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The concept of contact interaction is fundamental in various areas of physics. It simplifies physical
models by replacing the detailed short-range interaction with a zero-range contact potential that reproduces
the same low-energy scattering parameter, i.e., the s-wave scattering length. In this Letter, we generalize
this concept to open quantum systems with short-range two-body losses. We show that the short-range two-
body losses can be effectively described by a complex scattering length. However, in contrast to closed
systems, the dynamics of an open quantum system is governed by the Lindblad master equation the
includes a non-Hermitian Hamiltonian as well as an extra recycling term. We thus develop proper methods
to regularize both terms in the master equation in the contact (zero-range) limit. We then apply our
regularized complex contact interaction to study the dynamic problem of a weakly interacting and
dissipating Bose-Einstein condensate. It is found that the physics is greatly enriched because the scattering
length is continued from the real axis to the complex plane. For example, we show that a strong dissipation
may prevent an attractive Bose-Einstein condensate from collapsing. We further calculate the particle decay
in this system to the order of ðdensityÞ3=2 which resembles the celebrated Lee-Huang-Yang correction to the
ground state energy of interacting Bose gases [Lee and Yang, Phys. Rev. 105, 1119 (1957); Lee, Huang,
and Yang, Phys. Rev. 106, 1135 (1957)]. Possible methods for tuning the complex scattering length in cold
atomic gas experiments are also discussed.
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Separation of scales appears in many physical systems. It
allows us to construct models that are simple enough yet
able to capture the fundamental pictures of the physics
effectively. For example, separation of length scales hap-
pens in systems such as ultracold atomic gases and nuclear
systems where the ranges of the interparticle interactions
are much smaller than other length scales (e.g., the
interparticle distance and the thermal de Broglie wave-
length). The complicated short-range interactions can then
be replaced by a zero-range contact potential, once the
latter can reproduce the same physical behavior for a low-
energy collision process. Such contact potential has been
considered as the fundamental model in nuclear and cold
atom physics since the pioneering works of Bethe, Peierls
[1], and Fermi [2].
In scattering theory, the low-energy scattering data are

described by the (real) s-wave scattering length a [3].
Given the input s-wave scattering length, there are three
approaches that can describe the zero-range contact inter-
action in the literature, which include the Bethe-Peierls
model, pseudopotential, and renormalized delta potential.
Behte-Peierls model.—In the study of deuteron scatter-

ing theories, Bethe and Peierls suggest that the effect of a
short-range potential VðrÞ may be replaced by a boundary
condition at r ¼ 0 [1]. It is shown that the zero-energy

solution for the two-body relative wave function is
φðrrelÞ ¼ 1=rrel − 1=a outside the interaction range r0.
Thus if we are only interested in the low-energy physics
in such systems, the interaction can be replaced by a
boundary condition on the many-body wave function [4],

ψðrNÞ ≃
�
1

rij
−
1

a

�
AðrðijÞN ;RijÞ; rij → 0; ð1Þ

where A could be an arbitrary function, Rij ¼
ððri þ rjÞ=2Þ and rij ¼ ri − rj are the center of mass
and relative coordinates of particle i and j, rN represents

all the coordinates in fr1;…; rNg, and rðijÞN represents all
the coordinates except ri and rj.
Pseudopotential.—Introduced by Fermi, the pseudopo-

tential models the short-range interaction through a delta
potential and an extra operator which regularizes the wave
function near the origin [2,5,6],

UðrÞ ¼ 4πℏ2a
m

δðrÞ∂rr; ð2Þ

with m the particle mass. It can be shown that this
pseudopotential is equivalent to posing the boundary
condition [Eq. (1)] at the origin [6,7].
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Renormalized delta potential.—Another way to regular-
ize the delta potential is to use the renormalization method
developed in quantum field theory. Given VðrÞ ¼ gδðrÞ,
one can calculate the on shell two-body T matrix tðEÞ and
compare it with the low-energy scattering amplitude fðEÞ
via tðEÞ ¼ −ð4πℏ2=mÞfðEÞ. This relates the coupling
constant g to the s-wave scattering length a through the
renormalization relation [8],

1

g
¼ m

4πℏ2a
−

1

Ω

X
k

1

2ϵk
: ð3Þ

Here ϵk ¼ ðℏ2k2=2mÞ is the single-particle dispersion,
and Ω is the system volume. It is worth noting that the
momentum summation in the rhs leads to ultraviolet
divergence that needs to be properly canceled in any
practical calculation.
The three descriptions of the contact potential are

equivalent, as they are able to reproduce the same two-
body scattering data. These simplified models are more
suitable for many-body calculations and thus set the
foundation of many successful theories in cold atom
physics, from the ground state energy correction of weakly
interacting Bose-Einstein condensates (BECs) [9,10] to the
BEC-BCS crossover in two-component Fermi gases
[8,11,12]. Inspired by this idea, we generalize the concept
of contact potential to open many-body systems with short-
range two-body losses that can be described by Lindblad
master equations.
We first discuss the structure of a general master

equation which governs the system dynamics. By taking
the limit of interaction and loss range r0 → 0, we show that
the only important low-energy parameter that remains is a
complex scattering length ac. We further develop the
methods to regularize or renormalize the interactions and
two-body losses in the Lindblad master equation, which are
listed in Table I. We then apply our model to a bosonic
system with weak interaction and loss. The experimental
method of tuning the complex scattering length ac is also
discussed [13].

The effect of few-particle losses in cold atomic gases has
attracted great attention in recent years [14–22]. However,
the necessity of regularization of the Lindblad master
equation is usually overlooked. It is not until recently that
Bouchoule et al. has raised the question of regularization of
one-particle losses in three-dimensional systems [23].
The Lindblad master equation.—Consider an open

system of interacting bosons subject to (finite-range)
two-body losses; the evolution of the density matrix ρ̂ is
governed by the Lindblad master equation ∂tρ̂ ¼ Lρ̂ with
the Lindbladian (ℏ ¼ 1) [24]

Lρ̂ ¼ 1

i
½Ĥ; ρ̂� − 1

2

Z
r1;r2

Viðr12Þfψ̂†
r1 ψ̂

†
r2 ψ̂ r2 ψ̂ r1 ; ρ̂g þ J ρ̂;

where ψ̂ r is the annihilation operator at position r, Ĥ is the
usual Hermitian Hamiltonian of interacting bosons, and

Ĥ ¼ −
Z
r
ψ̂†
r
∇2

2m
ψ̂ r þ

1

2

Z
r1;r2

Vrðr12Þψ̂†
r1 ψ̂

†
r2 ψ̂ r2 ψ̂ r1 : ð4Þ

We assume the two-body loss rate Vi is a function that
depends on the interparticle distance. The recycling term
J ρ̂ is

J ρ̂ ¼
Z
r1;r2

Viðr12Þψ̂ r1 ψ̂ r2 ρ̂ψ̂
†
r2 ψ̂

†
r1 : ð5Þ

The interaction Vr and the two-body loss rate Vi are
assumed to be finite ranged and vanish at r > r0. It is also
required that Vi ≥ 0 inside r0, which is necessary to
guarantee the positive definiteness of the density matrix.
The master equation may be regarded as the evolution

under a non-Hermitian Hamiltonian Ĥeff together with
the recycling term, i.e., ∂tρ̂ ¼ ð1=iÞðĤeff ρ̂ − ρ̂Ĥ†

effÞ þ J ρ̂,
where the Ĥeff is equivalent to the Hermitian Hamiltonian
Ĥ, but with the real potential Vr replaced by a complex
one Vc ¼ Vr − iVi.
The complex scattering length.—The special form of

the jump operator ψ̂ r1 ψ̂ r2 leads to a hierarchical structure of

TABLE I. Three approaches regularizing the complex contact interaction. We denote coordinates fr1; r2;…; rNg by rN. r
ðαβÞ
N stands

for all the coordinates in rN except the two with indices α, β.

Contact interaction Complex contact interaction Recycling term

Bethe-Peierls model ψðrNÞ ≃ ðð1=rαβÞ − ð1=aÞÞ
AðrðαβÞN ;RαβÞ

ρjlðrj; r0lÞ ≃ ðð1=rαβÞ − ð1=acÞÞ
ðð1=r0μνÞ − ð1=a�cÞÞ

×BjlðrðαβÞj ;Rαβ; r0l
ðμνÞ;R0

μνÞ

Imð4πℏ2=macÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðjþ 2Þðjþ 1Þðlþ 2Þðlþ 1Þp

×
R
R Bjþ2;lþ2ðrj;R; r0l;RÞ

Pseudopotential UðrÞ ¼ ð4πℏ2a=mÞδðrÞ∂rr UcðrÞ ¼ ð4πℏ2ac=mÞδðrÞ∂rr ð4πℏ2jaij=mÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðjþ 2Þðjþ 1Þðlþ 2Þðlþ 1Þp
×
R
R;r;r0 δðrÞδðr0Þ∂rr∂r0r0ρjþ2;lþ2

Renormalization
relation

ðm=4πℏ2aÞ ¼ ð1=gÞ
þð1=ΩÞPkð1=2ϵkÞ

ðm=4πℏ2acÞ ¼ ð1=ðg − iγÞÞ
þð1=ΩÞPkð1=2ϵkÞ

γ
R
r ψ̂

2
r ρ̂ψ̂

†2
r
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the Lindbladian L. To see this, note that the bosonic Fock
space naturally defines orthogonal projections P̂l; l ¼
0; 1; 2;… which project any state to the l-boson subspace
Hl. For any linear operator Ô, we thus have decomposition
Ô ¼ P

j;l Ôjl with Ôjl ≡ P̂jÔP̂l an operator that maps a
state inHl toHj. Because the jump operator ψ̂ r1 ψ̂ r2 always
annihilates two particles, one can show that the master
equation may be decomposed to a series of hierarchy
equations for ρ̂jl,

∂tρ̂jl ¼
1

i
ðĤeff ρ̂jl − ρ̂jlĤ

†
effÞ þ J ρ̂jþ2;lþ2: ð6Þ

The hierarchical structure allows us to consider a “two-
body” problem in the presence of two-body loss. If we start
with an initial density matrix ρ̂ð0Þ that contains two bosons,
i.e., ρ̂ð0Þ ¼ ρ̂22ð0Þ, it is clear from Eq. (6) that the only
nonvanishing blocks of ρ̂ðtÞ will be ρ̂22 and ρ̂0, which
satisfy

∂tρ̂22 ¼
1

i
ðĤeff ρ̂22 − ρ̂22Ĥ

†
effÞ; ð7Þ

∂tρ̂00 ¼ J ρ̂22 ¼ −∂ttrρ̂22: ð8Þ

We see that the evolution of the two-particle density
matrix ρ̂22 is fully described by the non-Hermitian
Hamiltonian Ĥeff . This means the “two-body” problem
may be solved in the same manner as the usual two-body
problem except that the potential VcðrÞ is complex.
Consider the s-wave zero-energy wave function in relative
coordinates φðrÞ. It is then clear that

φðrÞ ¼ 1

r
−

1

ac
; for r ≥ r0; ð9Þ

because the system is noninteracting in this region.
Equation (9) gives the definition of the complex scatter-

ing length ac. Furthermore, it can be shown that Imða−1c Þ ¼
m
R r0
0 r2drViðrÞjφðrÞj2 [25]. Together with the constrain

Vi ≥ 0, we conclude that ImðacÞ is always negative in the
presence of two-body loss. We thus write ac as ac ¼
ar þ iai with ai < 0. Similar results may also be obtained
by considering the open channel wave function of a
multichannel Hermitian two-body model [26–31]. In that
case, the closed channels of the model play the role of a
dissipative reservoir (see the Supplemental Material SM for
more details).
Complex Bethe-Peierls model.—To generalize the Bethe-

Peierls boundary condition, we first write the Lindblad
equation in the first quantization formalism. Acting hrjj · jr0li
on both sides of Eq. (6) (jrli≡ ð1= ffiffiffiffi

l!
p Þψ̂†

r1…ψ̂†
rl j0i), we

obtain

∂tρjl ¼ ð1=iÞðHeffðrjÞ −H†
effðr0lÞÞρjl þ J ρjþ2;lþ2; ð10Þ

where ρjlðrj; r0lÞ≡ hrjjρ̂jljr0li is the first quantized

density matrix and HeffðrjÞ ¼
Pj

α¼1 − ð∇2
α=2mÞ þP

1≤α<β≤j VcðrαβÞ is the first quantized Hamiltonian. The
recycling term is given by

J ρjþ2;lþ2¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjþ2Þðjþ1Þðlþ2Þðlþ1Þ

p

×
Z
x;y

Viðjx−yjÞρjþ2;lþ2ðrj;x;y;r0l;x;yÞ: ð11Þ

From Eq. (10), we notice that in the region where all the
particles are apart from each other such that rαβ; r0αβ > r0
for all possible distinct pairs α, β, the evolution of ρjl is
governed by a noninteracting Heff plus the recycling term
J ρjþ2;lþ2. In the zero-range limit r0 → 0, this region fills
the whole domain of ρjl; one thus expects that the effect of
the complex interaction Vc can be replaced by a boundary
condition at rαβ → 0.
To be more concrete, we consider a system with mean

interparticle distance d and energy per particle ðk2=2mÞ,
and focus on the density matrix with a pair of particles
(α and β) close to each other such that rαβ ≪ d; k−1. In this
region, the two-body scattering process dominates, and
every other term in Eq. (10) besides the two-body relative
kinetic energy and interaction VcðrαβÞ can be ignored [32].
Then the Lindblad equation reduces to

0 ≃ −
∇2

rαβ

m
ρjl þ VcðrαβÞρjl; ð12Þ

which is nothing but the zero-energy two-body Schrödinger
equation in the relative coordinate rαβ.
Because of the centrifugal barrier of higher partial

waves, ρjl is dominated by the s-wave two-body wave
function φðrÞ. We thus have ρjl ∝ φðrαβÞ when rαβ → 0.
The same proof may also be applied to the region
r0μν ≪ d; k−1, which leads to following asymptotic form
of ρjlðrj; rlÞ when rαβ; r0μν → 0,

ρjl ≃ φðrαβÞφðr0μνÞBjlðrðαβÞj ;Rαβ; r0l
ðμνÞ;R0

μνÞ ð13Þ

with Bjl an arbitrary function.
Taking the limit of r0 → 0, we obtain the boundary

condition

ρjl ≃
�

1

rαβ
−

1

ac

��
1

r0μν
−

1

a�c

�

× BjlðrðαβÞj ;Rαβ; r0l
ðμνÞ;R0

μνÞ; rαβ; r0μν → 0: ð14Þ

The recycling term can be calculated by substituting
Eq. (13) into Eq. (11), which leads to

PHYSICAL REVIEW LETTERS 129, 203401 (2022)

203401-3



J ρjþ2;lþ2 ¼ Im

�
4πℏ2

mac

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjþ 2Þðjþ 1Þðlþ 2Þðlþ 1Þ

p

×
Z
R
Bjþ2;lþ2ðrj;R; r0l;RÞ ð15Þ

where we restored ℏ.
The boundary condition [Eq. (14)] together with the

recycling term [Eq. (15)] determine the evolution of density
matrix ρjl in the zero-range limit. They thus can be viewed
as the complex analog of the Bethe-Peierls boundary
condition [Eq. (1)].
Complex pseudopotential.—Given the boundary condi-

tion [Eq. (14)], it is straightforward to apply the standard
regularization method [6,7] and show that the short-range
complex interaction Vc (V�

c) in Heff (H†
eff ) can also be

replaced by a complex pseudopotential Uc (U�
c) with

UcðrÞ ¼
4πℏ2ac

m
δðrÞ∂rr: ð16Þ

Similarly, the recycling term [Eq. (15)] can be written in
terms of the regularized operators

J ρjþ2;lþ2 ¼
4πℏ2jaij

m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjþ 2Þðjþ 1Þðlþ 2Þðlþ 1Þ

p

×
Z
R;r;r0

δðrÞδðr0Þ∂rr∂r0r0ρjþ2;lþ2; ð17Þ

where ρ̂jþ2;lþ2 stands for ρjþ2;lþ2ðrj;Rþðr=2Þ;R−ðr=2Þ;
r0l;Rþðr0=2Þ;R−ðr0=2ÞÞ.
Renormalized contact potential.—Following the con-

ventional renormalization approach, we first write the
short-range complex potential Vc as a delta potential,

Vc ¼ ðg − iγÞδðrÞ; ð18Þ

with g (γ) being the real (imaginary) coupling constant.
It is then straightforward to calculate the two-body

scattering amplitude [33],

fðkÞ ¼ −
m
4π

1

ðg − iγÞ−1 þ 1
Ω
P

kð2ϵkÞ−1 þ ikm
4π

: ð19Þ

Comparing this formula with the standard low-energy
expansion of the scattering amplitude fðkÞ ¼ −1=
ða−1c þ ikÞ, we find the renormalization relation,

1

g − iγ
¼ 1

g0 − iγ0
−

1

Ω

X
k

1

2ϵk
; ð20Þ

where we have defined g0 − iγ0 ≡ ð4πℏ2ac=mÞ as being the
renormalized complex coupling constant. And the second
quantized recycling term is simply

J ρ̂ ¼ γ

Z
r
ψ̂2
r ρ̂ψ̂

†2
r : ð21Þ

We list the results for the three regularization
approaches in Table I. It is worth noting that the renorm-
alization relation [Eq. (20)] has been derived recently
using effective field theory [34]. In two recent works, it has
also been applied for the calculation of non-Hermitian
Hamiltonians [35,36].
Application to Bose gases.—To demonstrate the validity

of our regularized model, we study the quench dynamics
of BECs subjected to weak interaction and loss, i.e.,
njacj3 ≪ 1 where n is the boson density.
We shall use the renormalized delta potential approach for

this many-body problem.Writing the original Lindbladian in
momentum space, we obtain

Heff ¼
X
k

ϵkâ
†
kâk þ g − iγ

2Ω

X
k;k0;p

â†kþpâ
†
k0−pâk0 âk; ð22Þ

and the recycling term

J ρ̂ ¼ γ

Ω

X
k;k0;p

âk0 âkρ̂â
†
k0−pâ

†
kþp; ð23Þ

where a†k ≡ ð1= ffiffiffiffi
Ω

p Þ Rr eik·rψ†
r .

We consider a system of N bosons initially condense in
the zero momentum state, such that a large fraction of
bosons still remains in the condensate when t is small, i.e.,
the depletion ðN − N0Þ=N ≪ 1 where N0 ≡ hâ†0â0i is the
number of particles in the condensate. Then we may apply
the Bogoliubov approximation [37] and substitute â0; â

†
0 in

the Lindbladian by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N −

P
k≠0 â

†
kâk

q
. This leads to a

quadratic Bogoliubov Lindbladian that describes the
dynamics of the noncondensed bosons,

LBρ̂
0 ¼ 1

i

h
ĤB; ρ̂0

i
−2γ0n

X
k≠0

n
â†kâk; ρ̂

0
o
þ4γ0n

X
k≠0

âkρ̂0â
†
k:

ð24Þ

Here ρ̂0 is the reduced density matrix for the noncondensed
bosons. We see that the Lindbladian LB describes an open
system governed by ĤB and single-particle loss with loss
rate 4γ0n. Here HB is a Hermitian Hamiltonian,

ĤB ¼
X
k≠0

�
ðϵþ g0nÞâ†kâk þ

g0n− iγ0n
2

â†kâ
†
−k þH:c:

�
:

ð25Þ

Similar to the conventional Bogoliubov approximation
approach [38], we replaced all the bare coupling constants
g, γ by renormalized values g0, γ0.
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Remarks on LB.—We emphasize that the recycling term
J ρ̂ is essential for deriving the correct many-body
Lindbladian LB, as part of the recycling term such that
ðγ=ΩÞâ0â0ρ̂â†kâ†−k becomes γnρ̂â†kâ

†
−k and constitutes the

Hermitian Hamiltonian HB after the approximation. This
demonstrates that the recycling term J ρ̂ indeed plays an
important role in the many-body dynamics, and it is crucial
to regularize it accordingly. Moreover, we note that the total
density n is time dependent due to the breakdown of
particle number conservation. However, for systems with
njacj3 ≪ 1, one can simply substitute it by the mean-field
value nðtÞ ¼ nð0Þ=½1þ 2γ0nð0Þt�, which gives the correct
results to the order we desire (see the derivation below).
To solve the quadratic Lindbladian LB, we may consider

the dynamics of the SU(1,1) generators for the conventional
Bogoliubov Hamiltonian, Ak

0 ¼ 1
2
ðNk þ N−k þ 1Þ, Ak

1 ¼
1
2
ðâ†kâ†−k þ H:c:Þ, and Ak

2 ¼ ð1=2iÞðâ†kâ†−k − H:c:Þ [39].
The dynamics of Ak

i may be calculated by
ðd=dtÞhAk

i i ¼ trð∂tρ̂0Ak
i Þ ¼ trðLBρ̂

0Ak
i Þ, which leads to a

closed matrix equation

_Ak ¼ −2

0
BBB@

2γ0n γ0n −g0n
γ0n 2γ0n ϵk þ g0n

−g0n −ϵk − g0n 2γ0n

1
CCCAAk þ

0
B@

2γ0n

0

0

1
CA

ð26Þ
with Ak ≡ ðhAk

0 i; hAk
1 i; hAk

2 iÞT . We note that Eq. (26)
reduces to the conventional equation of motion for the
SU(1,1) generators in the ai → 0 limit [40,41].
The matrix in Eq. (26) needs to be solved numerically for

the density n is time dependent, while a lot of information
can be extracted by considering the short-time dynamics
near an arbitrary time t0 where we may approximate the
density by a constant nðtÞ ≃ nðt0Þ þOðt − t0Þ. In this case,
the solution to the matrix equation can be written as

AkðtÞ ≃Ak
s þ

X2
j¼0

Cje2iðt−t0Þξj;k : ð27Þ

Here Ak
s is the quasisteady value for the SU(1,1)

generators whose elements are listed in the Supplemental
Material SM, Cj are constant vectors that depend on the
initial value of Ak at t ¼ t0, and 2iξj;k represent the three
eigenvalues of the 3-by-3 matrix in Eq. (26). The eigen-
values can be calculated explicitly:

ξ0;k ¼ 2iγ0n; ξð1;2Þ;k ¼ 2iγ0n�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ2k þ 2g0nϵk − γ20n

2

q
:

Clearly, ξð1;2Þ;k reduce to the excitation energies of
Bogoliubov modes in the γ0 → 0 limit, and the imaginary
ξ0;k indicates that LB only has one steady state, i.e., the
vacuum [42].

Even though the system eventually evolves to the
vacuum, it is still possible to discuss the stability of the
Bose gas in time period t≲ ½γ0nð0Þ�−1 where many bosons
still remain in the system. The excitation energies ξð1;2Þ;k
provide this stability information.
Note that a negative imaginary part in ξj;k represents an

exponentially growth of that mode. In the conventional
analysis on BECs with no loss (γ0 ¼ 0), the atomic cloud is
unstable whenever the argument under the square root is
negative for some k, i.e., when g0 < 0. However, in the
presence of losses (γ0 > 0), there is a competition between
the leading 2iγ0n term and the imaginary part from the
square roots in ξð1;2Þ;k. This depicts the competition between
the inelastic process which tends to suppress the particle
number with finite momentum k and the elastic scatter-
ing process which tends to keep exciting finite momen-
tum particles from the condensate. For g0 > −

ffiffiffi
3

p
γ0,

Imðξð1;2Þ;kÞ > 0 for all momenta, the number of excitations
always decays, and the system keeps evolving toward the
quasisteady stateAk

s , while for g0<−
ffiffiffi
3

p
γ0, Imðξð1;2Þ;kÞ < 0

for smallmomenta. The system is unstable against the strong
attraction in this region, and the Bogoliubov modes as well
as the depletion ð1=NÞPk Nk ≡P

kðhAk
0 i − 1

2
Þ keep grow-

ing. Experimentally, these growing Bogoliubov modes

(a)

(b)

FIG. 1. (a) The phase diagram on the complex a−1c plane for
BECs subjected to weak interaction and two-body loss. The
system is unstable for θ≡ argða−1c Þ > ð5π=6Þ. (b) The depletion
ð1=NÞPk≠0 Nk as a function of time (in unit of ð1=γ0nð0ÞÞ). The
initial condition is Ak

0 ¼ ð1
2
; 0; 0ÞT ; the parameters are g0 ¼ γ0

(blue, stable), g0 ¼ −γ0 (green, stable), and g0 ¼ −3γ0 (purple,
unstable). Inset: the long-time behavior of depletion.
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would cause a burst of jets of finite momentum atoms. Such
“Bosenova” phenomena have already been observed in
BECs with pure attraction (g0 < 0, γ0 ¼ 0) [43,44].
The different behaviors define a critical angle θc ¼

ð5π=6Þ for argða−1c Þ which separates the complex a−1c
plane into two regions. To demonstrate the difference of
dynamics in these regions, we numerically solve the matrix
Eq. (26) for different g0=γ0 and plot the depletion as a
function of time in Fig. 1(b). One can see that for
g0=γ0 < −

ffiffiffi
3

p
, the depletion quickly grows and reaches

O(1) where the Bogoliubov approximation becomes
invalid, in contrast to the cases with g0=γ0 > −

ffiffiffi
3

p
where

the depletion remains small. In cold atom systems, we
estimate that the time unit ½γ0nð0Þ�−1 ≳ 10 ms near an
optical Feshbach resonance [45,46]. We thus expect that
this dynamical behavior may be observed in experiments.
Another interesting physical quantity that worth noting is

the particle decay rate _N. In the Appendix, we use the
Bogoliubov approximation to calculate the decay rate _N for
the quasisteady state. Using the renormalization relation
given in Eq. (20), it is found that

h _Nis ¼ −
8πℏ2jaijnN

m
½1þ cθðnjacj3Þ1=2� ð28Þ

with cθ¼2
ffiffiffiffiffiffi
2π

p ðcosð2θÞ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinðθc−θÞ

p þ2cosθ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinðθc−θÞ

p Þ
and θ ¼ argða−1c Þ ∈ ð0; θcÞ.
We note that the leading term in _N may be viewed

as the mean-field effect due to the two-body loss, which
gives particle decay on the mean-field level nðtÞ ≃
nð0Þ=½1þ 2γ0nð0Þt� [47], while the next term in the order
of ðnjacj3Þ1=2 is an analog to the celebrated Lee-Huang-
Yang correction for weakly interacting Bose gas [9,10].
Finally, we comment on the experiment control of ac.

Complex scattering lengths have been observed in cold
atom experiments through optical Feshbach resonance
[31,46]. The optical Feshbach resonance couples the open
scattering channel to a closed channel molecule with a
finite lifetime, which results in a complex scattering length
that can be tuned via controlling the detuning and the
intensity of the optical fields. Indeed, we develop a
resonant two-channel model with a finite lifetime closed
channel dimer and show that the complex scattering length
ac can be experimentally tuned across the entire lower half
of the complex plane [13].
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