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We consider generalized Scherk-Schwarz reductions of E9 exceptional field theory to D ¼ 2 space-time
dimensions and, in particular, construct the resulting scalar potential of all gauged supergravities that can be
obtained in this way. This provides the first general expression for a multitude of theories with an
interesting structure of vacua, covering potentially many new AdS2 cases. As an application, we prove the
consistency of the truncation of eleven-dimensional supergravity on S8 × S1 to SO(9) gauged maximal
supergravity. Fluctuations around its supersymmetric SO(9)-invariant vacuum describe holographically the
dynamics of interacting D0-branes.
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Flux compactifications of string theory are central in the
AdS=CFT correspondence [1–3] and in probing the quan-
tum gravity swampland conjectures [4,5]. Such compacti-
fications lead to gauged supergravity theories in which some
of the fields are charged under the vector fields. The cases in
which the classical solutions of gauged supergravity uplift
consistently to solutions of ten- or eleven-dimensional
supergravity are of particular interest. The analysis of such
solutions has allowed for many precision tests of the
AdS=CFT correspondence in a large variety of AdS vacua,
especially when the gauged supergravity has maximal
supersymmetry, see, e.g., [6,7]. For instance, in the proto-
typical examples of the AdS=CFT correspondence the
gravity side truncates consistently to an SOðNÞ gauged
maximal supergravity.
The structure and dynamics of gauged maximal super-

gravities is well understood in dimensions D ≥ 3 (see
Refs. [8,9] for reviews). Their appearance as consistent
truncations of a higher-dimensional parent theory is most
efficiently analysed using the recent frameworks of gener-
alized geometry [10,11] or exceptional field theory [12–14].
The latter moreover allows for the derivation of the Kaluza-
Klein spectrum and the analysis of the stability of the
compactification [15,16].
Gauged maximal supergravity in D ¼ 2 dimensions, by

contrast, is less developed and only partial results are
available [17–19]. At the same time, such theories are of

particular interest in that most of their (supersymmetric)
vacua are expected to contain an AdS2 factor with a running
dilaton, a feature that has attracted attention recently in the
context of applying the AdS=CFT correspondence to low-
dimensional (Jackiw-Teitelboim) gravity [20–22]. A major
example of the importance of D ¼ 2 is the conjectured
holographic correspondence between solutions of SO(9)
maximal gauged supergravity and the matrix model captur-
ing the physics of the supermembrane modeled by stacks of
D0-branes [19,23–27].
In this Letter we report for the first time complete results

for consistent truncations to D ¼ 2 gauged maximal super-
gravities. In particular, we give the general expression for
the scalar potential of these theories. As an application we
constructively prove the consistency of the truncation of
the bosonic sector of type IIA supergravity on S8 to SO(9)
gauged maximal supergravity [19], thus extending the
partial uplift of the Uð1Þ4 invariant sector derived in
[28]. The full uplift of any solution of the SO(9) model
back to ten or eleven dimensions can be derived from our
expressions.
The original construction of gauged supergravities relied

on a careful analysis of the supersymmetry transformations
[29–31], which can conveniently be phrased in the embed-
ding tensor formalism [32,33]. This approach allows one to
treat all possible gaugings on equal footing and to deal with
expressions formally covariant under the global symmetry
group of the original ungauged theory. The process of
turning part of the global symmetry into a gauge symmetry
typically induces non-Abelian interactions for the gauge
fields. This deforms the Lagrangian and supersymmetry
transformations and, in particular, introduces an intricate
potential for the scalar fields at second order in the gauge
coupling. The case of D ¼ 2 space-time dimensions has
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thus far resisted a comprehensive treatment from the point
of view of supersymmetry due to the intricacies of the
relevant representation theory [34,35].
In order to bypass the technical difficulties encountered

in the supersymmetry analysis, in this Letter we derive the
scalar potential of D ¼ 2 gauged maximal supergravity by
performing a generalized Scherk-Schwarz reduction of the
recently formulated E9 exceptional field theory [36,37].
Exceptional field theories capture the complete dynamics
of ten- and eleven-dimensional supergravities in a form
that is covariant under the En groups that appear as
global symmetries after a torus reduction to D ¼ 11 − n
dimensions [38,39]. In particular, the infinite-dimensional
affine Kac–Moody extension E9 of E8 appears in D ¼ 2

dimensions [40,41], where it acts on an infinity of scalar
fields that are related by on-shell dualities. Exceptional
field theories are especially suited for studying consistent
truncations to gauged maximal supergravities through the
aforementioned generalized Scherk-Schwarz reduction.
The truncation ansatz is then mainly encoded in an
En-valued “twist matrix” that determines the embedding
tensor and is subject to certain differential constraints. By
construction, the potential of gauged supergravity only
depends on the embedding tensor. Exceptional field
theory therefore provides an alternative route to identify-
ing the D ¼ 2 scalar potential for any (upliftable) gauging
without resorting to supersymmetry.
For brevity and in order to reduce technicalities, we

restrict ourselves in this Letter to the internal sector of the
minimal formulation of E9 exceptional field theory as
defined in [37]. The results presented here can be gener-
alized to include the full dynamics of the extended
formulation of the theory.
Elements of E9 exceptional field theory.—E9 exceptional

field theory and geometry are based on the loop algebra
extension of the split real e8, together with a Virasoro
algebra acting on it [36,37,42]. Denoting the generators of
E8 by TA

0 with A ¼ 1;…; 248, the loop extension allows for
an arbitrary mode number TA

n with n ∈ Z. We shall consider
also the usual central extension by an element K as well as
the Virasoro generators Ln with the standard relations. E9 is
generated by fTA

n ;K; L0g. Following [36,37] we denote all
these generators, including all Ln, collectively by Tα and
define a set of (degenerate) bilinear forms ηkαβ for k ∈ Z
that pairs the loop generators TA

n and TA
k−n as well as K and

Lk [43]. Fields in E9 exceptional field theory formally
depend on infinitely many coordinates YM, taken from
the so-called basic representation of E9. This corresponds to
the states of eight chiral bosons moving freely on the torus
that is obtained by identifying points according to the E8

root lattice [44]. Because of this analogy, we write elements
of the basic representation in a Fock space notation built on
top of a ground state j0i (that is invariant under TA

0 and

fL−1; L0; L1g as well as annihilated by TA
n for n > 0) by

acting with the negative mode generators

� � �TA2
−n2T

A1
−n1 j0i; ð1Þ

with ni > 1. There is an intricate structure of null states in
this Fock space whose removal yields an irreducible
representation of E9 on which also the Ln act.
Derivatives ∂M with respect to YM are valued in the dual
representation to the coordinates and written as bra vectors
h∂j ¼ heMj∂M, where heMj is a basis of the dual basic
representation. The coordinate dependence of all fields and
gauge parameters, denoted here collectively by ϕi, is
restricted by the section constraint [42]

η0αβh∂ϕ1jTα ⊗ h∂ϕ2jTβ ¼ h∂ϕ2j ⊗ h∂ϕ1j− h∂ϕ1j⊗ h∂ϕ2j:
ð2Þ

An analogous condition also applies to second derivatives
of a single field ϕ. The section constraint implies that all
fields and parameters only depend on a finite subset of the
YM. Choosing any such subset breaks the manifest E9

invariance. Besides the dependence on the “internal”
coordinates YM all fields also depend on the two “external”
coordinates xμ with μ ¼ 0, 1. E9 exceptional field theory
becomes equivalent to either eleven-dimensional or type
IIB supergravity upon choosing one of the (maximal)
solutions to (2). In this Letter, we focus on the internal
sector of the theory that only involves derivatives with
respect to the internal coordinates YM.
Gauge symmetries act on fields by the so-called gener-

alized Lie derivative. It is defined by its action on a
“generalized vector” jVi in the basic module

LjΛi;ΣjVi ¼ ΛM
∂MjVi − η0αβh∂jTαjΛiTβjVi

− h∂jΛijVi − η−1αβTrðΣTαÞTβjVi; ð3Þ

where the gauge parameter jΛi is also a generalized vector,
ΛM ¼ heMjΛi and the derivatives in the second and third
term act on jΛi. The parameter Σ is a so-called ancillary
gauge parameter which is required for closure of the gauge
algebra [42,45]. It can be written as a sum of tensor
products of ket and bra vectors, with the bra vectors
algebraically constrained as in (2).
There are two types of scalar fields in E9 exceptional

field theory [37]. The first type corresponds to the
infinitely many dualizations of the 128 propagating
degrees of freedom in D ¼ 2 maximal supergravity [41]
and they are associated with the quotient of the Kac-
Moody group E9 by its maximal “compact” subgroup
KðE9Þ. We represent them by a Hermitian generalized
metric M and a special role is played by the field ρ
that is the component along the Virasoro generator L0.
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The second type is given by a so-called constrained scalar
field hχj, where “constrained” refers to the fact that it can
replace h∂ϕij in the section constraint (2) and therefore
there are effectively at most nine independent components
of hχj that are nonvanishing.
Out of the scalar fields one can construct an e9-valued

current hJ αj via the usual Maurer-Cartan derivative
M−1

∂MM, as well as a shifted current hJ −
α j in which

the mode numbers are shifted by one negative unit and
whose K component is the constrained scalar hχj. The
transformation of hχj under rigid E9 involves the compo-
nents of hJ αj such that hJ −

α j transforms as a tensor.
The E9 exceptional field theory potential is bilinear in

these two currents [36]

ρVExFT ¼ 1

4
ηαβ0 hJ αjM−1jJ βi − ρ−1h∂ρjTαM−1jJ αi

−
1

2
hJ αjTβM−1Tα†jJ βi

þ 1

2
ρ2hJ −

α jTβM−1Tα†jJ −
β i; ð4Þ

and is invariant under gauge transformations up to a total
derivative. We stress that the standard factor

ffiffiffiffiffiffi−gp
of the

D ¼ 2 integration measure is absorbed into VExFT. We also
use the notation jJ αi ¼ ðhJ αjÞ† and similarly for other bra
vectors in the following.
Generalized Scherk-Schwarz ansatz.—Generalized

Scherk-Schwarz reductions [10–13] give a factorization
ansatz of the YM dependence of all fields (subject to the
section constraint), such that the dynamics reduce to those
of a gauged (maximal) supergravity and all solutions of the
latter uplift to solutions of the full theory. They are mainly
encoded in a twist matrix UðYÞ ∈ E9, where UðYÞ decom-
poses into rðYÞ−L0 and an element of the loop group over
E8. In particular, we define the e9-valued Weitzenböck
connection

hWαj ⊗ Tα ¼ r−1heMjU−1 ⊗ ∂MUU−1: ð5Þ

The tensor product ⊗ indicates that the bra vectors are not
acted upon by the operators on their right.
The gauge transformations (3) with the reduction

ansatz [42]

jΛi ¼ r−1U−1jλi; Σ ¼ rU−1TαjλihWþ
α jU; ð6Þ

must reduce to those of a gauged supergravity. Here, jλi is
only allowed to depend on the external coordinates xμ. This
requirement translates to a differential constraint on the
twist matrix. In analogy with hJ −

α j, we define hW�
α j as the

Weitzenböck connection with mode number shifted by �1

and whose central K components hw�j are independent
functions of YM, constrained in the same way as hχj. While
hw�j were not considered in [42], they are necessary to

describe the most general Scherk-Schwarz ansatz and
ensure manifest rigid E9 covariance. One then computes

rUðLjΛi;ΣjViÞ ¼ η−1αβhθjTαjλiTβjvi þ η0αβhϑjTαjλiTβjvi;
ð7Þ

with jVi ¼ r−1U−1jvi, where jvi is YM independent and

hθj ¼ −hWþ
α jTα; hϑj ¼ hWαjTα: ð8Þ

Consistency of the truncation requires hθj and hϑj to be
constant, in which case they are identified with the compo-
nents of the embedding tensor of two-dimensional gauged
maximal supergravity [18,42]. The closure of the gauge
algebra in supergravity is ensured by the so-called quadratic
constraint [32,33]. In the generalized Scherk-Schwarz ansatz
this follows from closure of the exceptional field theory
gauge algebra for both parameters jΛi and Σ in (6). We have
checked that the additional necessary condition on Σ is
automatically satisfied.
The reduction ansatz for standard scalar fields follows

the ones of lower-rank exceptional field theories:

Mðx; YÞ ¼ U†ðYÞMðxÞUðYÞ; ð9aÞ

ρðx; YÞ ¼ rðYÞϱðxÞ; ð9bÞ

where MðxÞ and ϱðxÞ encode the scalar fields of (gauged)
maximal supergravity. Equation (9) needs to be supple-
mented by a reduction ansatz for the constrained scalar hχj.
This is determined such that the shifted current splits into

hJ −
α jU−1⊗UTαU−1¼hW−

α j⊗Tαþϱ−2hWþ
α j⊗M−1Tα†M:

ð10Þ

A nonvanishing hϑj induces a gauging of L0, which is
only an on-shell symmetry and the resulting gauged
supergravities do not admit a Lagrangian description, in
analogy with trombone gaugings in higher dimensions
[46]. We will henceforth focus on Lagrangian gaugings, so
that hϑj ¼ 0. One can then choose hW−

α jTα ¼ 0 without
loss of generality, thereby simplifying the final expression
of the scalar potential. By plugging the ansatz (9) and (10)
into the potential of exceptional field theory (4), we
compute the scalar potential of two-dimensional gauged
maximal supergravity:

ϱVpot ¼
1

2ϱ2
hθjM−1jθi þ 1

2
η−2αβhθjTαM−1Tβ†jθi

þ ϱ2

2
η−4αβhθjTαM−1Tβ†jθi; ð11Þ

up to total derivatives. It is nontrivial that the potential
can be fully expressed in terms of the quantities (8).
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The expression (11) is one of the two main results reported
in this Letter. It defines, for the first time, the scalar
potential of all two-dimensional gauged maximal super-
gravities admitting a geometric uplift to higher dimensions.
As a cross-check, we have verified that it reproduces the
potential of all three-dimensional gauged maximal super-
gravities also admitting an uplift.
Consistent Kaluza-Klein truncation on S8.—In order to

illustrate the usefulness of the generalized Scherk-Schwarz
procedure and of the general scalar potential (11), we now
construct the consistent truncation of type IIA supergravity
on S8 (or, equivalently, of eleven-dimensional supergravity
on S8 × S1). It leads to a gauging of D ¼ 2 maximal
supergravity that includes an SO(9) subgroup of E9 that is
not contained in E8. This case relates to previous studies
[17,19] using a different approach. To define the gauging
we must give the twist matrix U in (9a) whose Weitzenböck
connection determines the embedding tensor components
(8). The corresponding ansatz for the twist matrix involves
an SL(9) subgroup of E9 containing the SO(9) gauge group.
This SL(9) is conjugate under E9 to the one that acts on the
T9 compactification ofD ¼ 11 supergravity. The two share
a common GL(8) subgroup containing the structure group
of the S8 compactification manifold.
The dual of the basic representation decomposes as

9̄4
9
⊕ 367

9
⊕ 12610

9
⊕ ð9̄ ⊕ 315Þ13

9

⊕ ð36 ⊕ 45 ⊕ 720Þ16
9
⊕ … ð12Þ

under this SL(9), where the subscripts denote the eigen-
values with respect to a redefined Virasoro generator L0.
It is determined such that it commutes with SL(9) instead
of E8. We write the basis vectors of the first two SL(9)
representations in (12) as

h0jI;
D1
3

���IJ ¼ h0jKTIJK
1=3 ; ð13Þ

where I, J are fundamental SL(9) indices and TIJK
1=3 (1

3
being

the L0 eigenvalue) is the first raising operator in E9

decomposed under this SL(9) and is fully antisymmetric
in its indices. The solution to the section constraint that is
relevant for our examples consists of breaking SLð9Þ →
SLð8Þ and keeping eight out of the 367=9 → 8 ⊕ 28
components of h1

3
jIJ. For a further embedding in D ¼ 11

one can add one more Kaluza-Klein circle whose coor-
dinate is the singlet in 4516=9 → 1 ⊕ 8 ⊕ 36.
The E9 representation (12) not only governs the coor-

dinates but also the embedding tensor components. We find
a generalized Scherk-Schwarz ansatz for an embedding
tensor defined as a symmetric tensor ΘIJ in the 4516=9. The
gauge group stabilizes the embedding tensor and when
ΘIJ ¼ gδIJ, with g the gauge coupling, we get SOð9Þ ⊂
SLð9Þ gauged supergravity.

We choose the (inverse of the) twist matrix as

U−1 ¼ rL0esKu−1; ð14Þ

where u is an element of SL(9). Computing the
Weitzenböck connection corresponding to the twist matrix
(14), one can work out the components of (8). They
simplify to finite expressions that are still a bit unwieldy
but simplify further when using the standard sphere
reduction ansatz [10,12] for the SL(9) matrix u. The latter
can be written using nine embedding coordinates yI of a
round S8 in a nine-dimensional ambient space as

ðu−1ÞiI ¼ ðdet gÞ1=9ðgij∂jyI þ ciyIÞ; ð15aÞ

ðu−1Þ0I ¼ ðdet gÞ−7=18yI: ð15bÞ

Here gij is the induced metric on S8 and we have split
I ¼ ð0; iÞ; ci is the seven-form type IIA gauge potential,
satisfying ∂i½ðdet gÞ1=2ci� ¼ 7ðdet gÞ1=2. The solutions for r
and s appearing in the twist matrix are given by

r ¼ ðdet gÞ1=2; es ¼ g
14

ðdet gÞ7=18: ð16Þ

This ansatz requires hwþj ¼ 0. Alternatively, one could
reabsorb ci into a nonvanishing hwþj, something that is not
possible for lower-dimensional spheres and is related to the
fact that the eleven-dimensional uplift of ci is a component
of the dual graviton.
With these choices we obtain the following embedding

tensors

hθj ¼ −
g
56

δIJ
D1
3

���KITJ
1K; hϑj ¼ 0; ð17Þ

which reproduce the embedding tensor of the SO(9)
gauging. These expressions straightforwardly generalize
to SOðp; qÞ and CSOðp; q; rÞ gaugings, corresponding to
other signatures of ΘIJ in the 4516=9 [18,19,47].
For evaluating the potential (11) on (17) we must also

parametrize the supergravity scalar fields, i.e., MðxÞ ¼
V†V in (9a), where V is the coset representative on
E9=KðE9Þ. This takes a form similar to (14)

V−1 ¼ � � � ehJITI
−1J e

1
6
aIJKT−1

3
IJKϱL0eσKv−1; ð18Þ

where now v labels the supergravity fields in our SL(9) and
aIJK is antisymmetric in its indices and couples to the first
lowering generator of E9 outside the loop algebra of SL(9).
The fields associated to all generators not shown explicitly
in (18) drop out of the potential, including the one
associated to TIJK

−2=3. Substituting this into the general
potential (11) leads to the following scalar potential for
SO(9) gauged supergravity
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Vpot ¼
g2e2σ

2
ϱ5=9δIJδKL

�
ð2mIKmJL −mIJmKLÞ þ 1

2
ϱ−2=3ðaIPQaKRSmJLmPRmQS − 2aIKPaJLQmPQÞ

þ 2ϱ−2hIPhKQmQ½PmJ�L þ ϱ−8=3aIPRhJPa
KQShLQmRS þ

ϱ−2

72
hJPaKQ1Q2aLQ3Q4aQ5Q6Q7εQ1…Q9

mIQ8mPQ9

þ 3

8
ϱ−4=3aI½M1M2aM3M4�JaK½N1N2aN3N4�LmM1N1

mM2N2
mM3N3

mM4N4

þ ϱ−2

2 · 1442
aIN1N2aJN3N4aN5N6N7εN1…N9

aKP1P2aLP3P4aP5P6P7εP1…P9
mN8P8mN9P9

þ ϱ−8=3

576
aIRPhJRa

KN1N2aLN3N4aN5N6N7aN8N9QεN1…N9
mPQ

þ ϱ−8=3

11522
aIN1N2aJN3N4aN5N6N7aN8N9QεN1…N9

aKP1P2aLP3P4aP5P6P7aP8P9SεP1…P9
mQS

�
: ð19Þ

This potential agrees with the one that can be deduced
from [ [19] Eq. (4.22)] up to conventions. The main result
here is the constructive proof that appropriate extremization
of this potential yields solutions that all uplift to vacua of
eleven-dimensional supergravity. Here, m ¼ v†v encodes
the metric on S8, the dilaton and the type-IIA seven-form,
while aIJK encodes the type-IIA two-form and five-form.
One can straightforwardly uplift further to D ¼ 11, but the
reader should be warned that aIJK is not the three-form on
the nine-dimensional space. The fields hIJ are auxiliary
fields and they only appear through the antisymmetric
combination δP½IhPJ�. Integrating them out generates the
two-dimensional Yang-Mills term for SO(9). The 128
propagating degrees of freedom are described by mIJ

and aIJK [19].
When looking for “vacuum” solutions based on the scalar

potential (19), one must take into account that the conformal
factor σ of the D ¼ 2 metric as well as the dilaton ϱ are
necessarily running. One must then extremize only with
respect to the loop scalars to find dilaton-supported con-
figurations. The simplest extremum is given by aIJK ¼
hIJ ¼ 0 and mIJ ¼ δIJ. It consistently uplifts to the warped
AdS2 × S8 × S1 half-BPS solution in D ¼ 11 [17,19].
Supersymmetry implies stability of this solution, and one
indeed checks that despite some negative signs in the
potential the appropriate Breitenlohner-Freedman bound
is respected for all modes in the two-dimensional theory.
The results of this Letter open a new window on the study

of AdS2 vacua and matrix model holography. The gener-
alized Scherk-Schwarz ansatz (6), (9) and the scalar
potential (11) allow for a systematic search of new con-
sistent truncations to two-dimensional gauged supergrav-
ities with interesting extrema. Besides the analysis of the
two-dimensional fluctuations, the explicit uplift ansatz
enables one to analyze the full Kaluza-Klein spectrum in
eleven dimensions using the techniques developed in [15].
This would provide a streamlined rederivation of previous
results [25] and allow for a straightforward generalization to

less symmetric vacua, thus paving the way to precision tests
for AdS2 holography.
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