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In this Letter, we introduce a one-parameter deformation of two-dimensional quantum field theories
generated by a nonanalytic operator that we call Root-TT̄. For a conformal field theory, the operator
coincides with the square root of the TT̄ operator. More generally, the operator is defined so that classically
it is marginal and generates a flow that commutes with the TT̄ flow. Intriguingly, the Root-TT̄ flow is
closely related to the ModMax theory recently constructed by Bandos, Lechner, Sorokin, and Townsend.
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Introduction and summary.—The so-called “TT̄ oper-
ator” is a universal composite operator defined from the
stress-energy tensor Tμν of any two-dimensional quantum
field theory (QFT) as [1]

O ¼
Z

d2zOðz; z̄Þ; ð1aÞ

Oðz; z̄Þ ¼ −Det½Tμν� ¼ 1

2
ðTμνTμν − Tμ

μTν
νÞ: ð1bÞ

In a conformal field theory (CFT) the trace of the stress-
energy tensor vanishes and we have, in light-cone coor-
dinates, Oðz; z̄Þ ¼ TðzÞT̄ðz̄Þ. This is, however, not the case
for a generic QFT, making “TT̄” somewhat of a misnomer.
Given a two-dimensional QFT defined by a “seed” action
S0, the operator O can be used to define a one-parameter
family of theories Sλ [2,3]:

∂λSλ ¼ Oλ; Sλ¼0 ¼ S0: ð2Þ

BecauseO has scaling dimension four, the resulting flow is
irrelevant in the sense of the renormalization group. This is
counterintuitive in the usual renormalization group picture,

where one typically considers relevant or marginal (i.e.,
conformal) perturbations. Nonetheless, the TT̄ flow has
many remarkable properties. Applied to a CFT, it breaks
scale invariance but preserves infinitely many commuting
charges, and it results in a family of integrable QFTs. If S0

is not conformal, but integrable, the flow still preserves
integrability. In fact, the flow is so well-behaved that it is
possible to express the finite-volume spectrum of the
deformed theory Sλ in closed form starting from the
spectrum of the seed theory S0. These properties allowed
for a detailed study of TT̄-deformed theories that has
revealed and is revealing many surprising connections to
string theory [3–5], holography [6–8], two-dimensional
gravity [9], geometry [10], random geometry [11], and
more—see Refs. [12,13] for reviews and references on TT̄.
In this Letter we propose a new “square-root,” TT̄-like

deformation. By this we mean a “marginal” deformation
defined by ∂γSγ ¼ Rγ, which, when applied to a two-
dimensional conformal field theory (CFT2) S0, amounts to
deforming by a nonanalytic operator:

R ¼
Z

d2zRðz; z̄Þ; ð3aÞ

Rðz; z̄Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TðzÞT̄ðz̄Þ

q
ðfor a CFTÞ: ð3bÞ

Despite the square root, this promises to be a well-behaved
expression in a CFT2 because the operator-product expan-
sion between a chiral and an antichiral field (nonanalytic as
they may be) is regular. This deformation was recently
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considered in [14,15] to study the Bondi-Metzner-Sachs
symmetry in three dimensions of ultrarelativistic and non-
relativistic limits of a CFT2. It is, however, not obvious how
such an expression should be generalized when S0 is not
conformal. We do this by requiring that the Root-TT̄ flow
commutes with the ordinary TT̄ flow, i.e., that we can
construct a “two-parameter” action Sðλ;γÞ so that the
diagram in Fig. 1 commutes. As we shall explain in the
conclusions, this choice will make it easier to study a vaster
class of theories. We will show that, classically, this can be
obtained by setting

Rðz; z̄Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
TμνTμν −

1

4
Tμ
μTν

ν

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−Det½tμν�

p
; ð4Þ

where tμν ¼ Tμν − 1
2
gμνTρ

ρ is the traceless part of the stress-
energy tensor Tμν. We will construct the explicit two-
parameter action Sðλ;γÞ for a theory of N scalar fields. This
turns out to be related to the action for the unique conformal
and electromagnetic duality-invariant deformation of
Maxwell theory, the “ModMax” theory [16,17] (see also
Refs. [18,19]). ModMax is a four-dimensional model, and
it depends on a single marginal parameter γ:

SMM
γ ¼

Z
d4x

�
−
chγ
4

F2 þ shγ
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðF2Þ2 þ ðFF̃Þ2

q �
; ð5Þ

where F indicates the electromagnetic field strength and F̃
its dual. Equation (5) admits a TT̄-like deformation in terms
of a Born-Infeld action with parameter λ. The resulting two-
parameter, four-dimensional action Sðλ;γÞ is the solution of
two commuting flow equations [20–22]. The flows we
introduce here precisely generate, and extend, the reduction
to two dimensions of the ModMax-Born-Infeld action
recently obtained in Ref. [23]. After discussing the gen-
eralization of our construction to actions involving fer-
mions, we will comment on the implications of this relation
and on several immediate directions of study.
Root-TT̄ flow for N scalars.—We start by considering a

rather general Lagrangian density for N real scalars ϕi of
the form

L ¼ 1

2
ðGijðϕÞgμν þ BijðϕÞεμνÞ∂μϕi

∂νϕ
j − VðϕÞ; ð6Þ

where gμν is the two-dimensional inverse metric (which we
take to be Minkowski), εμν is the Levi-Civita tensor, and
i ¼ 1;…; N. This ansatz encompasses many QFTs of
interest including vector models, nonlinear sigma models
(where Gij and Bij represent the target-space metric and
Kalb-Ramond fields, respectively), and Wess-Zumino-
Witten models, but it is not closed under Root-TT̄ defor-
mations. In fact, terms with a higher number of derivatives
will appear along the flow, as it can be seen recalling that
the (Hilbert) stress-energy tensor is

Tμν ¼ −2
∂L
∂gμν

þ gμνL: ð7Þ

To write the general ansatz for a flow driven by the operator
R, Eq. (4), we list the tensor structures that may arise from
the stress-energy tensor associated to Eq. (6) and from its
powers. As gμν only appears in the first term of Eq. (6), we
consider

ðX1Þνμ ¼ Gij∂μϕ
i
∂
νϕj; ðX2Þνμ ¼ ðX1ÞρμðX1Þνρ: ð8Þ

In principle, we could define ðX3Þνμ, ðX4Þνμ, etc., in an
obvious way. However, in the Lagrangian only the trace of
these tensors may appear, and for any 2 × 2 matrix the
only independent trace invariants are x1 ¼ ðX1Þμμ and
x2 ¼ ðX2Þμμ, due to identities such as

2x3 ¼ 3x1x2 − x31; 2x4 ¼ 2x21x2 − x41 þ x22; ð9Þ

with xn ¼ ðXnÞμμ. Hence, the most general Lagrangian will
depend on x1, x2, and possibly on a term x0 that does not
couple to gμν, Lγ ¼ Lγðx0; x1; x2Þ. For such a Lagrangian,

Tμν ¼ −2ðX1Þμν
∂Lγ

∂x1
− 4ðX2Þμν

∂Lγ

∂x2
þ gμνLγ: ð10Þ

Computing the contractions TμνTμν and ðTμ
μÞ2, and simpli-

fying the resulting expression with the help of the trace
identities, Eq. (9), we can evaluate the square of the
operator R of Eq. (4) as

R2 ¼ ð2x2 − x21Þ
�
∂Lγ

∂x1
þ 2x1

∂Lγ

∂x2

�
2

: ð11Þ

This expression is surprisingly nice in more than one way.
First, the partial derivatives appear in a perfect square so
that, away from ∂x1Lγ ¼ −2x1∂x2Lγ , the flow equation for
the Root-TT̄ operator, Eq. (4), will be linear,

∂

∂γ
Lγ ¼ Rγ ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2x2 − x21

q �
∂Lγ

∂x1
þ 2x1

∂Lγ

∂x2

�
: ð12Þ

Both choices of the branch can be recovered by flipping the
sign of γ. As 2x2 ¼ x21 gives a fixed point of Eq. (12), the

FIG. 1. We require that first deforming S0 by TT̄ with Oλ and
then deforming the result by Root-TT̄ with Rγ is the same as
deforming S0 by Rγ and then by Oλ.
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branch cannot change along the flow. Additionally, the flow
equation will not depend explicitly on L, so that the
dependence on x0 will affect the flow only through its
initial conditions. Finally, Eq. (12) can be integrated,

Lγðx0; x1; x2Þ ¼ Lγ¼0

�
x0; x

ðγÞ
1 ; xðγÞ2

�
; ð13Þ

where

xðγÞ1 ¼ chðγÞx1 � shðγÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2x2 − x21

q
; ð14aÞ

xðγÞ2 ¼ chð2γÞx2 � shð2γÞx1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2x2 − x21

q
; ð14bÞ

and x0 is not deformed. Note that the combination

½xðγÞ1 �2 − xðγÞ2 ¼ x21 − x2 ð15Þ

is constant along the flow. In fact, an action that depends on
only this combination and through x0 is a fixed point of this
flow. We also note that Eq. (14) has the property

x1
∂Lγ

∂x1
þ 2x2

∂Lγ

∂x2
¼ xðγÞ1

∂Lγ

∂xðγÞ1

þ 2xðγÞ2

∂Lγ

∂xðγÞ2

; ð16Þ

and that the trace of the stress-energy tensor for Lγ,
Eq. (10), vanishes if and only if

1

2
Tμ
μ ¼ Lγ −

�
x1

∂Lγ

∂x1
þ 2x2

∂Lγ

∂x2

�
¼ 0: ð17Þ

Equation (16) therefore implies that, if the stress-
energy tensor for a seed theory L0 is traceless, then the
same is true for the deformed theory Lγ. Importantly, this
confirms that the operator Rγ defines a classically marginal
deformation.
Note that, in the special case of N free bosons, it holds

that

Lγ ¼
chγ
2

Φμ
μ � shγ

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Φν

μΦ
μ
ν − ðΦμ

μÞ2
q

; ð18Þ

with Φμν ¼ ∂μϕ
i
∂νϕ

i. This is the result found in Ref. [23]
from dimensional reduction of ModMax, Eq. (5). Notice
also that this flow is nontrivial only for N ≥ 2, for which x1
and x2 are algebraically independent; otherwise, it is merely
a rescaling of the Lagrangian, Lγ ¼ eγL0.
Two-parameter flow.—Having determined the Root-TT̄

flow, we will now verify that it commutes with the ordinary
TT̄ flow. The latter is sourced by the operator O of Eq. (1).
We can express O in terms of the Lagrangian and its
derivatives following what we did for R around Eq. (11),
and we get the (rather cumbersome) formula

O¼ −L2 − 2

��
∂L
∂x1

�
2

þ 2
∂L
∂x1

∂L
∂x2

x1 þ 2

�
∂L
∂x2

�
2

ðx21 − x2Þ
�

× ðx21 − x2Þ þ 2L

�
∂L
∂x1

x1 þ 2
∂L
∂x2

x2

�
: ð19Þ

Now, consider aTT̄ deformation ofLγ, Eq. (13), where the

dependence on x1 and x2 appears exclusively through xðγÞ1

and xðγÞ2 . A change of variables and some algebra, along with
the observation contained in Eqs. (15) and (16) observations,
allows us to reformulate the operatorO in terms of L and its

partial derivativeswith respect to xðγÞ1 and xðγÞ2 . In fact,we find
thatO is given precisely by the same expression, Eq. (19), up

to promoting x1 and x2 to xðγÞ1 and xðγÞ2 , respectively.
Therefore, to take a theory defined by Lγ and TT̄ deform

[obtaining Lðλ;γÞ], we may as well first TT̄ deform L0

(thereby obtaining Lλ), and then replace everywhere x1 and

x2 with xðγÞ1 and xðγÞ2 . This last step is precisely tantamount
to a Root-TT̄ deformation, which goes to show that the
diagram of Fig. 1 indeed commutes.
The two-parameter Lagrangian can then be found by

taking any TT̄-deformed Lagrangian, such as the ones in
[24], and replacing x1, x2 with the expressions in Eq. (14).
For the special case of N free scalars we find

Lðλ;γÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2λxðγÞ1 þ 2λ2f½xðγÞ1 �2 − xðγÞ2 g

q
− 1

2λ
; ð20Þ

which is precisely the result obtained in Ref. [23] from the
dimensional reduction of the four-dimensional ModMax-
Born-Infeld theory [16,17,21,22].
Fermions.—It is natural to wonder whether our discus-

sion may be extended to models with fermions. It is unclear
how to treat a nonanalytic function of Grassmann variables
only, such as the one that would arise in a Root-TT̄-
deformed model involving only fermions. It is more
natural to first look at a theory of bosons and fermions,
which admits a regular expansion in Grassmann vari-
ables (with nonanalytic coefficients in the boson fields).
Let us consider a free model of NB bosons and NF Dirac
fermions,

L ¼ 1

2
∂μϕ

i
∂
μϕi þ i

2
ψ̄ Iγμ∂μψ

I −
i
2
ð∂μψ̄ IÞγμψ I; ð21Þ

where i ¼ 1;…NB, and I ¼ 1;…NF.
To build an ansatz for the γ-flowed action, we need to

consider the stress-energy tensor of this model. Here, we
will consider the Hilbert, rather than Noether, stress-energy
tensor. Much like for TT̄ flows [25], we expect that the
deformed Lagrangian differs in the two choices by
terms that vanish on shell. It is possible to show that,
for theories that depend on the fermions only via the
symmetric tensor ψ̄γðμ∂νÞψ − ð∂ðμψ̄ÞγνÞψ, the Hilbert tensor
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is the symmetrized Noether tensor. This ensures that the
deformed Lagrangian will be a function of

ðX1Þμν ¼ ∂μϕ
i
∂νϕ

i þ iψ̄ Iγðμ∂νÞψ I − ið∂ðμψ̄ IÞγνÞψ I; ð22Þ

and of ðX2Þμν ¼ ðX1ÞμρðX1Þρν—more precisely of their
traces x1 and x2. Given such a dependence, the flow
equation can be determined by truncating all expressions
to the bosons, which immediately reproduces Eq. (12).
Hence, given an action that depends on x1 and x2 as in

Eq. (22), the Root-TT̄ flow is found by replacing the γ-
dependent expressions, Eq. (14). The same argument of the
previous section confirms this flow also commutes with the
usual TT̄ flow. Note that in Eq. (21) we started from a
system of free Dirac fermions. However, the same argu-
ment concerning the integration of the flows holds if
chirality conditions are imposed. Interestingly, in the
presence of at least one real chiral fermion the deformed
Lagrangian is nontrivial even with NB ¼ 1.
Conclusions and outlook.—We have discussed Root-TT̄

deformations, which commute with the TT̄ flow and are
defined in terms of a classically marginal nonanalytic
operator. One might have expected the deformed theories
to be pathological and unnatural. Instead, they are appeal-
ing, satisfying a simple flow equation, and encompass the
models arising from dimensional reduction of ModMax
[16,17]. ModMax is also a nonanalytic classically con-
formal theory, with many intriguing properties: it admits
various physical solutions such as plane waves [16] and
dyons [26], its Hamiltonian is bounded from below [27], it
can be supersymmetrized [28–30], and it can be related to
Maxwell theory coupled to an axion dilaton [26]—see also
the recent review [19]. While many questions about
ModMax remain open, it is certainly a physically interest-
ing theory and it is inspiring that the two-dimensional Root-
TT̄ deformation falls in the same class of models.
The main open question is how to quantize such

nonanalytic theories. This will be subtle but may be
possible for Root-TT̄ flows of CFTs by demanding the
deformed theory to be conformal and bootstrapping its
properties. If successful, one could construct new marginal
deformations of generic CFTs. In general, the Root-TT̄
operator will not be part of spectrum of local operators of
the theory (with the intriguing exception of the single free
boson). Hence, the deformation should result in one-
parameter families of theories that are quite different from
the familiar local unitary two-dimensional CFTs—and it
would be very interesting to understand such differences. A
first step is understanding how N ≥ 2 free bosons get
coupled by the deformation and extending the analysis to
Wess-Zumino-Witten models and minimal models where
algebraic techniques are very well developed. The quan-
tization of Root-TT̄-deformed QFTs (as opposed to CFTs)
is likely to be harder. By imposing that TT̄ and Root-TT̄
deformations commute, one can first perform the Root-TT̄

deformation (of a CFT) and only later break conformal
invariance by TT̄. This will clarify the general quantum
properties of Root-TT̄.
Again with quantization in mind, it would also be useful

to study Root-TT̄ in Hamiltonian terms [14,15], as was
recently done [27] for ModMax, and to investigate whether
the Root-TT̄ deformation acts in a simple manner on the S
matrix of (integrable and nonintegrable) theories, like TT̄
does [9,31]. (See Ref. [32] for recent work on the
integrability of Root-TT̄.) In turn, understanding the
quantum properties of Root-TT̄ would also extend our
understanding of ModMax, where quantization remains a
major stumbling block. This is expected for aD ¼ 4model
for which no perturbative quantization scheme is available.
Approaching this issue from two dimensions, where CFTs
are under especially good control, may shed new light on
the issue.
Recalling that TT̄ is only one of many current-current

deformations [2], all obeying a flow equation [33], it would
be interesting to see if the higher-spin analogs of TT̄ also
commute with Root-TT̄. Moreover, one could also consider
higher roots of higher-spin TT̄-like operators. They would
also be naively marginal (nonanalytic) operators. Their
study would probably be difficult, as is the case for higher-
spin TT̄ deformations [33], but might be instructive already
in the case of simple theories; see Ref. [34] for TT̄. By
allowing for the breaking of Lorentz symmetry, more
general scale-invariant roots of current-current deforma-
tions could also be considered—for example, a Root-JT̄
deformation based on the one of [35].
In this Letter, we have merely initiated the study of

models involving fermions, considering a relatively small
class of models. It would be especially interesting to
perform a systematic study of the Root-TT̄ deformations
of superconformal theories. It is well-established that a
supersymmetric model remains supersymmetric under TT̄
flows [25,36–39]. The fact that ModMax may be super-
symmetrized is also encouraging. However, it is not clear
that the deformation of a free superconformal action of the
Eq. (21) type [for example, theN ¼ ð1; 1Þ supersymmetric
system when NB ¼ NF] gives a superconformal model—
this certainly requires the supersymmetry transformations
to be modified. In the case of the standard TT̄ deformation
it was shown that the operator O of Eq. (1) is (on shell)
equivalent to a manifestly supersymmetric supercurrent-
squared operator defined in superspace [25,36]. It is
straightforward to propose manifestly supersymmetric
extensions of the Root-TT̄ operator, Eq. (3), for super-
conformal field theories. In the simplest case ofN ¼ ð0; 1Þ
supersymmetry the following superspace Lagrangian is an
example

Z
dθþ

SþþþT −−−−ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T þþþþT −−−−

p ¼
ffiffiffiffiffiffiffi
TT̄

p
þ fermions: ð23Þ
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Here, Sþþþ and T −−−− define the N ¼ ð0; 1Þ super-
currents, and T þþþþ ¼ DþSþþþ; see Refs. [25,36]. For
a single N ¼ ð0; 1Þ real scalar multiplet, the superspace
Lagrangian A−ðγÞ ¼ eγðDþΦÞð∂−−ΦÞ satisfies a classical
flow driven by the Eq. (23) operator. This is a direct analog
of the bosonic Root-TT̄ deformation of a single real free
scalar field discussed above. Similar superspace Root-TT̄
operators can be defined for models with more supersym-
metry. Aside from supersymmetry, it would also be
interesting to consider the bosonization and fermionization
of simple two-dimensional CFTs and their Root-TT̄ flows.
Finally, a major application of TT̄ deformations has been

to holography, mapping them to gravitational theories in
three-dimensional anti–De Sitter space-time [6,7]; see also
Refs. [40–42]. The holographic interpretation of such a
marginal but nonanalytic deformation of the boundary
CFT2 should be understood more clearly. An immediate
application of this Letter is to recast the Root-TT̄ defor-
mation in terms of the boundary conditions of the AdS3
metric much like in [43], which will provide a holographic
formulation of the deformation and yield a new class of
holographic backgrounds [44].
Holography provided a way to define new irrelevant

deformations in D > 2 dimensions [45,46], in particular in
D ¼ 4 for Maxwell [20], its supersymmetrization [47], and
ModMax theories [21,22]. Both our D ¼ 2 operator R
[Eq. (4)], and the D ¼ 4 operator generating the γ flow of
ModMax-Born-Infeld [21] can be written as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−tμνtμν

p
; tμν ¼ Tμν −

1

D
gμνT

ρ
ρ; ð24Þ

where tμν is the traceless part of Tμν. It is natural to wonder
whether this operator plays a universal role in generating
ModMax-like deformations in any dimension, and to
investigate generic Root-TT̄-type deformations in D > 2
models, including holographic ones. One piece of evidence
that nonanalytic deformations may be relevant for holog-
raphy in D > 2 is that operators involving square roots of
field gradients have been studied in the context of the fluid-
gravity correspondence [48] in general dimension D.
A different, but very interesting, direction is the

“generalized holographic principle” of [49], which also
involves stress-tensor deformations in D > 2; one might
wonder whether

ffiffiffiffiffiffiffi
TT

p
-type operators may be needed to

UV complete the deformations used in that proposal.
Furthermore, the interplay between the ultrarelativistic
and nonrelativistic limits of a CFT2 and the Bondi-
Metzner-Sachs symmetry in three dimensions found in
[14,15] also suggests possible relations between operators
like Eq. (24) and deformations of space-time symmetries in
dimensions higher than two.
We believe that addressing all these questions may

result in exciting new insights on the structure of conformal
and nonconformal quantum field theories and of their

holographic duals, and we plan to return to some of these
in the near future.
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Note added.—After the completion of this work we became
aware of the second version of Ref. [23], where it was
independently shown that the operator (4) generates the
γ-flow of the Lagrangian (20) in the particular case of
N Bosons with seed Lagrangian (6), whenGijðϕÞ ¼ δij and
BijðϕÞ ¼ 0. Further, Ref. [24], which appeared soon after
our work, explores the relation between Root-TT̄ and
ModMax theories.
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