vpp = w/k,, and its normalized linear momentum has the
corresponding well-defined value P_/(2T) = 1/v,,. This
also evidences that separation of the longitudinal and
transverse parts of the field has an artificial technical
character in this case. In fact, no local measurement can
distinguish between the longitudinal, transverse, or hybrid
contributions to the momentum or angular momentum
densities in the field: any probe interacts with the total
local field a(r), where each Cartesian component generally
contains contributions from a; and a;.

It is worth noticing that the normalized spin density in
Eq. (8) is limited as w|S.|/(2T) < 1, whereas the orbital
angular momentum is limited by the value of ¢:
w|L,|/(2T) < |#|+1. Note also that we calculated the
spatial densities of all quantities; their integral values
can be obtained via the integration over the transverse
cross section: (L.) = [ L_dxdy, etc. Notably, the integral
value of the total energy can be written as (W) = 2(T) (see
Ref. [49], Sec. 10-O), so that the integral versions of
Egs. (8) involve the integral momentum and angular
momenta normalized by (W).

Transverse spin of a Rayleigh wave.—Let us consider
another application of general Eqgs. (5) to an

inhomogeneous elastic wave: the transverse spin of a
surface Rayleigh wave [11,14]. The transverse spin of
surface or evanescent waves is an interesting phenomenon
which recently attracted great attention in optics and
acoustics [1,11,13,14,32-34,37-40]. The field of the
Rayleigh wave propagating along the z axis and the x =
0 surface of an isotropic medium (x < 0) can be written as
[51] a = (a,,0,a,),

a, « i(yk,e"* —k,e¥) et = iA(x)e*:?,

a, « (ke —yk,e5%)e’k* = B(x)elt:?, 9)

where k; .= /kz—a?/c} . y=[(2—&%)/(2y/1-&)]sgn(k,),

and & = w/(kc,). Substituting the field (9) into Egs. (5),
we readily find that the Rayleigh wave carries longi-
tudinal momentum and transverse y-directed spin angular
momentum:

: 2AB
= 10
2T  w(A?+ B?) (10)
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Akin to the optical and sound-wave transverse spin, the elastic
transverse spin (9) and (10) flips its sign with the flip of k. This
“spin-momentum locking” [52,53] is used for the efficient
spin-direction coupling [1,11,13,33,37-39,54-56]. As in the
previous example of a cylindrical waveguide, no local meas-
urement of the spin or polarization can distinguish between the
longitudinal, transverse, or hybrid contributions. Any probe
interacts with the total elliptically polarized displacement field
a(r), Eq. (9), where the longitudinal and transverse parts both
have qualitatively similar elliptical polarizations.
Conclusions.—We have revisited the canonical momen-
tum, spin, and orbital angular momentum of elastic waves
in an isotropic medium. Using a rather general approach we
were able to derive these quantities without explicit use
of the potential elastic energy, equations of motion, Lamé
coefficients, etc. In particular, we have showed that the
canonical momentum and angular momentum densities
have universal forms independent of either transverse,
or longitudinal, or mixed character of the wave field. We
have also calculated the normalized z components of the
momentum, spin, and orbital angular momentum of elastic
eigenmodes of an isotropic cylinder. These are described by
universal equations valid for cylindrically symmetric wave
fields independently of their nature. As another example,
we calculated the transverse spin of a surface Rayleigh
wave. In both cases, the wave field represents a single
mixed mode, and it does not make much sense to separate
the longitudinal, transverse, and hybrid contributions to its
momentum and angular momentum. Our Letter provides
important corrections to the results of a recent Letter [15],
as well as a theoretical basis for further studies of the
momentum and angular momentum of elastic waves.
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