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Just as exactly marginal operators allow one to deform a conformal field theory along the space of
theories known as the conformal manifold, appropriate operators on conformal defects allow for
deformations of the defects. When a defect breaks a global symmetry, there is a contact term in the
conservation equation with an exactly marginal defect operator. The resulting defect conformal manifold is
the symmetry breaking coset, and its Zamolodchikov metric is expressed as the two-point function of the
exactly marginal operator. As the Riemann tensor on the conformal manifold can be expressed as an
integrated four-point function of the marginal operators, we find an exact relation to the curvature of the
coset space. We confirm this relation against previously obtained four-point functions for insertions into the
1=2 BPS Wilson loop in N ¼ 4 SYM and 3D N ¼ 6 theory and the 1=2 BPS surface operator of the 6D
N ¼ ð2; 0Þ theory.
DOI: 10.1103/PhysRevLett.129.201603

Introduction and summary.—Amongst all operators of a
conformal field theory (CFT), exactly marginal operators
hold a special place, allowing for continuous deformations
of the theory, forming a space of CFTs known as the
conformal manifold. Those are common in supersymmetric
theories, but otherwise not. In this Letter we point out that
in the presence of conformal defects, one can define a
similar notion of defect conformal manifold, and it natu-
rally arises whenever a global symmetry is broken by the
defect with supersymmetry or without.
Theories with conformal boundaries or defects are

ubiquitous and play an important role both in condensed
matter physics and in string theory. They form a defect
CFT (DCFT) involving operators on and off the defect.
A relatively unexplored topic (notable exceptions are [1–5])
are marginal deformations of DCFTs by defect operators.
For a defect of dimension d, exactly marginal defect

operators Oi have scaling dimension d, and the correlation
function of defect operators ϕ in the deformed theory can
be expressed as

⟪ϕϕ0…⟫ζi ¼ ⟪e−
R

ζiOiddxϕϕ0…⟫0 ð1Þ

where ζi are local coordinates on the defect conformal
manifold and the double bracket notation represents the
correlation function in the DCFT normalized by the
expectation value of the defect without insertions.

If the theory has a global symmetry G with current Jμa,
broken by the defect to G0, its conservation equation is
modified to

∂μJμa ¼ OiðxkÞδiaδD−dðx⊥Þ; ð2Þ

where i is an index for the broken generators, xk the
directions along the defect, and x⊥ the transverse ones.
In a theory in D dimensions, Jμa has dimension D − 1.

ThereforeOi has dimension d, so in the undeformed theory

⟪OiðxkÞOjð0Þ⟫ ¼ COδij
x2Dk

: ð3Þ

CO is fixed by the normalization of Jμa and determines the
Zamolodchikov metric locally as gij ¼ COδij [6].
For ϕ ¼ ϕ0 ¼ Oi, Eq. (1) extends the Zamolodchikov

metric beyond the flat space approximation. Differentiating
Eq. (1) with respect to ζi gives the Riemann tensor [7]

Rijkl ¼
Z

ddx1ddx2½⟪Ojðx1ÞOkðx2ÞOið0ÞOlð∞Þ⟫c

− ⟪Ojð0ÞOkðx2ÞOiðx1ÞOlð∞Þ⟫c�; ð4Þ

where ⟪…⟫c indicates the connected correlator. This
integral can be reduced to an integral over cross ratios
[8]. See Eqs. (15), (30), and (33) below.
When Oi arise from symmetry breaking, the defect

conformal manifold is the coset G=G0. It should be stressed
that this statement is not evident in the correlation function
calculation explained above, which is local on the con-
formal manifold. Rather it is a nontrivial statement that
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allows us to predict the form of the curvature (and higher
derivatives of the metric).
Furthermore, the size of the coset is set by CO which

appears in the metric and curvature tensor, making Eq. (4) a
nontrivial identity for integrated correlators. In the remain-
der of this Letter we apply this idea in three examples: 1D
DCFT of 1=2 Bogomol'yni-Prasad-Sommerfield (BPS)
Wilson loops in N ¼ 4 supersymmetry Yang-Mills
(SYM) in 4D and in the N ¼ 6 theory in 3D and the
2D DCFTof surface operators in the 6DN ¼ ð2; 0Þ theory.
We derive explicit expressions for the Riemann tensor and
verify it with known results for the four-point functions.
Maldacena-Wilson loops.—The 1=2 BPS Wilson loop

along the Euclidean time direction in N ¼ 4 SYM is

W ¼ TrPe
R
ðiA0þΦ6Þdt: ð5Þ

The case of the 1=2 BPS circular loop has some subtle
differences [9,10], but here they are immaterial.
The defect CFT point of view on this observable was

developed in Refs. [11–19]. The lowest dimension inser-
tions are the six scalar fields ΦI . Of them, Φ6 is marginally
irrelevant, “going up” the renormalization group flow to
the UV non-BPS Wilson loop with no scalar coupling
[10,18,20–24].
The remaining five scalars are to leading order Oi of

Eq. (2), the finite deformations being broken SO(6)
rotations

Φ6 → cos θΦ6 þ sin θΦiζ
i=jζj: ð6Þ

It is natural to identify jζj ¼ 2 tanðθ=2Þ, extending the local
metric in Eq. (3) to the conformally flat metric on S5

gij ¼
COδij

ð1þ jζj2=4Þ2 : ð7Þ

The two-point function of Φi is indeed as in Eq. (3) with
CΦ twice the bremsstrahlung function related to the
expectation value of the circular Wilson loop [12,15,25,26]

CΦ ¼ 1

π2
λ∂λ loghW∘i ¼

ffiffiffi
λ

p

2π2
I2ð

ffiffiffi
λ

p Þ
I1ð

ffiffiffi
λ

p Þ þ oð1=N2Þ; ð8Þ

where λ is the ’t Hooft coupling and In are modified Bessel
functions. At weak and strong coupling, this is

CΦ ¼
( λ

8π2
− λ2

192π2
þ λ3

3072π2
− λ4

46080π2
þOðλ5Þ;ffiffi

λ
p
2π2

− 3
4π2

þ 3

16π2
ffiffi
λ

p þ 3
16π2λ

þOðλ−3=2Þ:
ð9Þ

To express the four-point function of Φi, we define
ΦðnÞ ¼ tinΦiðxnÞ where tin are constant five vectors. Then
[19,27]

⟪Φð1ÞΦð2ÞΦð3ÞΦð4Þ⟫ ¼ C2
Φ
t12t34
x212x

2
34

Gðχ; σ; τÞ;

Gðχ; σ; τÞ ¼ σh2ðχÞ þ τh1ðχÞ þ h0ðχÞ; ð10Þ

with tnm ≡ tn · tm, xnm ¼ xn − xm and the cross ratios

χ ¼ x12x34
x13x24

; ð11Þ

σ ¼ t13t24
t12t34

¼ αᾱ; τ ¼ t14t23
t12t34

¼ ð1 − αÞð1 − ᾱÞ: ð12Þ

The functions in Eq. (10) are fixed by superconformal
symmetry to take the form

h0 ¼ χ2ðf=χ − f=χ2Þ0; h1 ¼ −χ2ðf=χÞ0;
h2 ¼ χ2F − χ2ðf − f=χÞ0; ð13Þ

where f is a function of χ, prime is the derivative with
respect to χ, and F does not depend on χ and is determined
from the topological sector of the correlators which occurs
for the choice α ¼ ᾱ ¼ 1=χ [19,28,29].
Under crossing symmetry, h0;1;2 transform as

χ2h2ð1 − χÞ ¼ ð1 − χÞ2h2ðχÞ;
χ2h1ð1 − χÞ ¼ ð1 − χÞ2h0ðχÞ;
χ2h0ð1 − χÞ ¼ ð1 − χÞ2h1ðχÞ: ð14Þ

As the four-point function depends only on the cross
ratio χ, one can perform one of the two integrals in the
curvature [Eq. (4)] explicitly and reduce the formula to [8]

Rijkl ¼ −RV
Z þ∞

−∞
dη log jηj½⟪Φið1ÞΦjðηÞΦkð∞ÞΦlð0Þ⟫c

þ ⟪Φið0ÞΦjð1 − ηÞΦkð∞ÞΦlð1Þ⟫c�: ð15Þ

RV denotes a particular prescription for regularizing and
subtracting the divergences—a hard-sphere (point-split-
ting) cutoff followed by minimal subtraction [8].
We can further reduce the integral to η ∈ ð0; 1Þ, but need

to account for the subtlety that in 1D the order of the
insertions is meaningful, so

⟪Φið1ÞΦjðηÞΦkð∞ÞΦlð0Þ⟫c

¼

8>><
>>:

⟪ΦjðηÞΦlð0ÞΦið1ÞΦkð∞Þ⟫; η < 0;

⟪Φlð0ÞΦjðηÞΦið1ÞΦkð∞Þ⟫; 0 < η < 1;

⟪Φlð0ÞΦið1ÞΦjðηÞΦkð∞Þ⟫; η > 1:

ð16Þ

To illustrate the calculation, we consider the contribution to
Eq. (15) from the region η ∈ ð0; 1Þ. Using Eq. (10) and
replacing η with the cross ratio χ [Eq. (11)] we find
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−
Z

1

0

dχ

�
log χ
χ2

½gligjkh2ðχÞ þ glkgijh1ðχÞ þ gljgikh0ðχÞ�

þ logð1 − χÞ
χ2

½gligjkh2ðχÞ þ gljgikh1ðχÞ þ glkgijh0ðχÞ�
�
:

ð17Þ

Here we see all three tensor structures of bilinears of the
metric, but after combining all three regions, the result must
have the same tensor structure as a Riemann tensor. Finally
using the crossing relations [Eq. (14)] we find

Rijkl ¼ 2ðgikgjl− gilgjkÞ
Z

1

0

dχ
χ2

logχðh2þh1− 2h0Þ: ð18Þ

Comparing with Eq. (10), the integrand can be written as

−
2 log χ
χ2

Gðχ; σ�; τ�Þ; σ� ¼ τ� ¼ −1=2: ð19Þ

Equation (18) has the structure of the curvature of the
maximally symmetric space S5 ¼ SOð6Þ=SOð5Þ [Eq. (7)].
The integral in Eq. (18) is then related to the radius of the
sphere. In Appendix A we simplify the integral to

Z
1

0

dχ

��
1 −

2

χ3

�
f −

�
1þ 1

χ

�
F

�
: ð20Þ

f and F were calculated at strong coupling by explicit
world-sheet Witten diagrams [18] and extended up to
fourth order in Ref. [27] based on the formalism in
Refs. [16,19]. This results in

F ¼ −
3ffiffiffi
λ

p þ 45

8

1

λ3=2
þ 45

4

1

λ2
þOðλ−5=2Þ: ð21Þ

Writing f in a power series

fðχ; λÞ ¼
X∞
n¼1

λ−
n
2fðnÞðχÞ; ð22Þ

the first one is [18]

fð1Þ ¼−ð1−χ2Þlogð1−χÞþχ3ð2−χÞ
ð1−χÞ2 logðχÞ−χð1−2χÞ

1−χ
:

ð23Þ

The integral in Eq. (20) can be computed for fð1Þ as well as
for fð2Þ, fð3Þ, and fð4Þ found in Ref. [27], by integration by
parts. We find for the Ricci scalar R of Eq. (18):

R
20

¼ 2π2ffiffiffi
λ

p þ 3π2

λ
þ 15π2

4λ3=2
þ 15π2

4λ2
þOðλ−5=2Þ: ð24Þ

This exactly agrees with the large λ expansion of 1=CΦ,
whose inverse is in Eq. (9), as expected for a sphere of
radius

ffiffiffiffiffiffi
Cϕ

p
.

The relation between the integrated four-point function
and CΦ can also be deduced from the integral identities
guessed in Ref. [30], as shown in Appendix B. Checks
against weak coupling expressions [30–32] were also
performed there.
1=2 BPS loop in 3DN ¼ 6 theory.—Another line defect

with known four-point function is the 1=2 BPSWilson loop
of theN ¼ 6 theory in 3D [33,34]. The SU(4) R symmetry
is broken by the defect to SU(3), so the defect conformal
manifold is CP3. Now the marginal operators are chiral and
have the structure of a supermatrix. The Zamolodchikov
metric takes the form

gi|̄ ¼ ⟪Oið0ÞŌ|̄ð1Þ⟫ ¼ 4B1=2δij; ð25Þ

where B1=2 ¼
ffiffiffiffiffi
2λ

p
=4π þ � � � is the bremsstrahlung func-

tion for these operators [35–37].
For the four-point function we need to distinguish two

orderings [34]:

⟪Oiðx1ÞŌ|̄ðx2ÞOkðx3ÞŌl̄ðx4Þ⟫ ¼ gi|̄gkl̄K1 − gil̄gk|̄K2

x212x
2
34

;

⟪Oiðx1ÞŌ|̄ðx2ÞŌk̄ðx3ÞOlðx4Þ⟫ ¼ gi|̄glk̄H1 − gik̄gl|̄H2

x212x
2
34

:

ð26Þ

Here x1 < x2 < x3 < x4 and Ki, Hi depend on the cross
ratio χ [Eq. (11)]. Other orderings can be determined by
conformal invariance.
The curvature now splits according to chirality:

Rijk̄ l̄ ¼ ðgil̄gjk̄ − gik̄gjl̄ÞR1;

Ri|̄kl̄ ¼ ðgil̄gk|̄ þ gi|̄gkl̄ÞR2: ð27Þ

Plugging the expressions from Eq. (26) into Eq. (15) and
accounting for the ordering in Eq. (16), we find

R1 ¼
Z

1

0

dχ
χ2

�
log

χ

1 − χ
ðK1 þ K2Þ þ 2 log χðH1 þH2Þ

�
;

R2 ¼
Z

1

0

dχ
χ2

½logð1 − χÞð2H1 − 2H2 − K1Þ

þ log χð2H2 þ K2Þ�: ð28Þ

The functions Hi and Ki are expressed in terms
of functions hðχÞ defined for χ ∈ ð0; 1Þ and fðzÞ with z ¼
χ=ðχ − 1Þ < 0 as

H1 ¼ χ2½χðh=χÞ0�0; H2 ¼ χ2ðχh0Þ0;
K1 ¼ z2½zðf=zÞ0�0; K2 ¼ z2ðzf0Þ0: ð29Þ
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In Appendix C we show, based on crossing symmetry and
assumptions on the behavior of the functions in the limits
χ → 0, 1, that R1 ¼ 0. Likewise, using Eq. (C6), we find
after repeated integration by parts

R2 ¼ −2
Z

1

0

hðχÞ
χð1 − χÞ dχ þ 2

Z
0

−∞

fðzÞ
ðz − 1Þ2 dz: ð30Þ

In Ref. [34] the functions h and f were evaluated at first
order at strong coupling from the analytic bootstrap

hð1Þ ∝ −
ð1 − χÞ3

χ
logð1 − χÞ þ χð3 − χÞ log χ þ χ − 1;

fð1Þ ∝ −
ð1 − zÞ3

z
logð1 − zÞ þ zð3 − zÞ log jzj þ z − 1;

ð31Þ

with the same proportionality constant 1=ð2π ffiffiffiffiffi
2λ

p Þ, deter-
mined by explicit Witten diagram calculations. Evaluating
the integral [Eq. (30)], we find R2 ¼ π=

ffiffiffiffiffi
2λ

p
, so the Ricci

scalar agrees to leading order with 12=2B1=2, as expected
for CP3. This calculation also serves as an independent
derivation of the proportionality constant without relying
on the AdS=CFT correspondence and could be used to
determine further unknowns in higher loop calculations.
Surface operators in 6D.—The 6D N ¼ ð2; 0Þ theory

has 1=2 BPS surface operators [38] with the geometry of
the plane or the sphere. In the absence of a Lagrangian
description, we cannot write an expression like Eq. (5), yet
many properties of the surface operators are known.
In particular, they carry a representation of the AN−1
algebra of the theory [39–41], and we focus on the
fundamental representation, described by an M2-brane in
AdS7 × S4 [42].
The defect CFT approach to surface operators was

developed in Ref. [43]. In this case the scalar Oi (2) is
associated to breaking of SO(5) R symmetry and is of
dimension 2. As shown in Ref. [43], the normalization
constant CO in Eq. (3) is now related to the anomaly
coefficients c and a2 [44–51] by

CO ¼ c
π2

¼ −
a2
π2

¼ 1

π2

�
N −

1

2
−

1

2N

�
: ð32Þ

The curvature tensor [Eq. (4)] is now written in terms of
the complex cross ratio [8]

Rijkl ¼ −2πRV
Z

d2η log jηj⟪Oið1ÞOjðηÞOkð∞ÞOlð0Þ⟫c:

ð33Þ

We further simplify the integral by mapping jηj > 1 to
jηj < 1 by a conformal transformation, giving

Rijkl ¼ −2π
Z
jηj<1

d2η log jηj½⟪Olð0ÞOjðηÞOið1ÞOkð∞Þ⟫c

− ⟪Olð0ÞOiðηÞOjð1ÞOkð∞Þ⟫c�: ð34Þ

In this expression, η is equal to the cross ratio χ as defined
in Eq. (36).
The analog of Eq. (10), Eq. (26) is

⟪Oð1ÞOð2ÞOð3ÞOð4Þ⟫¼C2
O
t12t34
x⃗412x⃗

4
34

Gðχ; χ̄;α;ᾱÞ;

G¼σh2ðχ; χ̄Þþτh1ðχ; χ̄Þþh0ðχ; χ̄ÞþG2;

ð35Þ

where the cross ratios are as in Eq. (12) and

U ¼ x⃗212x⃗
2
34

x⃗213x⃗
2
24

¼ χχ̄; V ¼ x⃗214x⃗
2
23

x⃗213x⃗
2
24

¼ ð1 − χÞð1 − χ̄Þ: ð36Þ

The crossing equations for hi are as in Eq. (14) but with jχj2
and j1 − χj2.
G2 in Eq. (35) is parity odd, and using the symmetry of

the integration domain in Eq. (34), it does not contribute to
the curvature tensor. This is easy to verify for the expres-
sion in Eq. (38) by changing the integration variables to
U, V. The same should hold to all orders.
The curvature tensor is then

Rijkl¼−2πðgikgjl−gilgjkÞ
Z
jχj<1

d2χ
log jχj
jχj2 ðh0−h2Þ: ð37Þ

The integrand is in fact the parity even part of G log jχj=jχj2
with σ� ¼ −1 and τ� ¼ 0.
The four-point function was calculated to first order at

large N from the M2-brane with the geometry of AdS3 in
AdS7 [52] resulting in

h0 ¼
6

N
U2½ðV −U þ 1ÞD̄3333 þ UD̄3322 − D̄2222�;

h1 ¼
6

N
U2½ðU − V þ 1ÞD̄3333 þ D̄3223 − D̄2222�:

h2 ¼
6

N
U2½ðU þ V − 1ÞD̄3333 þ D̄3232 − D̄2222�;

G2 ¼ −
9

2N
U2ðχ − χ̄Þðα − ᾱÞD̄3333: ð38Þ

The D̄ functions are given in Ref. [53]. The expressions
here are 16 times smaller than in Ref. [52] because of a
difference in the normalization of Oi compared with the S4

coordinates yi in Ref. [52].
By numerical integration, we confirm that

Rijkl ¼
N
π2

ðδikδjl − δilδjkÞ; ð39Þ
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as expected for S4 ¼ SOð5Þ=SOð4Þ of radius squared
CO ∼ N=π2 in the large N limit (32).
Discussion.—The main result of this Letter is that much

like exactly marginal bulk operators, exactly marginal
defect operators lead to defect conformal manifolds with
Zamolodchikov metrics and with Riemann curvature given
by an integrated four-point function [Eq. (4)]. In analogy to
Goldstone’s theorem [54,55], such marginal defect oper-
ators are guaranteed to exist when the defect breaks a global
symmetry. Thus unlike bulk marginal operators, exactly
marginal defect operators are ubiquitous.
We checked Eq. (4) against known four-point functions

in three different examples and found a match with the
curvature of the metric as in Eq. (7). While these examples
are in supersymmetric theories, symmetry breaking defects
exist in many CFTs. For example, for the critical O(N)
model [56] defects were studied in Refs. [57–61], and
our analysis applies there and possibly has experimental
signatures.
Analogous constraints can be found for higher point

functions (see, e.g., Ref. [32]). The fully integrated corre-
lators are again derivatives of the Zamolodchikov metric,
and therefore fixed by the metric of the manifold.
This integral constraint can be incorporated into boot-

strap algorithms. This was implemented in the numerical
analysis in Ref. [30] leading to far improved accuracy.
Likewise, it can be implemented in analytic studies,
replacing the need for Witten diagram calculations in the
3D N ¼ 6 example [34] and extending it to higher orders.
The same analysis can be applied to Wilson loops and

surface operators in higher dimensional representations,
where a lot of the required calculations have already been
done [45–50,62–69].
Richer defect conformal manifolds can arise from less

symmetric symmetry breaking than the examples discussed
here. Such defects will have a variety of marginal operators
with different two-point functions, and one could find
integral constraints for different components of the Riemann
tensor.
Defect conformal manifolds do not require broken

symmetries. One natural setting is in 3D theories, where
line operators are known to have multiple marginal cou-
plings [70–75]. It is also natural to look at systems with
both defect and bulk marginal operators to construct richer
structures. Some work in that direction is in Ref. [5].

We are indebted to G. Bliard, S. Giombi, N. Gromov,
C. Herzog, Z. Komargodski, C. Meneghelli, M. Probst,
A. Stergiou, M. Trépanier, and G. Watts for invaluable
discussions. N. D.’s research is supported by STFC Grants
No. ST/T000759/1 and No. ST/P000258/1. Z. K. is
supported by CSC Grant No. 201906340174. G. S. is
funded by STFC Grant No. ST/W507556/1.

Appendix A. Simplifying the integral of fðχÞ.—RTo
simplify the integral in Eq. (18), we plug in the
expressions [Eq. (13)] to find

Z
1

0

dχ log χ

�
χF − f −

2f
χ
þ 2f

χ2

�0
: ðA1Þ

Integrating by parts gives the boundary term

log χ
�
χF − f −

2f
χ
þ 2f

χ2

�����1
0

: ðA2Þ

Noticing the boundary behavior [27],

fðχÞ ∼
�
−Fχ2=2; χ → 0;

F=2; χ → 1;
ðA3Þ

the only nonvanishing term is a divergence F log 0 which
we express as an integral and combine with the result of
integration by parts:

−
Z

1

0

dχ

�
F
χ
þ F −

f
χ
−
2f
χ2

þ 2f
χ3

�
: ðA4Þ

The crossing relation χ2fð1 − χÞ ¼ −ð1 − χÞ2fðχÞ leads
to the integral identitiesZ

1

0

dχ
f
χ2

¼ 0;
Z

1

0

dχ
f
χ
¼

Z
1

0

dχf: ðA5Þ

This finally allows us to further simplify Eq. (A4)
to Eq. (20).

Appendix B: Relation to integral identities of
Ref. [30].—A linear combination of the two integral
constraints noticed in Ref. [30] is

Z
1

0

dχ

�
3
f
χ
− 2

δG
χ2

ð1þ log χÞ
�

¼ 1

2CΦ
þ 3F ; ðB1Þ

where δG, in the notations of Sec. (Maldacena-Wilson
loops), is

δG
χ2

¼ F − ∂χ

��
1 −

1

χ
þ 1

χ2

�
f

�
: ðB2Þ

Using Eq. (A3), the left-hand side of Eq. (B1) is

2F þ F log ϵþ
Z

1

0

dχ

�
3
f
χ
− 2Fð1þ log χÞ

− 2

�
1

χ
−

1

χ2
þ 1

χ3

�
f

�
: ðB3Þ
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Then using Eq. (A5), this is

Z
1

0

dχ

��
2 −

1

χ

�
F þ

�
1 −

2

χ3

�
f

�
; ðB4Þ

and finally using our result for the integral [Eq. (20)], this is
the right-hand side of Eq. (B1), proving it.

Appendix C: Integral identities for Hi, Ki.—To
simplify the integrals in Eq. (28) we note that the
crossing relation ð1 − χÞ2K1ðχÞ ¼ −χ2K2ð1 − χÞ impliesZ

1

0

dχ
χ2

log χKi ¼ −
Z

1

0

dχ
χ2

logð1 − χÞK3−i; ðC1Þ

which yields

R1 ¼ 2

Z
1

0

dχ
χ2

�
log

χ

1 − χ
K1 þ log χðH1 þH2Þ

�
: ðC2Þ

Using Eq. (29), this is a total derivative. Furthermore,
assuming the asymptotics

hðχÞ ∼
�
a0χ þ a1χ log χ; χ → 0;

a2ðχ − 1Þ; χ → 1;

fðzÞ ∼
�
b0zþ b1z log jzj; z → 0;

b2 þ b3 log jzj; z → −∞;
ðC3Þ

we find Z
1

0

dχ
χ2

log χH2 ¼ 0 ðC4Þ

and

R1 ¼ 2a0 − 2b0: ðC5Þ

This indeed vanishes in the perturbative analytic
bootstrap, where a0 ¼ b0 ¼ −b2 as a consequence of the
crossing of h and a braiding relation to f [34].
By using Eqs. (C1), (C3), and (C4) we can also simplify

the second line of Eq. (28) to

R2 ¼ 2

Z
1

0

dχ
χ2

logð1 − χÞðH1 −H2 − K1Þ: ðC6Þ
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