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Several recent attoclock experiments have investigated the fundamental question of a quantum
mechanically induced time delay in tunneling ionization via extremely precise photoelectron momentum
spectroscopy. The interpretations of those attoclock experimental results were controversially discussed,
because the entanglement of the laser and Coulomb field did not allow for theoretical treatments without
undisputed approximations. The method of semiclassical propagation matched with the tunneled wave
function, the quasistatic Wigner theory, the analytical R-matrix theory, the backpropagation method, and
the under-the-barrier recollision theory are the leading conceptual approaches put forward to treat
this problem, however, with seemingly conflicting conclusions on the existence of a tunneling time delay.
To resolve the contradicting conclusions of the different approaches, we consider a very simple tunneling
scenario which is not plagued with complications stemming from the Coulomb potential of the atomic core,
avoids consequent controversial approximations and, therefore, allows us to unequivocally identify the
origin of the tunneling time delay.
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Time delay in tunneling is a fascinating fundamental
quantum problem, most recently measured in an experi-
ment with cold atoms [1]. In particular, there has been
intense and often controversial discussion about time delay
in strong field tunneling ionization [2–39], confirming or
disputing the interpretation of the experimental attoclock
results [2–7]. The main difficulty stems from the fact that in
such an experiment the photoelectron momentum distri-
bution (PMD) is measured, rather than the tunneling time
directly. This time is retrieved using time-to-angle mapping
for photoelectrons tunnel-ionized in a laser field of
elliptical polarization close to circular [2]. This mapping
straightforwardly follows from the so-called simple
man model [40]. According to this the photoelectron
emission angle is determined by the direction of the laser
vector potential at the moment of the electron appearing in
the continuum. However, in a real physical situation the
extraction of information on the tunneling time from PMD
is not straightforward, because the Coulomb field of the
atomic core induces a similar effect in PMD as the
tunneling time delay (with respect to the peak of the laser
field), and this effect is difficult to account for quantum
mechanically with high accuracy. For this reason a

semiclassical method was proposed [2–4], where the tun-
neling was treated quantum mechanically, but the further
electron motion in the continuum under the simultaneous
action of the laser andCoulomb fields, classically.Moreover,
the Coulomb field effect essentially depends on the tunnel
exit coordinate, which in the quasistatic regime of ionization
was calculated including tunnel ionization in parabolic
coordinates with induced dipole and Stark shift also referred
to as TIPIS model [4]. The semiclassical method was further
improved, deriving the initial conditions of the classical
propagation via the quantum mechanical Wigner trajectory
emerging from the tunneling region [6,17]. However, non-
adiabaticity of the tunneling ionization renders the quasi-
static Wigner theory and related matched quantum-classical
model inaccurate at large Keldysh parameters [41].
The numerical solutions of the time-dependent

Schrödinger equation (TDSE) [7,13,42–46] for the atto-
clock reproduce the experimental results, yielding confi-
dence that the attoclock PMD features have a single
electron origin. However, the numerical results do not
contribute much to our understanding of the tunneling time.
Not long ago the backpropagation method was proposed to
deduce the tunneling time delay from the numerical
solution of TDSE [22–24]. In this method, the asymptotic
numerical solution of TDSE is simulated by a classical
ensemble, which is backpropagated classically up to the
tunnel exit. With the backpropagation method a negligible
time delay is obtained in weak fields, though nonnegligible
negative time delays up to several atomic units (a.u.) at high
fields. However, a conclusion was drawn that the tunneling
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time delay is negligible, assuming intuitively that the origin
of the negative time cannot be tunneling. The TDSE
numerical results have been also compared to the analytical
R-matrix (ARM) theory [13], which is the state-of-the-art
theory of the Coulomb-corrected strong field approxima-
tion (SFA) [47–51]. The comparison revealed that TDSE
has a negative time delay with respect to ARM at large laser
fields which, however, has been interpreted as a conse-
quence of the bound state depletion and frustrated ioniza-
tion [52]. The problem of the accurate description of subtle
features of PMD has been addressed in Ref. [18] within
SFA. A new type of quantum orbit was identified there,
corresponding to under-the-barrier recollisions, where
interference with the direct ionization path induces a gentle
modification of the asymptotic PMD.
There are basically two opinions in interpreting the

attoclock experiment, one claiming negligible (or zero)
[7,13,23–26], and other nonnegligible asymptotic tunnel-
ing time delay (ATD) [4–6,17,18]. While ATD is read out
from the asymptotic PMD, some also considered theoreti-
cally the near exit time delay (ETD) [15–17,27], observable
in a Gedanken experiment with a so-called virtual detector
near the tunnel exit [53,54]. These two faces of the concept
of the tunneling time delay should be clearly distinguished.
ATD is defined by the time delay of the classical trajectory,
which is classically backpropagated from the peak of the
photoelectron asymptotic wave function up to the exact
point of the tunnel exit. The classical backpropagation is
physically relevant, as the electron dynamics in the con-
tinuum is quasiclassical. However, the dynamical informa-
tion can be extracted more accurately from the full quantum
mechanical wave function. In particular, the so-called
Wigner trajectory is deduced from the latter, which traces
the time-dependent peak of the current density via the
electron wave function during the tunneling ionization and
defines ETD. The Wigner trajectory is in accordance with
the classical backpropagation trajectory a few de-Broglie
wavelengths away from the tunnel exit. However, near the
tunnel exit the Wigner trajectory deviates strongly from the
classical one and shows a positive ETD [17,38]. We note
that ATD and ETD characterize the tunneling dynamics
from different perspectives: While ATD is related to the
attoclock protocol, ETD describes how the classical tra-
jectory emerges from the quantum dynamics of the laser
driven atomic electron.
This Letter is devoted to resolving conflicting conclu-

sions of theories on the tunneling time delay and clarifying
the difference between ATD and ETD. We judiciously
consider a very basic tunneling scenario which is not
plagued with complications stemming from Coulomb
effects and the depletion of the bound state, is applicable
in the adiabatic as well as in the nonadiabatic regimes,
avoids consequent controversial approximations, and
allows for analytical results. We consider ionization of
a one-dimensional (1D) atom bound with a zero-range

potential driven by an half-cycle laser field. The calculation
using SFA [41,55,56] is carried out fully analytically which
facilitates a qualitative comparison of all differing models.
Our results are confirmed by the numerical solutions of
TDSE in 1D as well as in 3D with linearly and circularly
polarized laser pulses. The reasons for the conclusions
deviating from Refs. [7,22–26] are all analyzed.
We consider ionization of an electron bound in a 1D

zero-range potential VðxÞ ¼ −κδðxÞ [57], in a half-cycle
laser pulse with electric field EðtÞ ¼ −E0 cos2ðωtÞ, where
ω ¼ 0.05 a:u:, κ ¼ ffiffiffiffiffiffiffi

2Ip
p ¼ 1 a:u:, and Ip is the ionization

potential. The Keldysh parameter is γ ¼ ω̃κ=E0, with the
effective frequency ω̃≡ ffiffiffi

2
p

ω related to the cos2 pulse.
Atomic units are used throughout. We employ SFA, with
incorporated low-frequency approximation (LFA) for a
more accurate treatment (beyond the Born approximation)
of the recollision [58–60]. The LFA validity is justified as
the laser frequency ω ≪ εr [58], with the recollision
energy εr ∼ 1 a:u. The asymptotic momentum distribution,
wðpÞ ¼ jmðpÞj2 ¼ jmDðpÞ þ mRðpÞj2 (see Fig. 1) is

(a) (b)

(c) (d)

FIG. 1. (a) Asymptotic PMD as function of δp≡ pþ Að0Þ for
E0 ¼ 0.25 a:u:, where the grid line at δp ¼ 0 shows the PMD
peak with only the direct ionization amplitude mD. (b) Tunneling
time distribution using the backpropagation method of the
asymptotic PMD. (c) The ratio of the rescattering amplitude to
the direct ionization one jmR=mDj. (d) The shift of the PMD peak
(δp) due to the tunneling time delay vs the laser field. For all
panels (green-solid) is via the full SFA m ¼ mD þmR, including
sub-barrier direct and rescattered paths, (green-dashed) via the
SFA direct amplitude, (black) via the numerical TDSE solution,
(red) TDSE with the bound state depletion subtracted via the
backpropagation method (see Sec. XIII.E.3 in the Supplemental
Material [63]), (brown) via the static Wigner trajectory.

PHYSICAL REVIEW LETTERS 129, 203201 (2022)

203201-2



determined by interference of the direct ionization
amplitude

mDðpÞ ¼ −i
Z

dthψV
pðtÞjHiðtÞjϕðtÞi; ð1Þ

and the ionization amplitude with rescattering, described by
a second-order SFA [60,61]:

mRðpÞ ¼ −
Z

dt
Z
t
ds

Z
dqhψV

pðsÞjT½pþ AðsÞ�jψV
q ðsÞi

× hψV
q ðtÞjHiðtÞjϕðtÞi: ð2Þ

Here ϕðx; tÞ ¼ ffiffiffi
κ

p
expð−κjxj þ iκ2=2tÞ is the bound state

wave function, ψV
pðx; tÞ the Volkov wave function [62],

HiðtÞ ¼ xEðtÞ the electron interaction Hamiltonian with
the laser field, and AðtÞ ¼ −

R
t
tf
dsEðsÞ. In the considered

half-cycle laser field the rescattering takes place during the
under-the-barrier dynamics, which is in LFA described with
the exact laser-free scattering T matrix: hpjTðpÞjqi ¼
−ðκ=2πÞ=ð1 − iκ=jpjÞ [60]. The time integration in mR
is carried out via 3D saddle-point approximation [63]. We
have also calculated asymptotic PMD via numerical TDSE
solution [63], which is in accordance with the analytical
result and shows a momentum shift with respect to the zero-
time delay case (PMD via the direct SFA amplitude mD)
corresponding to a negative ATD δt ¼ −δp=E0; see Fig. 1.
We retrieve the distribution of ATD from the asymptotic

PMD [see Fig. 1(b)], using the backpropagating method
[22]. The classical backpropagation up to the tunnel exit,
where the longitudinal velocity is vanishing pþ AðteÞ ¼ 0,
is carried out using the photoelectron asymptotic wave
function ψðx; tÞ ¼ R

mðpÞ expðipxÞdp, with the total
amplitude mðpÞ ¼ mD þmR [63]. The interference of
the direct and the under-the-barrier rescattered trajectories,
which is governed by the ratio of amplitudes mR=mD,
induces a visible shift in the asymptotic PMD with respect
to the case of the PMD based on the direct trajectory only,
although jmR=mDj ≈ 0.13. For instance, the momentum
shift is δp ∼ 0.3 a:u:, which is equivalent to the negative
ATD te ∼ −1 a:u:, at E0 ¼ 0.25 a:u:; see Figs. 1(b) and
1(c). The exponential suppression of ATD is governed by
the parameter E0=Eth [18], with the threshold field Eth of
over-the-barrier ionization (OTBI) [63–65]. It is larger near
the OTBI threshold [17,66] (the shorter the barrier length,
the larger is the tunneling time [67]).
In Fig. 1(d) the dependence of themomentum shift δp due

to the tunneling time delay on the laser field amplitude is
shown. Thus, the calculations with our basic tunneling
scenario show that the peak of asymptotic PMD can have
a time delay up to the order of 1 a.u. [see Fig. 1(d)], due to
interference of the direct and rescattered paths. The averag-
ing over PMDdecreases the time delay.We can give a simple
estimation of the latter property. FromRef. [18], the negative

time delay is proportional to the Keldysh exponent
teðtÞ ≈ t0 expf−2κ3=½3jEðtÞj�g, with the maximum of the
time delay tmax ¼ t0 expf−2κ3=ð3E0Þg, and t0 ∼ 1=κ2, such
that the averaged time delay can be estimated as
htei ∼

R tf
−tf teðtÞwðtÞdt=

R tf
−tf wðtÞdt ∼ 0.7tmax, with the tun-

neling ionization probability wðtÞ ∼ expf−2κ3=½3jEðtÞj�g.
The time delay calculated from the second-order SFA in

the adiabatic regime γ ≪ 1 is closely related to the static
Wigner time delay. This is illustrated in Fig. 1(d) (see
brown line), where the estimation of the static Wigner time
delay is used; see Refs. [18,63]. In strong fields, the regime
of ionization is adiabatic and the quasistatic Wigner theory
is relevant [in Fig. 1(d) at γ ≲ 0.5]. Note that in Ref. [6], the
deviation of the experimental data from the quasistatic
estimation takes place at γ ≳ 0.6.
In Ref. [23] the average tunneling time delay is calcu-

lated for helium (κ ¼ 1.345). In this case the time delay is
by a factor of κ2He=κ

2 ≈ 1.8 smaller than in our κ ¼ 1 a:u:
case, since te ∼ 1=κ2 [68]. We may compare qualitatively
our 1D case of Fig. 1(d) (Ip ¼ 0.5) with the helium result of
Ref. [23] at the same ratio of E0=E1D

th ¼ E0=EHe
th , using for

helium EHe
th ¼ 0.24 a:u: [63]. The scaled data of Ref. [23]

provide the average negative tunneling time delay of the
order up to 1 a.u. (E0 ≲ 0.25 a:u:), which qualitatively is in
accordance with our model.
With the SFA time-dependent amplitude mðp; tÞ, we

retrieve the time-dependent SFA wave function Ψðx; tÞ for
the ionized electron:

Ψðx; tÞ ¼ ϕðx; tÞ þ
Z

∞

−∞
dp

Z
t

−∞
dt0ψV

pðx; t0Þmðp; t0Þ; ð3Þ

and derive ETD from the latter as the peak of the full
electron current density jðxeÞ at the tunnel exit xe: see also
Refs. [17,68,69]. The quantum mechanical description
allows one to find the physical time delay at the exit
which is read out as the peak of the time-dependent electron
current density near the tunnel exit; see the current density
distribution in Fig. 2, which shows that the most probable
ETD is positive. This is also observed in the static tunneling
case via the Wigner trajectory tWe ∼ 1=E2=3

0 , yielding also a

nonvanishing group velocity at the tunnel exit vW ∼ E1=3
0

[17,68]. The SFA wave function in Fig. 2 is calculated via
the direct ionization path. The difference between the
TDSE and SFA results is due to the contribution of the
recolliding trajectory. Thus, Fig. 2 shows that ETD is
mostly determined by the direct ionization path. The
inclusion of the recollision path disturbs ETD only slightly.
Thus, the following picture of tunneling ionization
emerges: the Wigner trajectory via the virtual detector
(peak of the current density) shows a positive ETD. A few
de-Broglie wavelengths away from the tunnel exit the most
probable classical trajectory emerges from the Wigner one.
The classical trajectory shows a negative ATD, which is

PHYSICAL REVIEW LETTERS 129, 203201 (2022)

203201-3



vanishing in the deep tunneling regime E0 ≪ Eth; however,
ETD is largest in this regime.
In Ref. [26] a “trajectory-free” method is proposed to

address the tunneling time problem. It is based on the
assumption that the (real part of the) saddle point of
the time integrand of the ionization amplitude determines
the ionization time (ATD). We question this assumption.
Our line of reasoning is the following. From one side, with
our simple SFA model we show that in the near OTBI
regime the asymptotic momentum distribution is shifted
with respect to the zero ATD case, i.e., demonstrating a
nonvanishing ATD. From another side, we apply the
“trajectory-free” method to the SFA wave function [63],
i.e., represent the SFA wave function as a time integral,
calculate the time saddle-point, and obtain that the saddle-
point of the ionization wave function is zero in the same
case, which shows a shift in the momentum distribution
corresponding to the nonzero ATD; see Fig. 3. This
demonstrates that the time saddle point and ATD are not
equivalent. We interpret it as follows. The time saddle point
indicates the complex time when the electron ionization
path starts at the atomic core. Both amplitudes mD and mR
start at Reftsg ¼ 0 at the core, and each amplitude
generates a momentum distribution with the peak corre-
sponding to vanishing ATD. However, their interference
causes a deviation of the momentum distribution peak from
the no-time-delay model. In short, the time saddle point is
the ionization starting point at the core, and it does not
coincide with the time delay because the origin of the latter
is the interference of two paths.
Finally, we have to comment on the numerically

calculated vanishing ATD in Ref. [7] for an atto-
clock in the case of a short-range Yukawa potential
VðrÞ ¼ −ðZ=rÞ expð−rÞ, with Z ¼ 1.908. In Ref. [7] it
is argued that the attoclock time delay in atoms is fully due
to the Coulomb effect, and when the Coulomb field is
removed in the case of a Yukawa potential, the ATD will be

vanishing. However, the result of vanishing ATD in Ref. [7]
is due to the fact that the range of the field strength of
the calculation is not high enough for E0 ≲ 0.075. The
threshold field of the applied Yukawa potential is
EYukawa
th ≈ 0.1855; it is smaller than that of the 1D short-

range potential EYukawa
th =E1D

th ∼ 0.7. From the latter it is
expectable to have a sizable ATD, for instance of the order
of 1 a.u., near the threshold at E0 ¼ 0.175, while in the
short-range potential it is observed at a larger value
E0 ¼ 0.23; see Fig. 1(d). More detailed E0=Eth scaling
is different in 1D and 3D cases, which stems from the wave
packet spreading factor in the transverse direction [18].
Furthermore, with the given high charge Z ≈ 2, the
momentum transfer at the tunnel exit due to the atomic
potential is not negligible at high field strengths, when the
tunnel exit is close to the core [63]. The attoclock angular
offset angle due to the atomic potential corresponds to the
positive time delay, which counteracts and reduces the
observable negative ATD. We have carried out calculations
of the ATD for the given Yukawa potential in a large range
of field strengths using numerical 3D TDSE solutions for
attoclock scenarios [43,44,63]. In Fig. 4 we show the total
time delay calculated via the backpropagation from the 3D
TDSE wave function, as well as the time delay after the
subtraction of the depletion contribution (via BP method,
see Sec. XII.E.3 of the Supplemental Material [63]).
The attoclock offset angle is vanishingly small when the
field is not large E0 ≲ 0.075 (up to the laser intensity
4 × 1014 W=cm2), in agreement with the calculation of

FIG. 2. The electron time-dependent current density jðxeÞ near
the tunnel exit during tunneling ionization: (green-solid) via the
full SFA, and (green-dashed) via the first-order SFA, (black) via
the TDSE numerical solution, (red) via the TDSE numerical
solution with depletion subtracted [63]. The ETD is positive as
exhibited by the SFA curve, as well as by the TDSE with
subtracted depletion.

FIG. 3. The time integrand of the ionization amplitude via SFA
in the complex plane in the case of the most probable momentum
p ¼ pmax for the total amplitude m ¼ mD þmR. The saddle
point of the total amplitude (see the cross) is vanishing:
Reftsg ¼ 0, while Reftsg < 0 for mD and mR, see Fig. 2 in
the Supplemental Material [63]. The total amplitude has a shifted
peak in momentum due to interference, however, the real part of
the saddle point of the total amplitude for the peak momentum is
still vanishing.
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Ref. [7], but increases at high field strengths showing a
negative time delay up to 1.7 a.u.
Concluding, we have analyzed the tunneling time delay

in strong field ionization employing a simple tunneling
scenario where leading theoretical approaches with seem-
ingly conflicting conclusions could be compared without
critical approximations. This way we have demonstrated
that the peak of the tunneling wave packet emerging from
the barrier around the tunnel exit significantly deviates
from the most probable classical backpropagated trajectory,
featuring a positive ETD. It however asymptotically merges
with the backpropagated trajectory, which itself shows
negative ATD, originating from the interference of the
direct and recolliding sub-barrier paths. Finally, in explain-
ing the absence of tunneling times from the remaining other
methods, we have clarified that there are indeed no conflicts
among the various approaches. In particular, we have
shown that the attoclock offset angle cannot arise solely
due to the Coulomb effect of the atomic core, because it
exists also in the case of a Yukawa potential for strong
fields. Furthermore, the starting point of ionization at the
atom without time delay with respect to the peak of the
laser field does not exclude nonvanishing ATD.
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