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We construct a Hermitian random matrix model that provides a stable nonperturbative completion of
Cangemi-Jackiw (CJ) gravity, a two-dimensional theory of flat spacetimes. The matrix model reproduces,
to all orders in the topological expansion, the Euclidean partition function of CJ gravity with an arbitrary
number of boundaries. The nonperturbative completion enables the exact computation of observables in
flat space quantum gravity which we use to explicitly characterize the Bondi Hamiltonian spectrum.
We discuss the implications of our results for the flat space S-matrix and black holes.
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Introduction.—What is the mathematical description of a
quantum Universe with vanishing cosmological constant?
It has long been understood [1] that the gauge invariant
content of a gravitational theory that is asymptotically flat
is the map from initial states at I − to final states at Iþ,
i.e., an S matrix. The path of the ambitious researcher
attacking the problem of flat quantum gravity is thus, in
principle, mapped out: Construct the relevant asymptotic
Hilbert spaces and provide quantum mechanical rules for
computing S-matrix elements, nonperturbatively.
A surge of recent activity has outlined an interesting

candidate formalism for this aspirational theory of flat
Universes: celestial holography. Its central conceptual
element is the translation of S-matrix elements in
d-dimensional spacetime to correlation functions in a
yet-unknown microscopic Euclidean quantum theory living
on the (d − 2)-dimensional celestial sphere. In four dimen-
sions, this program has provided tantalizing clues about
the kinematic structure of this putative “holographic” dual
[2,3]. Its dynamical definition, however, remains elusive;
what is missing is a prescription for generating the
aforementioned correlators without reference to the bulk
(see, however, [4]). In this Letter, we endeavor a first step
towards rectifying this situation.
Encouraged by the wealth of insights, low-dimensional

versions of AdS=CFT holography have recently generated
[5–8], we consider the simplest nontrivial gravitational
theory of two-dimensional flat spacetimes, introduced by
Cangemi and Jackiw (CJ) in [9]. Its action reads

ICJ ¼ S0χ þ
1

2

Z
M

d2x
ffiffiffiffiffiffi
−g

p ½ΦRþ 2Ψð1 − εμν∂μAνÞ�

þ 1

2

Z
∂M

du
ffiffiffiffiffiffi
−h

p
½2ΦK − nμ∇μΦ�; ð1Þ

with S0 ∈ Rþ, χ the Euler characteristic of the manifold
M, and εμν the Levi-Civita tensor. The boundary terms
ensure the finiteness of the on-shell action and the vanish-
ing of its variations given certain asymptotic conditions.
This is a dilaton-gravity theory constructed from the flat

space limit of Jackiw-Teitelboim (JT) gravity [10,11] by
coupling it to a minimal matter sector: A topological Abelian
gauge field Aμ whose canonical momentum Ψ endows the
Universe with a “vacuum” energy. The special matter sector
plays a central role in the quantum description of the theory
and its nonperturbative properties.By “freezing” themomen-
tum Ψ of the gauge field, the theory reduces to the dilaton-
gravity sector of the widely known matterless CGHS model
[12]. Thepurpose of this Letter is to report progress towards a
microscopic description of quantum CJ gravity.
At face value, the combined lessons of celestial holog-

raphy [13,14] and low-dimensional AdS=CFT [8] suggest
that the nonperturbative description of CJ gravity involves
an ensemble of zero-dimensional quantum theories, i.e., a
celestial matrix model. Taking this expectation seriously
raises two fundamental questions: What is the “holographic
dictionary” for converting gravitational questions to matrix
model computations? And can we gain nonperturbative
control of CJ gravity by identifying the precise dual matrix
ensemble? In what follows, we summarize the answers to
both questions, reserving technical details for a longer
article [15].
Classical Cangemi-Jackiw gravity.—All solutions of CJ

gravity describe a rigid flat spacetime, filled with a homo-
geneous vacuum energy Ψðxþ; x−Þ ¼ Λ and permeated
by a fixed background electric flux F ¼ −dxþ ∧ dx− and
a dynamical dilaton field Φðxþ; x−Þ. Its dynamics can be
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recast in gravitational language by expressing the solutions
in the reference frame of the dilaton. Upon introducing a
dilaton-Bondi coordinate frame ðr; uÞ via

r ¼ 1

γ
Φðxþ; x−Þ; ∂

∂u
¼ 1

γ
εμν∂νΦðxþ; x−Þ∂μ; ð2Þ

where γ is a unit of inverse length introduced for dimensional
consistency, the general solution consists of a pair of Rindler
wedges in the configuration (Fig. 1)

ds2 ¼ −
2Λ
γ

�
r −

ϕh

γ

�
du2 − 2dudr; Φ ¼ γr;

A ¼ −
�
r −

ϕh

γ

�
duþ dgðrÞ; Ψ ¼ Λ; ð3Þ

wherewe also partially gauge fixedA. The vacuumenergyΛ
controls the Rindler inverse temperature β ¼ 2πγ=Λ, while
ϕh specifies the location of the bifurcate horizon. The
dynamical variables that complete the phase space above
are the difference of the gauge parameter gðrÞ between the
two asymptotic boundaries (the Wilson line of A) and the
relative synchronization of the two asymptotic Bondi clocks
(the “gravitational Wilson line”).
Cangemi and Jackiw showed [9] that (1) is equivalent to

a BF theory for the Maxwell algebra

½Pa; K� ¼ ϵa
bPb; ½Pa; Pb� ¼ ϵabQ; ð4Þ

with ϵab the Levi-Civita symbol. Besides the translations
Pa and boost generator K expected from the Poincaré
symmetry of flat space, the algebra includes a nontrivial
central extension Q due to the presence of the matter sector
in (1). This fact renders it the minimal metric Lie algebra
containing isoð1; 1Þ, which is crucial for a “standard”
definition of a BF theory [16]. As the BF description of
low-dimensional AdS=CFT models has been fundamental
in defining the measure of the Euclidean path integral [8],
this highlights the importance of considering the full CJ

theory over the naive flat limit of JT gravity or the
matterless CGHS model (see, however, [17]).
Asymptotic boundary conditions.—In addition to the

classical solutions of pure CJ gravity, it is important to
characterize the allowed off-shell configuration space by
taming the fields’ asymptotic behavior. This is important
for the quantization of the theory, which amounts to
specifying the functional domain of the path integration
and a measure on it.
Starting from a reference classical solution (3), e.g., the

one with ðΛ;ϕhÞ ¼ ðγ2; 0Þ, a natural off-shell space
includes all field configurations whose asymptotic expan-
sion about r ¼ ∞ is of the same form as that of the parent
solution. As we explain in [15], asymptotic fluctuations of
the dilaton can always be absorbed into gμν and Aμ via a
diffeomorphism that preserves their asymptotic form. With
the additional requirement of vanishing on-shell action
variations, we arrive at the asymptotic conditions

Φðr; uÞ ¼ γrþOð1=rÞ; ð5Þ
ζμAμ ¼ −rþOð1=rÞ; ð6Þ

ds2 ¼ −2ðPðuÞrþ TðuÞÞdu2 − 2dudrþOð1=rÞ; ð7Þ
with ζμ ¼ ð1=γÞεμν∂νΦ an asymptotic timelike vector that
generalizes (2), and ½PðuÞ; TðuÞ� arbitrary smooth functions
that characterize the future asymptotic states.
Condition (5) is key. The frozen dilaton profile near null

infinity allows us to define a regulated asymptotic boun-
dary of the spacetime ∂Mϵ and a canonical time flow along
it for all off-shell configurations via

Φj
∂Mϵ

¼ 1

ϵ
;

∂

∂u
¼ 1

γ
εμν∂νΦj

∂Mϵ
∂μ; ð8Þ

respectively, since neither the value nor the normal deriva-
tive of Φ fluctuate in the ϵ → 0 limit. On-shell, (8) selects a
constant acceleration cutoff in each Rindler wedge (Fig. 1)
and the limits limϵ→0 ∂MR;ϵ ¼ Iþ

R , limϵ→0 ∂ML;ϵ ¼ I −
L

define right future and left past null infinity, respectively.
Condition (6) then fixes the pullback of Aμ on ∂Mϵ.
In contrast, the asymptotic metric fluctuates freely. The

class of metrics (7) forms the coadjoint orbit of an
asymptotic symmetry group which, in view of the con-
straint (6), is the warped Virasoro group [18]. All off-shell
configurations are obtained from the parent ðΛ;ϕhÞ ¼
ðγ2; 0Þ solution via a transformation

u → fðuÞ; r →
rþ g0ðuÞ
f0ðuÞ ; A → Aþ dgðuÞ: ð9Þ

Asymptotic states of CJ gravity are, therefore, mapped to
profiles of the frame variables ½fðuÞ; gðuÞ� on each com-
ponent I�

L;R.
The fact that the boundary induced metric is not fixed by

our boundary conditions is an important deviation from the

FIG. 1. Penrose diagram of the Lorentzian solution. Two copies
of (3) are needed: the right one involves the retarded time uR
while the left one the advanced time vL, so that together they
cover the entire patch. The dilaton diverges positively at I�

R=L

while it takes some large negative value on the singularity.
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standard Dirichlet condition in AdS2 JT gravity. The proper
time along the asymptotic boundary is not a good clock in
quantum CJ gravity, essentially because there is no notion
of proper time that survives as ϵ → 0 and ∂Mϵ approaches
the null surface Iþ

R ∪ I −
L. Instead, the holographic clock

is defined by the dilaton field, with a rate set by its
nonfluctuating normal derivative as in (8). The treatment
of the other asymptotic null infinity I −

R ∪ Iþ
L is per-

formed in a completely analogous way.
The holographic dictionary.—The classical asymptotic

states described above form a vector space quantum
mechanically. Completing it into a Hilbert space is a key
first step in defining the S-matrix of CJ gravity. To do so we
must choose an inner product, a natural choice for which is
provided by the Euclidean path integral,

ZðβÞ ¼
Z

DgμνDAμDΦDΨe−ICJ ; ð10Þ

where the boundary time u defined via (8) has been
analytically continued to u → iτ and compactified τ∼τþβ
by enforcing periodic boundary conditions. Expression (10)
can be interpreted in twoways: (a) As the “partition function”
of CJ gravity, probing the spectrum of the Hamiltonian
generator of Bondi time along Iþ

R , or (b) as the overlap
of two Hartle-Hawking (HH) states on the Hilbert space
HI−

L∪I
þ
R
≡H−þ produced by each half of the Euclidean

circle. This state should be thought of as living on the horizon
that connects the two asymptotic regions (Fig. 1). Decorating
the partition function with operator insertions, then, endows
the asymptotic Hilbert space H−þ with an inner product.
Equivalently, from the analytic continuation of the right
advanced time, one can compute the trace of the correspond-
ing Hamiltonian on I −

R and construct HIþ
L∪I

−
R
≡Hþ−.

The path integral (10) is understood semi-classically as a
sum over connected manifolds with different topologies
and a path integration over field configurations on each of
them. The domain of the latter is the off-shell functional
space [(5)–(7)]. The measure is, in turn, obtained rigorously
from the BF description of the theory [15]. The partition
function (10) can further be generalized to a Euclidean path
integral Zðβ1;…; βnÞ with an arbitrary number n of asymp-
totic boundaries (8) with periodicities βi, i ¼ 1;…n.
Nonfactorized contributions to Zðβ1;…; βnÞ may be inter-
preted as computing expectation values of inner products
over an ensemble of microscopic theories [8].
Our proposed holographic dictionary can now be articu-

lated by closely following the steps of the successful AdS2
case [8]. Our claim is that the n-boundary partition function
is nonperturbatively computed by the n-point function
of a single-trace matrix operator OðβÞ in a random matrix
ensemble

Zðβ1;…; βnÞ ¼
�Yn

i¼1

OðβiÞ
�

c
; ð11Þ

where the subscript c means the connected ensemble
average. We shall establish (11) by explicitly matching
both sides of this equality to all orders in perturbation
theory. This is the task we turn to next.
Euclidean partition function.—The gravitational expres-

sion (10) is studied in a series expansion in e−S0 , called the
“topological expansion.” Since the Euler characteristic of a
two-dimensional manifold is χ ¼ 2ð1 − gÞ − n, with g and
n the genus and number of boundaries, the topological
expansion reads

Zðβ1;…; βnÞ ≃
X∞
g¼0

ðe−S0Þ2ðg−1ÞþnZgðβ1;…; βnÞ; ð12Þ

where Zgðβ1;…; βnÞ only includes metrics of genus g. The
symbol ≃ highlights that equality holds up to nonpertur-
bative corrections in e−S0 .
Because of the linear dependence of (1) on Φ, after a

rotation of its contour along the imaginary axis, the dilaton
integration yields a Dirac delta δðRÞ which forces all off-
shell metrics to be flat. As explained in [19], there are no
locally flat manifolds with more than two asymptotic
boundaries. Hence, the entire topological expansion (12)
vanishes for

Zðβ1;…; βnÞ ≃ 0; n ≥ 3: ð13Þ
When n ¼ 1, 2, only the g ¼ 0 terms in (12) are nonzero,
corresponding to the disk and cylinder topologies. The path
integrals in these two cases reduce to the integral over a
quantum mechanical system [18] and are one-loop exact
[20,21], and can therefore be computed exactly [21,22]
with respect to the measure derived from the bulk BF
description of CJ gravity [15]. In a particular normalization
for the measure, one finds

ZðβÞ ≃ eS0ZdiskðβÞ ¼ eS0
π3

2ðγβÞ2 ;

Zðβ1; β2Þ ≃ Zcylinderðβ1; β2Þ ¼
1

γðβ1 þ β2Þ
: ð14Þ

The spectral density is ϱðEÞ ≃ eS0ðπ3=2γ2ÞE, obtained
from the inverse Laplace transform of ZðβÞ.
Celestial matrix model.—Completing the holographic

dictionary (11) amounts to specifying the following matrix
model data: (a) Symmetry class of the random matrix M.
(b) Probability measure over the ensemble. (c) Matrix
operator OðβÞ corresponding to the insertion of a boundary
in the gravity partition function. The criterion of success is
the ability of the relevant ensemble expectation values to
reproduce all orders of the topological expansion of CJ
gravity (13) and (14). Interestingly, there is a unique choice
that achieves this matching.
Our celestial matrix model is defined as follows. Start

with an ensemble of finite N × N Hermitian matrices M
with probability measure dMe−NTrVðMÞ
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VðMÞ ¼ M4 −
1

2
M2; ð15Þ

which for large N gives the leading eigenvalue density
ρ0ðλÞ ¼ ðλ2=2πÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
4 − λ2

p
. The spectral curve yðzÞ, which

completely determines the perturbative expansion of
observables, is obtained from yðλ� iϵÞ ¼ ∓iπρ0ðλÞ. We
then take the double scaling limit [23,24], which amounts
to taking N large while simultaneously rescaling the
eigenvalues λi of M near the origin, where ρ0ðλÞ ∼ λ2. In
this limit, the matrix model parameters ðN; λiÞ are replaced
by ðℏ; αiÞ, according to 1=N ¼ ℏðγ3=2=π3Þδ3 and λi ¼ αiδ,
where double scaling corresponds to δ → 0. This simple
model has been extensively studied in other contexts
[25–28]. The 1=N expansion becomes an expansion in
ℏ, where we shall identify ℏ ¼ e−S0 to make contact with
gravity (12). The eigenvalue density to leading order in ℏ in
the double scaling limit ρ0ðαÞ becomes

ρ0ðαÞ ¼ lim
δ;ℏ→0

hTr δðM̄ − αÞi ¼ π2

ℏγ3=2
α2; ð16Þ

where M̄ is the random matrix with the rescaled eigenval-
ues αi. The spectral curve yðzÞ associated to ρ0ðαÞ has a
branch cut along the whole real line, ensuring through the
loop equations the vanishing of all perturbative corrections
to trace class observables, except for the leading single and
double trace cases [29], in agreement with (13). All that is
left to do is pick the operator OðβÞ that ensures the
matching with (14), which gives

OðβÞ ¼
Z þ∞

−∞

dpffiffiffi
γ

p Tr e−βðM̄2þp2Þ; ð17Þ

where the integral over p is unaffected by the ensemble
average over M̄. Quite remarkably, OðβÞ has the form one
would expect for the trace of e−βH for some HamiltonianH,
which contains a contribution from the random matrix M̄
and the momentum p ∈ R of a free particle.
The double scaled Hermitian matrix model with prob-

ability measure defined from (15) reproduces the topologi-
cal expansion of CJ gravity to all orders. This result is
highly nontrivial. The underlying relation between the disk
and cylinder partition functions was crucial for the exist-
ence of a solution to our problem. For instance, if ZdiskðβÞ
had a half-integer power of β instead of even, one could
show there is no matrix model that reproduces the gravi-
tational results with the same Zcylinderðβ1; β2Þ, for any
operator OðβÞ.
The peculiar integration over the continuous variable p

appearing in the matrix operator OðβÞ arises due to the
additional generator in the Maxwell algebra (4) which was
needed to obtain a BF description of CJ gravity. The fact
that it leads to a continuous spectrum for OðβÞ, which is a
departure from the situation in JT gravity [8], may be
related to the fact that CJ gravity describes flat space which

must be thought of as a quantum system in infinite volume
rather than a covariant AdS “box.”
Nonperturbative Bondi spectrum.—The celestial matrix

model can be now used to explicitly characterize non-
perturbatively the spectral density ϱðEÞ of the Hamiltonian
generator of Bondi time along null infinity. Using (11) and
the fact ϱðEÞ is defined from the inverse Laplace transform
of ZðβÞ, one finds

ϱðEÞ ¼ 2ffiffiffi
γ

p
X∞
i¼1

�
ΘðE − α2i Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E − α2i
p

�
≡X∞

i¼1

hμiðEÞi; ð18Þ

wherewe have definedμiðEÞ. Given thematrix operator (17)
and noting 1=

ffiffiffiffi
E

p
corresponds to the spectral density of a

free particle, the structure of ϱðEÞ is quite intuitive: it
corresponds to a superposition of free particle densities
centered at randompositionsα2i determined by thematrix M̄.
The analogous quantity in JT gravity is μJTi ðEÞ ¼ δðE − αiÞ.
Let us now compute the full spectral density ϱðEÞ and

each of the individual terms hμiðEÞi in (18), including
nonperturbative effects. To do so, we must study the double
scaled matrix model using the method of orthogonal
polynomials [23,24,30] (developed for the JT gravity case
in [31–33]) that is well suited for computing quantities
beyond perturbation theory. All observables are ultimately
determined by the matrix model kernel Kðα; ᾱÞ, for
instance, the eigenvalue spectral density is obtained from
its diagonal components ᾱ ¼ α.
The recipe for computing Kðα; ᾱÞ nonperturbatively

proceeds as follows. After picking specific values for
ðS0; γÞ we numerically solve the string equation [25]

0 1 2 3 4 5 6 7 8 9
0

0.5

1

1.5

2

2.5

3

3.5

4

0 1 2 3
0

0.4

0.8

1.2

FIG. 2. Spectrum of CJ gravity with ðS0; γÞ ¼ ð0; π2=22=3Þ. The
solid blue line gives the full nonperturbative spectral density
ϱðEÞ, which oscillates around the perturbative result ϱðEÞ ≃
eS0ðπ3=2γ2ÞE obtained from (14). The green curves correspond to
the first five individual contributions hμiðEÞi in the infinite sum in
(18), computed using the methods of [35–37].
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π3

2γ3=2

�
rðxÞ3 − 1

2
ℏ2r00ðxÞ

�
þ rðxÞx ¼ 0; ð19Þ

and obtain rðxÞ. We use it to construct the Schrödinger
operators Hs ¼ −ℏ2

∂
2
x þ ½rðxÞ2 − sℏr0ðxÞ� with s ¼ �1,

and numerically compute their eigenfunctions φsðx; αÞ
with eigenvalue α2. The kernel Kðα; ᾱÞ is obtained by
the formula [34]

Kðα; ᾱÞ ¼
X
s¼�

Z
0

−∞
dxφsðx; αÞφsðx; ᾱÞ: ð20Þ

The full eigenvalue spectral density is obtained from the
diagonal components of Kðα; ᾱÞ, that is used in (18) to
compute ϱðEÞ. The solid blue line in Fig. 2 shows the final
result for ϱðEÞ, where nonperturbative effects generate
oscillations around the dashed line, corresponding to the
simple linear answer ϱðEÞ ≃ eS0ðπ3=2γ2ÞE valid to all
orders in perturbation theory. While nonperturbative effects
are suppressed at high energies, they dominate the low
energy behavior of the spectrum, particularly at zero
energy, where we find a nonzero density of states. Using
Kðα; ᾱÞ we can also compute the individual terms hμiðEÞi
appearing in (18), using the Fredholm determinant methods
developed in [35–37] (green curves in Fig. 2).
The S matrix and higher dimensions.—Using the

celestial matrix model, we can try to construct a non-
perturbative S matrix for CJ gravity. Following the calcu-
lation of correlation functions in JT gravity [38–40], we
may define a perturbative S matrix [41,42] as a bulk
operator mapping Hþ− to H−þ. Nonperturbative S-matrix
elements houtjSjini are then obtained by writing the states
using the Euclidean path integral, possibly with probe
operator insertions, and evaluating them using the celestial
matrix model. The perturbative S-matrix and any probe
operator insertions are to be treated as smooth functions of
the Bondi energy for which a single matrix in the celestial
ensemble provides a specific spectrum.
This also suggests a construction procedure for a pair of

entangled black holes in any celestial CFT. WhileHþ− and
H−þ do not factorize in two dimensions, we might expect
that they do in higher dimensions as in AdS=CFT. If so, our
results suggest a pair of entangled black holes in flat space
is associated with a thermofield double entangled state
between, e.g., Hþ

R and H−
L in a left and right celestial CFT,

since this is the state created by the Hartle-Hawking
procedure in higher dimensions. While the entanglement
structure is simple in the thermofield double state, to
determine the incoming or outgoing scattering states we
must act with either SL or SR, the S matrices of the left or
right celestial CFTs, thereby complicating the entangle-
ment structure [43,44]. We leave further exploration of the
S matrix of CJ gravity and nonperturbative formulation of
black hole states in celestial CFTs for our longer article [15]
and future Letter.
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