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Light scattering is one of the most established wave phenomena in optics, lying at the heart of light-
matter interactions and of crucial importance for nanophotonic applications. Passivity, causality, and
energy conservation imply strict bounds on the degree of control over scattering from small particles, with
implications on the performance of many optical devices. Here, we demonstrate that these bounds can be
surpassed by considering excitations at complex frequencies, yielding extreme scattering responses as
tailored nanoparticles reach a quasi-steady-state regime. These mechanisms can be used to engineer light
scattering of nanostructures beyond conventional limits for noninvasive sensing, imaging, and nanoscale
light manipulation.
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The study of light scattering by small particles has a long
history [1], and it is the basis of a disparate range of
phenomena, from the color of the sky to the brightness of
stained glasses.Despite its well-established nature, engineer-
ing light scattering is not an outdated problem: it remains of
paramount interest in photonics [2,3], not only enabling new
discoveries [4,5], but also broadening the impact of nano-
photonics for various applications, such as optical antennas
[6], imaging [7], optical tweezers and trapping [8,9].
Small nanoparticles are typically characterized by a

broad donut-shape scattering pattern sustained by their
dominant dipolar fields. More exotic scattering features can
be achieved in suitably tailored nanoparticle geometries by
carefully balancing electric and magnetic dipolar scatter-
ing, yielding destructive interference in specific directions
that make the scattering more directive. For instance,
scattering suppression in either the forward or backward
direction can be obtained in nanoparticles satisfying the
Kerker conditions [10]. Magnetoelectric, plasmonic [11],
and high-index dielectric (DNPs) [12,13] nanoparticles
have been shown to support peculiar scattering features,
offering opportunities for light manipulation, and establish-
ing the basis for the design of metasurfaces and metama-
terials. However, these exotic responses require careful
design of the nanoparticle geometries, and they emerge
only at specific wavelengths as a function of the available
material dispersion. In addition, even when these condi-
tions are met, the scattering from nanoparticles remains
limited by causality, passivity, and energy conservation.
Consider, for instance, the problem of realizing a particle

with directional backward scattering, i.e., withminimized for-
ward scattering cross section σF¼ðπ=jkij2Þj

P∞
n¼1ð2nþ1Þ×

ðanþbnÞj2≃0, where ki ¼ jkij is the wave number of the
incident wave, n is the multipolar order, and an and bn are
electric andmagneticMie scattering coefficients, correspond-
ing to the amplitude of multipolar scattered waves of order n
[2,14].Weassumeane−iω t time conventionunder planewave
excitation Ein ¼ Eoe−iki·zx̂, where x̂ is a unit vector.
According to the optical theorem, the extinction cross section
σext is proportional to the normalized forward scattering
amplitude with polarization parallel to the incident wave
êi · fðk ¼ kiÞ [2,15]:

σext ¼ σabs þ σscat ¼
4π

ki
Im½êi · fðk ¼ kiÞ�; ð1Þ

where σabs and σscat are the absorption and scattering cross
sections, êi is the unit polarizationvector of the incidentwave,
and ki and k are the wave vectors of incident and scattered
waves, respectively. Equation (1) indicates that σext must be
zero if fðk ¼ kiÞ ¼ 0, yet in a passive scatterer σabs ≥ 0,
σscat ≥ 0, hence this condition can bemet only if the scattered
power is zero at all angles [15–18]. For very small particles, a
negligible—yet strictly nonzero—forward scattering can be
achieved, with most of the residual scattering distributed at
other angles, as in the inset of Fig. 1(a), but a severe trade-off
exists between total scattering and residual forward scattering,
consistent with Eq. (1) [16]. Passivity fundamentally limits
how backward directive a scattering pattern can be.
Active materials can be employed to overcome this

limitation, since such particles can support σabs < 0,
relaxing the constraint on zero forward scattering. Gain
provides additional energy, relaxing limitations that stem
from power conservation, and offering a broader control
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over light scattering. However, it is challenging to embed
active media within nanophotonic systems, and typically
optical gain comes at the price of stringent bandwidth and
stability limitations [19,20]. Moreover, active materials are
characterized by unavoidable noise in the form of amplified
spontaneous emission or parasitic harmonics in the case of
parametric gain [20], which hinder the practical feasibility
of active systems for several applications.
The limitations outlined so far implicitly refer to mono-

chromatic excitations. We have recently explored the exotic
response of passive nanophotonic systemswhen excitedwith
signals that oscillate at complex frequencies. Under suitable
conditions, we have shown that a tailored resonant linear
system excited by a signal oscillating at a complex ω can
reach a quasi-steady-state response, such that its output after
a transient oscillates at the same complex frequency as the
input. In this regime, the passivity constraints associatedwith
real frequencies can be overcome, opening new frontiers for
light-matter interactions [21]. For instance, based on these
principles, we have recently demonstrated a phenomenon
analogous to absorption emerging in lossless structures
excited at complex frequencies [22,23], with opportunities
for efficient energy storage and optical memories [24].
Analogously, coherent excitations at complex frequencies
can realize pulling forces, mimicking the emergence of gain
[25], which can also be exploited to realize parity-time
symmetric phenomena in passive systems [26].
Here, we explore the opportunities that complex fre-

quency excitations open to overcome long-held bounds on
scattering. First, we demonstrate that a tailored dielectric
sphere can support identically zero forward scattering in its
quasi-steady state when excited with a signal oscillating at a
suitable complex frequency. Figure 1(a) shows the position
of the first zero of the forward scattering efficiency,
QF ¼ σF=πa2, where a is the sphere radius, evaluated in

the complex frequency plane for passive DNPs with
different refractive indexes. The zero always lies in the
lower complex half-plane, and it can emerge close to the
real frequency axis for large refractive indexes. For in-
stance, when m ¼ 6 (blue circle in the figure), excitation at
the real part of this complex frequency produces the
scattering pattern shown in the inset, which is asymmetric
with minimized forward scattering and points toward the
backward direction. The zero moves farther away from the
real axis for lower indexes, implying that a monochromatic
excitation at the real part of its frequency generates a larger
and larger relative forward scattering.
The forward scattering zeros may be pushed toward the

real axis by adding gain to the particlematerial. The resulting
signal amplification corresponds to negative absorption,
ensuring that the extinction σext can bemade identically zero
in Eq. (1) even when σscat > 0. In Fig. S3a of Supplemental
Material [27], for instance, we show that for the complex
refractive index m ¼ 3.950 − i 0.405, the first forward
scattering zero lies on the real axis. Figure 1(b) compares
the normalized scattering patterns in the two polarization
planes at the frequency of this forward zero ωgaina=c ¼
0.831 for the active particle (dotted lines), and compares it to
the passive scenario m ¼ 3.929 [31], evaluated at
ωnogaina=c ¼ 0.853, which corresponds to the real part of
the complex frequency zero. We plot half of the angular
spectrum for each scenario since the patterns are symmetric,
and the red (blue) line indicates the scattered intensity
parallel (perpendicular) to the scattering plane. The scattered
fields in the forward direction are entirely suppressed in the
active particle, while residual fields are still present in the
forward scattering for the passive particle.
Interestingly, we can engage the forward scattering zero

of a passive particle without relying on material gain, but by
exciting it with a signal oscillating at the proper complex
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FIG. 1. (a) Evolution of the first zero of the forward scattering efficiency QF as we vary the refractive index m of a dielectric sphere.
The scattering pattern for m ¼ 6 (blue circle) is shown in the inset for excitation at the real part of the complex frequency of the zero.
(b) Normalized scattering patterns in the two polarization planes for m ¼ 3.929 (solid lines) and m ¼ 3.950 − i 0.405 (dotted lines).
Red (blue) lines indicate that the incident waves are parallel (orthogonal) to the scattering plane.
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frequency. Figure 2(a) shows the forward scattering effi-
ciency in the complex frequency plane for a sphere with
refractive index m ¼ 3.929. We can observe a forward
scattering pole (bright area) and a zero (dark area) in the
plotted range of frequencies. We excite the particle with an
incident signal with electric field oscillating at a complex
frequency EiðtÞ ¼ Eo expð−iRe½ω�tÞ expðIm½ω�tÞ, charac-
terized by an exponentially growing or decaying envelope
as a function of the sign of Im½ω�. Here, we excite the
sphere with a decaying signal oscillating at ωa=c ¼
0.824 − i 0.063, corresponding to the complex frequency
of the forward scattering zero marked by the blue circle.
Excitations at complex frequencies are unbounded at �∞,
and hence they are limited to finite temporal intervals.
While no one prevents us from analytically continuing the
expression of the forward scattering efficiency in the
complex frequency plane, as we do in Fig. 2(a), we cannot
generally expect that the sphere after a transient reaches a
steady-state response oscillating at the same (complex)
frequency as the excitation. However, as we show in the
following, for excitation of zeros and poles sufficiently
close to the real axis, the response of the structure after a
short transient can support a quasi-steady-state regime in
which the scattered fields oscillate at the same complex
frequency. Under this condition, we can find exotic
scattering responses as predicted by the singularities in
the complex frequency plane.
We performed full-wave time-domain simulations to

obtain the temporal evolution of the scattered fields,
assuming an excitation at ωa=c ¼ 0.824 − i 0.063 starting
at t ¼ 0. After a transient that depends on the way we
excited the system for t < 0, we observe that the forward
scattering converges to zero and the scattering from the
particle reaches a quasi-steady-state response (see time

evolution in [27]). The normalized scattering pattern in this
quasi-steady-state regime retrieved from FDTD simulations
(solid line) is compared to the analytically calculated pattern
(dashed line) in Fig. 2(b), confirming that the scattering is
directed backward, withminimum forward scattering orders
of magnitude smaller than the minimum allowed for
monochromatic excitations [27]. We stress that this result
is achieved with a passive particle, and this exotic response
can be explained based on the concept of “virtual gain,”
enabled when suitably tailored resonances are engaged with
exponentially decaying signals oscillating at tailored com-
plex frequencies [25,26]. The sphere scatters in time the
energy stored from earlier cycles, for which the input signal
was stronger due to its decaying nature. At this complex
frequency, the electric and magnetic dipoles reach quasista-
tionary states oscillating out of phase with respect to each
other, i.e.,a1 ¼ −b1—a condition that cannot be achieved in
a passive scatterer under monochromatic excitation—but
which can be obtained here because the dipoles are radiating
energy stored at earlier times. In the quasi-steady state, they
perfectly cancel each other in the forward direction while
interfering constructively in the backward direction.
In order to visualize the phenomenon, we plot the

relation between normalized forward scattering cross sec-
tion σnormF ¼ ðπσF=9λ2oÞ and normalized total scattering
cross section σnormscat ¼ ðπσscat=3λ2oÞ, where λo is the incident
wavelength, in Fig. 2(c). The allowed forward scattering
cross section in a small particle is bounded by the shaded
region in the figure, i.e., it cannot be too small without
minimizing the total scattering (see further analysis in
[27]). The minimum scattering cross section for different
refractive indexes m ¼ 8, 6, 5, and 3.93 are located on the
curve under harmonic plane wave illumination. Here, we
largely surpass this bound using a complex frequency
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FIG. 2. (a) Density plot of the forward scattering efficiency QF in the complex frequency plane. The zero (darkest spot) and pole
(brightest spot) are shown in the plot, and the zero is of interest here, marked by the blue circle. (b) Scattering pattern at the complex
frequency ωa=c ¼ 0.824 − i 0.063, demonstrating zero forward scattering in a passive dielectric sphere. The complex excitation
impinging on a subwavelength dielectric sphere is schematically illustrated in the inset. These results are retrieved from FDTD
simulations (solid lines) and validate our analytical results (dashed lines). (c) The normalized forward and total scattering cross sections
are bounded by the thick blue line for any passive DNPs. The cross sections for minimizing forward scattering at m ¼ 8, 6, 5 and 3.93
are placed on the bound (the thick blue line). Exciting in the complex frequency plane, as we evolve ωa=c ¼ 0.853 from to
ωa=c ¼ 0.824 − i 0.063, allows us to go beyond the bound (the green line).
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excitation: the green line in Fig. 2(c) shows the evolution of
the scattering response in this plane as we sweep
the frequency from ωa=c ¼ 0.853 (on the right side
of the figure) to ωa=c ¼ 0.824 − i 0.063 (on the left side
of the figure) by linearly interpolating the real and
imaginary parts. The green curve representing the evolution
of the forward scattering converges to the y axis, enabling a
large scattering cross section and zero forward scattering in
the quasi-steady state.
Complex frequency excitations can also enable other

exotic scattering responses. For instance, by tailoring at the
same time dipolar and quadrupolar scattering harmonics in
the complex frequency plane, we can induce the cancella-
tion of scattered fields in both forward and backward
directions, enabling transverse scattering patterns [32,33].
Transverse scattering from DNPs has been explored in [34],
but without complete suppression of forward and backward
scattering because of the mentioned passivity limitations
(see Fig. S7 in Supplemental Material [27]). This response
arises because the sphere is near an anapole resonance due
to the destructive interference of electric dipole and qua-
drupole responses. The overall response makes the total
scattered power very small [34], consistent with the
requirement of minimizing the forward scattering in
Eq. (1). Figure 3(a) plots the forward scattering efficiency
QF in the complex plane around the frequency where
transverse scattering happens, i.e., near ωa=c ¼ 1.1 and
refractive index m ¼ 3.929, indeed finding a forward
scattering zero in the lower complex half-plane at
ωa=c ¼ 1.101 − i 0.014. Because of the close interactions
of electric dipole and quadrupole harmonics around this
resonance, the backward scattering efficiency QB ¼
σB=πa2, where σB is the backward scattering cross section,
also supports a complex zero at a close location in the
complex frequency plane, as shown in Fig. 3(a). By
exciting the sphere with ωa=c ¼ 1.101 − i 0.014, we
indeed obtain the scattering patterns shown in Fig. 3(b),
where we compare analytical calculations and FDTD
simulations again. The results confirm zero forward and

backward scattering and a purely transverse scattering
pattern in one plane of polarization.
Another unique scattering constraint that stems from

passivity is the maximum scattered power associated with a
single scattering harmonic. Consider, for instance, the
scattering from a dielectric cylinder under transverse-
magnetic (TM) plane wave illumination at frequency ωin.
The contribution to the scattering width from the nth
multipolar order ðσTMscatÞn ¼ ð2λ=πÞjanj2, where an is the
TM Mie scattering coefficient for dielectric cylinders [2].
The maximum contribution to the width for a single
harmonic is limited to 2λ=π for passive scatterers in the
case of monochromatic excitation since janj ≤ 1. For
complex frequency excitation, however, this bound can
be largely surpassed. Specifically, k is complex in the
quasi-steady state, so that it can make the Mie coeffcients
an much larger than unity (see further discussion in [27]).
By targeting a pole of the total scattering cross section in
the complex frequency plane, it is possible to realize
lasinglike behaviors, exciting a scattering pole, as the
decay rate of the incoming signal, tailored to match
the eigenmode resonance of the cylinder, compensates
for the radiation loss that bounds the scattering coefficient
for monochromatic excitations.
For example, we consider a cylindrical DNP with m ¼

3.929 and evaluate the poles (yellow circles) of Qscat ¼P∞
n¼−∞ ðσTMscatÞn=2a shown in Fig. 4(a), where a is the

radius of the cylindrical particle [27]. The third pole,
marked by a hollow blue circle at ωa=c ¼ 1.250−
i 0.0175, corresponds to a magnetic quadrupolar mode,
whose resonance emerges for monochromatic excitations
around the real frequency ωa=c ¼ 1.248. The scattering
intensity of the cylindrical DNP Iscatðro; θ; tÞ at distance ro
reads

Iscatðro;θ;tÞ¼ Iinðro;tÞ
����
X∞

n¼−∞
ð−iÞnanHð1Þ

n ðkroÞexpðinθÞ
����
2

:
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Here, θ is the polar angle, k is the incident wave number,

and Hð1Þ
n ðzÞ are the Hankel functions of the first kind. Note

that Iinðro; tÞ is the input intensity, including an exponen-
tially decaying contribution. We define the normalized
scattering pattern Sscatðro; θ; tÞ ¼ Iscatðro; θ; tÞ=Iinðro; tÞ as
the ratio of scattering intensity Iscatðro; θ; tÞ to the
input intensity IinðtÞ evaluated at the same instant
in time. In the quasi-steady state, this function is inde-
pendent of time, since the scattered fields osci-
llate at the same complex frequency of the input,

thus Sscatðro; θÞ ¼ jP∞
n¼−∞ ð−1ÞnanHð1Þ

n ðkroÞ expði nθÞj2.
We verify with FDTD simulations that we reach a quasi-

steady state response exciting at the complex frequency of
this scattering pole, as discussed in [27]. Figure 4(b) shows
the far-field scattering patterns normalized to the input
intensity as time evolves. The scattered intensity decays
exponentially in time following the complex frequency
excitation, but the ratio Sscatðro; θ; tÞ increases over time,
yielding in the quasi-steady-state values much larger than 1,
which is the bound for monochromatic excitations. At this
complex frequency, we reach a purely quadrupolar pattern
with scattered fields significantly larger than the input
fields at the same instant in time, well beyond the passivity
bound. The scattering efficiency at τ ¼ t Re½ω�=ð2πÞ ¼
75.4 is Qscat ¼

P∞
n¼−∞ ðλ=πaÞjanj2 ¼ 520.9, over 2 orders

of magnitude larger than its value at the quadrupolar
resonance for real frequency excitation, Qscat ¼ 3.6 in
Fig. S9a of Supplemental Material [27].
Overall, our results demonstrate that complex frequency

excitations can manipulate the scattering of passive reso-
nant objects in exotic ways, going well beyond the limits
imposed by passivity. This principle may readily be
translated to more complex systems, such as lattices,
particle clusters, and metamaterials, and it can be extended
to other wave domains, e.g., acoustic systems. Our results
demonstrate that in nonmonochromatic settings in which
we can tailor the input signal profile in time, the response of

a scatterer is not limited by passivity, causality, and energy
conservation. These phenomena can be applied to various
settings, such as noninvasive sensors, energy-storage,
efficient wireless power transfer, directional light source,
beam control, high-performance antennas, imaging, and
more. Our Letter can also be expanded to be combined with
PT symmetry and exceptional point physics [26], yielding
high sensitivity and exotic scattering features.
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