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Sorbonne Université, CNRS, 24 rue Lhomond, 75005 Paris, France
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Nuclear magnetic relaxation is widely used to probe protein dynamics. For decades, most analyses of
relaxation in proteins have relied successfully on the model-free approach, forgoing mechanistic
descriptions of motion. Model-free types of correlation functions cannot describe a large carbon-13
relaxation dataset in protein side chains. Here, we use molecular dynamics simulations to design explicit
models of motion and solve Fokker-Planck diffusion equations. These models of motion provide better
agreement with relaxation data, mechanistic insight, and a direct link to configuration entropy.
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Protein dynamics can be studied in the liquid state using
a wide range of spectroscopic and scattering approaches
[1–4]. For example, fluorescence anisotropy decay curves
are direct measurements of the time-correlation function for
the orientation of the fluorescence probe axis frame [5].
Nuclear magnetic resonance (NMR) relaxation rates probe
the spectral density function, the Fourier transform of the
time-correlation function for the orientation of the axis
frames of spin interactions [6–9] in the fixed laboratory
frame. These methods are sensitive to both the overall
rotational diffusion of the molecule and internal motion of
small, well-defined moieties.
The quantitative interpretation of relaxation rates in

terms of motion requires parametrized models of correla-
tion functions. A diversity of such models of motion were
introduced in the second half of the 20th century: rotation
on a cone [10], orientation jump [11], and diffusion in a
cone [5]. Discriminating between these models is difficult,
particularly when limited experimental datasets are avail-
able, which motivated the introduction of simplified corre-
lation functions. For instance, in NMR spectroscopy, the
model-free (MF) approach approximates the correlation
function for internal motion CintðtÞ to a single exponential
decay term [12,13]:

CintðtÞ ¼ S2 þ ð1 − S2Þe−t=τ; ð1Þ

with S2 the generalized squared order parameter and τ an
effective correlation time. The great simplification brought
by the MF approach has led to hundreds of successful
analyses of NMR relaxation data recorded on proteins [14]
and a better understanding of internal protein motion.

A variety of NMR methods and new instruments make it
possible to record extensive sets of relaxation rates and to
probe the range of validity of the MF approach. We have
recently reported site-specific isoleucine-δ1 carbon-13
relaxation measurements recorded on the protein ubiquitin
over 2 orders of magnitude of magnetic fields [15,16].
Correlation functions derived from the MF approach were
unable to describe both auto- and cross-correlated relax-
ation rates [16]. The MF approach was a necessary
simplification four decades ago, but, today, the nature of
motion is better known thanks to molecular dynamics (MD)
simulations. Would explicit models of motion provide a
more accurate and informative framework to analyze
extensive relaxation datasets? Here, we use MD simula-
tions to define key properties of motion (e.g., to identify
which rotamer states are populated) and write Fokker-
Planck diffusion equations that fulfill these properties. We
employ the resulting correlation functions to analyze NMR
relaxation data and to quantitatively describe the dynamics
of protein side chains and the underlying molecular
mechanisms.
Our approach is illustrated in the case of carbon-13

relaxation in isoleucine-δ1 specifically labeled 13C1H2H2

methyl groups, where carbon-13 relaxation is driven by its
dipole-dipole (DD) interactions with the proton and deu-
terons and its chemical shift anisotropy (CSA). We analyze
a broad dataset consisting of carbon-13 longitudinal (R1)
and transverse (R2) relaxation rates and carbon-proton DD
cross-relaxation rates (σNOE) measured at four high mag-
netic fields, as well as 22 relaxometry carbon-13 R1

rates measured over 2 orders of magnitude of magnetic
field [15]. We also include CSA and DD cross-correlated
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cross-relaxation (CCCR) rates (longitudinal ηz and trans-
verse ηxy) measured at two high magnetic fields. We use for
all models a Markov-chain Monte Carlo (MCMC) pro-
cedure [17] to analyze 38 relaxation rates per methyl group
and extract the model parameters.
We previously used an MF-type of correlation function

to describe the isoleucine Cγ1Cδ1 bond motion, i.e., the
extended model-free [18] correlation function. When all
rates are analyzed together, experimental transverse relax-
ation rates R2 cannot be reproduced for any of the six
isoleucine residues with no sizable contribution of chemi-
cal exchange, especially at the highest magnetic fields
(Figs. 2(a) and S1 [19] ). These large discrepancies dem-
onstrate that MF-type correlation functions cannot repro-
duce this set of relaxation rates.
Recent advances in MD simulations, with improved

protein force fields, provide a wealth of information on the
nature of motion [15,20,21]. We propose to use an MD
trajectory to define appropriate explicit models of correla-
tion functions to analyze experimental data, providing a
mechanistic description of motion. Note that we are not
(i) validating one method with the other, as can be done by
calculating NMR parameters fromMD simulations [20,22];
(ii) constraining an MD trajectory using NMR results
[23,24]; or (iii) reweighing an MD trajectory with NMR
constraints [20]. Rather, we use MD to identify the
rotamers relevant for an explicit model that we use to
analyze NMR relaxation. Our approach echoes a recent
study of lipid bilayer dynamics [25], where MD results
were refined using NMR data, but the detector approach
used therein [25,26] yielded no mechanistic description of
motion.
We performed a 1 μs MD simulation of ubiquitin with

Gromacs [27–31], using the Amber ff99SB*-ILDN force
field [32,33] modified with accurate energy barriers for
methyl rotation [34] and the TIP4P-2005 water model [35].
The distributions of the dihedral angles χ1 and χ2 highlight
the different possible motions of each isoleucine residue
(Figs. 1 and S2 [19]). Accessible conformations of iso-
leucine side chains correspond to the nine possible (χ1 and
χ2) rotamers, and their dynamics are well described by
instantaneous jumps between rotamer states. Here, we
neglect the local librations of Cγ1Cδ1 bonds, as we assume
a negligible contribution to relaxation [36], and use a model
of infinitely fast jumps between discrete positions for
Cγ1Cδ1 bond dynamics [11].
The chemical environment for the Ile-δ1 methyl groups

is rotamer dependent, which should lead to rotamer-specific
chemical shift tensors [37]. Precise isoleucine side-chain
conformations in water were obtained using density func-
tional theory (DFT) calculations in Gaussian [38] (see
Supplemental Material [19]). The CSA tensors calculated
with the gauge-independent atomic orbital method [39,40]
are rotamer dependent (Table S1 [19]). Within the Born-
Oppenheimer approximation, any jump of the side chain

from one rotamer to another would thus result in an
instantaneous change of the CSA. We included this
time-dependent interaction amplitude in our model to
accurately account for the fluctuations of CSA tensors.
In the Bloch-Wangsness-Redfield relaxation theory, the

correlation function between interactions i and j can
include the amplitudes of the interactions, as denoted by
the superscript (I):

CðIÞ
i;j ðtÞ ¼ hζið0ÞζjðtÞDð2Þ�

q0 ðΩL;i; 0ÞDð2Þ�
q0 ðΩL;j; tÞi; ð2Þ

where h� � �i stands for an ensemble average, Dð2Þ�
q0 ðΩL;i; tÞ

is a rank-2 Wigner matrix with the Euler angle set ΩL;i ¼
fαL;i; βL;i; γL;ig for transformation from the laboratory to
the interaction-i frame at time t, and ζiðtÞ is the strength of
the interaction i at time t. Motion is modeled using Fokker-
Plank diffusion equations, and the associated operators
are diagonalized to write time-dependent bond-orientation
conditional probabilities used to express the correlation
function [36,41]. Intermediate frames are introduced to
facilitate the description of individual motions, all assumed
to be statistically independent unless otherwise stated
(Fig. S3 [19]): the global tumbling (with the diffusion
frame), the rotamer jump (with the jump and rotamer
frames), and the methyl rotation (with the system frame).
A diffusive motion for the methyl rotation is a relevant
approximation, as discussed in Sec. I in Supplemental

FIG. 1. Probability density distribution for χ1 and χ2 dihedral
angles for Ile-36 obtained from a 1 μs MD trajectory. Nine
rotamers can be defined, each numbered from 1 to 9 as shown.
We also indicate the common states nomenclature with
gaucheþ (gp), trans (t), and gauche− (gm). Some conformers
are shown as well with the Cδ1H3 group presented with spheres.
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Material [19]. Note that both internal and global motions
are anisotropic a priori.
The complexity of the correlation functions rapidly

increases with the number of rotamers N, as the sums
contain N3 terms, and NðN − 1Þ=2 jump rates need to be
determined to fully characterize the exchange matrix.
Information from MD simulations is essential to define
suitable explicit models with a minimal number of adjust-
able parameters. First, we included only rotamers with
average fractional populations higher than 1% in the MD
trajectory (Table S2 [19]). Second, jump rates for transi-
tions which were not observed in the MD trajectory were
fixed to 0 in the exchange matrix. The adjustable param-
eters of the model are populations of rotamers selected by
MD, exchange rates, and diffusion constants for methyl
rotation. For additional information on the data ana-
lysis, see Supplemental Material [19], which contains
Refs. [42–49].
Explicit models of motion are compatible with exper-

imental relaxation rates (Figs. 2(a) and S4 [19] ) with better
agreement than the MF analysis (Table S3 [19]), in
particular, for R2 and CCCR rates. Some deviations can
be observed for the σNOE, which might be due to the
neglected contribution of fast Cγ1Cδ1 bond librations [36].
In addition, the explicit model gives a mechanistic picture
of the motion: we estimate equilibrium populations

(Figs. 2(b) and S5 and Table S4 [19]) which are accessible
to only a few advanced experimental methods [37,50,51]
and, uniquely, the kinetics of exchange.
Most distributions of parameters obtained from the

MCMC analysis are well defined and allow a precise
estimate of the parameters of the model (Eqs. (S7)–(S9)
and Figs. 2(b), S5, and S6 [19] ). However, as the number
of states increases, the distributions become broader and
the resulting jump matrices can be ill defined (see
Supplemental Material [19]). Further improvement could
consist in analyzing relaxation rates simultaneously with
other data defining conformational ensembles, such as
chemical shifts or scalar-coupling constants [37,52].
Explicit models of motion constitute an efficient frame-

work to combine the imperfect information from MD
simulations and experiments. Despite recent force-field
improvements [34], MD data alone cannot reproduce
relaxation rates, whether these are calculated directly from
the MD correlation functions (Figs. S7 and S8 [19]) or from
the analysis of MD with the explicit models of motion [53]
(Fig. S9 and Table S3 [19]). Beyond force-field deficien-
cies, this is likely due to the limited sampling on the
microsecond timescale. If the identification of the relevant
rotameric states is probably reliable, the extraction of
accurate transition rates would require many more tran-
sitions during the MD trajectory for good statistics.
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FIG. 2. Explicit models of motion for residues Ile-61 and Ile-23 in human ubiquitin were used to analyze longitudinal R1 and
transverse R2 relaxation rates; dipolar cross-relaxation rates σNOE; and longitudinal ηz and transverse ηxy CCCR rates. (a) Measured and
calculated relaxation rates following a MCMC procedure using the explicit model of motion (solid line) or MF-type correlation function
(dashed line) for Ile-61. (b) Distributions of parameters of the explicit model of motion for Ile-61 from the MCMC analysis. MD
simulations show that only rotamers 6 and 9 are populated, suggesting a model including jumps between rotamers 6 and 9. The free
parameters of the model are the population of rotamer 6, p6, the exchange rate from rotamer 6 to rotamer 9, k96, and the diffusion
constant for rotation on a cone of the methyl group, Dm. The median and standard deviation are indicated in each panel. (c) Measured
and calculated relaxation rates following a MCMC procedure using the explicit model of motion with (solid line) or without (dashed
line) correlation of jumps and methyl rotation for Ile-23. The high-field R1 and the corrected relaxometry rates are shown in green and
red, respectively.

PHYSICAL REVIEW LETTERS 129, 203001 (2022)

203001-3



Nevertheless, the MD input is critical to complement the
information from experimental relaxation rates. We ana-
lyzed relaxation rates for isoleucines 30 and 61 for all
combinations of two rotameric states. Several sets of two
rotamers lead to comparable or slightly better χ2 values
(Fig. S10 [19]) than the combination of rotamers obtained
from the MD simulation. Such an exhaustive analysis is
challenging for a two-state model even assuming prior
knowledge on the number of states. For larger numbers of
states, such an approach would be unrealistic. Thus,
relaxation rates alone are insufficient to determine the
populations and kinetics of exchange among rotamer states.
Our approach combines the most robust information from
anMD simulation: the network of accessible rotamer states,
with the information from NMR relaxation, which is
sensitive to the populations of rotamer states and the
kinetics of exchange. This combined analysis of MD
simulation and NMR is necessary to obtain a quantitative
mechanistic description of the dynamics.
Explicit models of motion can accommodate motion of

increasing complexity including, for instance, different
diffusion rates for methyl rotation in rotamer states. In
the case of Ile-23, the explicit model of motion with
uniform methyl rotation (Eq. (S7) [19] ) is unable to
reproduce the experimental data well (Fig. S4 [19]). We
noticed that, for the major rotamer conformation of this
residue, the δ1-methyl group is in close proximity of the Hα

(rotamer 9 in Fig. 1). Such steric hindrance is not present in
the other rotamer states. We built a model taking into
account methyl rotation specific to rotamer states, with
identical diffusion constants for methyl rotation in rotamers
3 and 6 and a specific diffusion constant for rotamer 9,
which led to a clear improvement in the agreement of the
model with the measured relaxation rates (Figs. 2(c) and
S11 [19] ). The resulting diffusion constants for methyl
rotation Dm;3 ¼ Dm;6 ¼ 5.5� 1.9 × 1010 s−1 and Dm;9 ¼
1.1� 0.4 × 1010 s−1 support the presence of correlated
motion in the Ile-23 side chain, with methyl rotation 5
times slower in the major rotamer, as expected from the
steric hindrance of the Hα.
Generalized order parameters quantify the width of the

conformational space at equilibrium and thus can be linked
to conformational entropy [54,55], which is defined by
considering each accessible conformation as a microstate.
The link between the generalized order parameter obtained
in the MF approach and entropy is not direct and requires
one either to reintroduce models of motion or rely on
residue-specific estimates fromMD simulations [54,56,57].
All these models have to use a single parameter to describe
the amplitude of motion. One may ask whether a single
parameter suffices to describe both order parameters and
conformational entropy. In stark contrast to existing
approaches, our explicit models of motion provide the
distribution of rotamer states that can be directly used to

estimate the configuration entropy Sc associated to this
distribution of rotamer states:

Sc=kB ¼ −
XN

α¼1

pα lnpα; ð3Þ

where kB is the Boltzmann constant and pα is the
equilibrium fractional population of rotamer α. The full
conformational entropy includes both the configuration
entropy Sc and the differential entropy [58] associated with
substates within each rotamer and quantified from the
amplitude of librations. The simulation analysis shows that
order parameters predominantly reflect the equilibrium
distribution of rotamers, suggesting a close link between
order parameters and configuration entropy (Fig. S12(b)
[19] ). Importantly, we find that the differential entropy in a
given rotameric state is rather constant, between rotamers
and between residues (Fig. S12(a) [19] ). Thus, variations
in conformational entropy mostly arise from configuration
entropy. The rotamer distributions enable one to evaluate
the relationship between order parameters and configura-
tion entropy. We generated 10 000 random distributions of
rotamer populations, using optimized geometries for side
chains obtained from DFT calculations (see above and
Supplemental Material [19]) and computed both configu-
ration entropy (Eq. (3)) and order parameters according to
[36,52]

S2
J ¼

XN

α;β¼1

pαpβP2ðcos θα;βÞ; ð4Þ

where θα;β is the angle between rotamers α and β. The
random distributions were generated by first randomly
choosing the number of populated rotamers and then the
fractional population for each of them.
Interestingly, for a given value of order parameter, we

find a range of possible configuration entropies as wide as
ca. kB (Fig. 3): Configuration entropy cannot be derived
unambiguously from an order parameter. Similar results are
obtained for leucine and valine side chains (Fig. S12(c)
[19] ). Our combined NMR and MD analysis gives dis-
tributions of rotamer populations that can be used to derive
both configuration entropies and order parameters.
Importantly, our experimental results confirm the calcu-
lations from random distributions (Fig. 3 and Table S5
[19]): Large variations of configuration entropy can be
observed for small changes of order parameters (see Ile-13
and Ile-61), and similar configuration entropies can be
obtained for residues with drastically different order
parameters (compare Ile-13 and Ile-44). Considering addi-
tional limitations arising from limited conformational
sampling on the timescale of overall rotational diffusion
[59], our investigation confirms that the estimation of
conformational entropy from NMR data alone is difficult.
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The combined analysis of NMR relaxation and MD
simulations with a rotamer jump model uncovers the
physical origin of conformational entropy and solves
limitations that arise when a single-parameter model is
used to link order parameters and conformational entropy.
Further integration may open a path toward the identifica-
tion of correlated motion in systems with a larger number of
experimental side-chain probes [60,61].
Here, we have shown that molecular dynamics simu-

lations could be used to build explicit models of motion in
order to obtain a mechanistic description of motion for
protein side chains from the analysis of NMR relaxation.
We defined models of motion from MD simulations that
include jumps between rotamer states and methyl rotation
on a cone. We determined from NMR relaxation the
populations of rotamers and their exchange rates. Such
explicit models allow fine-tuning of motional properties,
such as slower methyl rotation in one rotamer state,
which may be understood by steric interactions. The
description of motion as exchange between substates gives
access to the molecular origin of conformational entropy,
the variations of which are dominated by the configuration
entropy associated to the distribution of rotamer states.

Our approach, based on a combination of DFT calculations,
MD simulations, and extensive NMR measurements, can
be adapted for most probes of site-specific dynamics in
macromolecules. We anticipate that further integration of
NMR and MD simulations in combination with explicit
models of motion will improve the mechanistic description
of protein motion and lead to a better understanding of the
physics and chemistry that sustain protein function.
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