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We consider monitored quantum systems with a global conserved charge, and ask how efficiently an
observer (“eavesdropper”) can learn the global charge of such systems from local projective measurements.
We find phase transitions as a function of the measurement rate, depending on how much information about
the quantum dynamics the eavesdropper has access to. For random unitary circuits withUð1Þ symmetry, we
present an optimal classical classifier to reconstruct the global charge from local measurement outcomes
only. We demonstrate the existence of phase transitions in the performance of this classifier in the
thermodynamic limit. We also study numerically improved classifiers by including some knowledge about
the unitary gates pattern.
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Introduction.—A recent breakthrough in our understand-
ing of open quantum systems has been the discovery of
measurement-induced phase transitions (MIPTs) in moni-
tored quantum systems [1–4]. MIPTs have been best
characterized in random quantum circuits, but seem to be
a generic consequence of the competition between chaotic
dynamics and measurements [1–54]. The best-studied
MIPT, in random circuits, is a transition in the properties
of a quantum state conditional on a set of measurement
outcomes. It has multiple equivalent formulations, of which
the most relevant one for our purposes is as follows [11].
When themeasurement rate is high, local measurements can
rapidly distinguish different initial states; in this “pure”
phase, conditional on the outcomes, an initially mixed state
quickly becomes pure. When the measurement rate is low,
scrambling dominates, so initially distinct states become
indistinguishable by local measurements. In this “mixed”
phase, an initially mixed state remains mixed for times that
scale exponentially with system size [11]. Mixed-phase
dynamics forms a quantum error correcting code in the sense
that it protects initial-state information from local observers
[10,11,53]. Studying theMIPTas formulated above requires
repeated generation of the same set of measurement out-
comes, which in turn requires running each circuit a number
of times that grows exponentially with system size and
evolution time. Experimental studies of the MIPT have
therefore been limited to very small systems [36,52].
In principle, the measurement outcomes in the pure

phase suffice to distinguish any two initial states. Thus one
would have a way around postselection if one could
initialize the system in a mixed state, run the circuit once
while recording the measurement outcomes, and use the
outcomes to predict some property of the resulting pure

state that can be measured in a single shot. In the original
random-circuit setting, this task is impractical, at least on a
classical computer: to distinguish the two initial states, one
would need to time evolve both with the specified meas-
urement outcomes, and this is exponentially hard even with
full knowledge of the unitary evolution operator and the
measurement locations. (Similar challenges arise in the
problem of reconstructing information from evaporating
black holes [55–57].) Without such knowledge, predicting
any local property of the final state is impossible: the space
of possible unitaries involves arbitrary single-site rotations,
so the knowledge gleaned from previous measurements is
in a basis that is effectively hidden from the predictor.
Here, we show that constraining the unitary dynamics to

have a single conserved charge (and measuring the local
charge density) makes it possible to accurately predict an
observable (namely, the total charge) on a single run of the
circuit, even without knowledge of the gates. We consider a
one-dimensional system of L qubits with a conserved Uð1Þ
chargeQ ¼ P

i qi, whereqi ¼ ðZi þ 1Þ=2.We initialize the
system in one of two charge states jQ0i, or jQ1i. We then
evolve the system in time with a brickwork of random
unitaries, with each time step corresponding to two layers of
gates acting on even and odd sites. The gates are chosen to
conserve the Uð1Þ charge, but are otherwise Haar random
[58,59].At each timestep,we allow an eavesdropper (“Eve”)
tomeasure the local charge qi on each site of the systemwith
independent probability p. At some time tf that unless
otherwise specified we will take to be tf ¼ L, Eve uses the
measurement record and a decoding algorithm to produce a
guess of the charge of the initial state (Fig. 1). Eve then
shares her prediction and is told if it is correct. Symmetric
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monitored quantum circuits exhibit a charge-sharpening
transition atp ¼ p#, within themixed phase, that separates a
phase where the final state conditional on the circuit and
measurement outcomes has a definite charge from one
where it does not [41,42]. In the case where Eve has
unlimited resources, she can accurately predict the outcome
if p exceedsp#—the purification transition will play no role
in the following.
Here, we argue that if Eve only has access to the measure-

ment records, and has no knowledge about the unitary gates
that were applied in each circuit except their distribution
(“eavesdropping” scenario), the optimal decoding algorithm
can be constructed by counting charge configurations con-
sistent with themeasurement outcomes the observer receives.
This involves evaluating the partition sum of a classical
statistical mechanics model, a task that can be efficiently
performed on a classical computer. We also show that knowl-
edgeof the dynamics inbetweenmeasurements canbeused to
improve the classifier (“learning” scenario), and discuss
various transitions associated with this learning problem.
Independent measurements estimate.—For small meas-

urement probability p ≪ 1, it is natural to assume that the
measurement outcomes fm⃗g are independent. To estimate
the charge, Eve can then simply use the averaged charge
Qestimate ¼ ðL=MÞPM

n¼1mn with M ∼ 2ptfL the number
of measurements, and determine whether it is closer to Q0

or Q1. Assuming independent measurements and using the
central limit theorem, the probability of success (“accu-
racy”) of Eve to distinguish two charges Q0 ¼ L=2 and
Q1 ¼ L=2 − 1 is

αlower bound ¼
1

2

�
1þ erf

ffiffiffiffiffiffiffi
ptf
L

r �
: ð1Þ

In general, measurement outcomes are correlated in inter-
esting ways that can be used to improve the charge
estimate, and this uncorrelated result lower bounds the
accuracy of other more effective classifiers.
Optimal classifier.—Charge conservation and locality

induce correlations between measurement outcomes;
accounting for these correlations allows us to outperform
the independent-measurements estimate. For example,
measuring three out of four legs of a gate determines the
charge at the fourth, or measuring a charge q ¼ 1 in one of
the incoming legs and q ¼ 0 in one of the outgoing legs
fully determines the charges of the other two legs even if
they are not measured.
The constraints from charge conservation can be turned

into an efficient classifier. Intuitively, in the absence of
information about the underlying physical dynamics, the
best Eve can do is count charge configurations compatible
with the measurement outcomes, assuming that charges
perform random walks with the same diffusion constant as
the quantum model. More formally, marginalizing over the
gates U, the probability to observe the outcomes fmg for a
given charge Q is given by PðfmgjQÞ ¼ EUPðfmgjU;QÞ.
Eve can then use PðQjfm⃗gÞ ¼ Pðfm⃗gjQÞ=½Pðfm⃗gjQ0Þ þ
Pðfm⃗gjQ1Þ� to determine which charge is more likely given
a set of measurement outcomes fm⃗g. Performing the
average over U leads to an effective charge dynamics
where at each time step, charges can either hop or remain at
the same position with equal probability 1=2. This Markov
process of hard-core random walks is known as the
(discrete time) symmetric exclusion process (SEP) [60]
subject to quenched constraints from measurements, which
Eve could simulate efficiently on a classical computer. In
the Supplemental Material [61], we show that this is indeed
the optimal scheme, in the sense that it minimizes the
misclassification probability. Remarkably, the same model
also emerged in the context of measurement-induced
charge-sharpening phase transitions in the limit of large
onsite Hilbert space dimension [41,42].
To efficiently compute PðfmgjQÞ, we use matrix-prod-

uct state (MPS) methods, and represent this stochastic
dynamics algebraically. The initial distribution over basis
states in the Haar model is uniform over all states of a fixed
charge Q. Represent this initial probability distribution of
charge possibilities by a vector of size 2L: jϕð0ÞÞ ¼ jQÞ ¼
ðNQÞ−1

P
i∶QðiÞ¼Q jiÞ, where we use the ket-like notation jψÞ

to denote a probability vector. The update to the probability
distribution jϕðtÞÞ due to the unitary at position i can be
represented by the application of the transfer matrix
(Markov operator) of the SEP

Ti ¼

0
BBB@

1 0 0 0

0 1=2 1=2 0

0 1=2 1=2 0

0 0 0 1

1
CCCA; ð2Þ

FIG. 1. Setup. An eavesdropper (Eve) attempts to reconstruct the
global charge of a random quantum circuit from local charge
measurements using a classical classifier. Eve can make exact
predictions with success probability tending to 1 in the thermo-
dynamic limit above the success transition psuccess. The success
transition of the classifier is lower bounded by the charge
sharpening transition p# of the system. At p ¼ ptails, the distribu-
tion of the probability of correct label changes shape (see text). For
the qubit model considered in this Letter ptails ≃ p#, but including
neutral degrees of freedomwould increasep# towardspsuccess [42].
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to the probability distribution jϕðtÞÞ, written in the basis
f00; 10; 01; 11g for sites i, iþ 1. Every time the quantum
state is measured at a site k, the corresponding probability
vector jϕðtÞÞ must be modified such that all states incon-
sistent with the measurement outcome on that site have
probability 0. This can be achieved by applying the
projector onto the correct measurement outcome. In apply-
ing the projector, the one-norm of the probability distri-
bution decreases, by an amount corresponding to the
fraction of trajectories that were inconsistent with that
measurement outcome.
Define Tðm⃗tÞ to be the linear operator that updates the

probability vector from time t to tþ 1, given the constraints
represented by the measurements. After time tf, we have a

state jϕðtfÞÞ ¼
Qtf

t¼1 Tðm⃗tÞjQÞ representing the uniform
distribution over all charge trajectories that are consistent
with both the measurement outcomes and the charge Q.
The one-norm of the state represents the fraction of all
possible trajectories of the charges in the Haar-random
circuit that are compatible with the constraints—and can be
found by the dot product of the probability vector with the
(unnormalized) uniform distribution over all states
j1Þ ¼ P

i jiÞ,

Pðfm⃗gjQÞ ¼ ð1j
Ytf
t¼1

Tðm⃗tÞjQÞ: ð3Þ

Efficiency.—This probability can be found for a given
circuit realization by explicitly evolving the state jQÞ using
a full representation of the probability vector. Naively, this
algorithm scales as Oðpolyð2LÞÞ. We can do better by
noticing that the circuits and measurements (since they are
not determined by properties of the time evolving state, but
by the separate dynamics in the Haar circuit) represent a set
of predetermined linear operations applied to the initial

state. Instead of applying them to the (highly entangled)
state jQÞ, we can apply them in reverse to the (weakly
entangled) state j1Þ as ðψðtfÞj ¼ ð1jQtf

t¼1 Tðm⃗tÞ. Because
of the nonunitary of the SEP dynamics, the entanglement
growth generated by the transfer matrix is significantly
lower than that in the Haar circuit, and so the system can be
represented by an MPS with a bond dimension that grows
sublinearly in time. This allows simulation of systems up to
large sizes using MPS algorithms like TEBD [62,63].
The state jQÞ cannot be efficiently represented on a

classical computer, and so we cannot efficiently compute
the dot product in Eq. (3). We can however, efficiently
sample from ðψðtfÞj (since it has a low bond dimension
MPS representation) to produce an estimate of PðQÞ. We
also note that this statistical mechanics problem has
positive Boltzmann weights, and could be simulated
efficiently using Monte Carlo methods.
Success transition.—In order to probe the performance of

the classifier, we consider its performance on N ¼ 40; 000
random Haar measurement records. While we generate this
data using a classical computer and are thus limited tomodest
systemsizes (L ∼ 20),we emphasize that our classifier can be
run efficiently on measurement records generated by quan-
tum processors on much larger systems. Half the records are
generated from initial state jQ0i¼jL=2i, defined to be the
uniform superposition over bitstrings at half filling, the other
half from jQ1i ¼ jL=2 − 1i.
The task assigned the classifier is determining which

state the record was generated from. Given the probabilities
PðQ1jfm⃗gÞ, PðQ0jfm⃗gÞ from the stat. mech. model, the
classifier chooses the Q such that PðQjfm⃗gÞ is maximal.
The accuracy α of this classifier as a function of meas-
urement rate and system size is presented in Fig. 2(b). The
classifier gets better at solving the task as the measurement
probability increases, as expected.

FIG. 2. Optimal classifier. (a) Probability distribution of the “probability associated with the correct charge label,” Pcorr for L ¼ 20.
Inset: Weight in lower tail of distribution of Pcorr, ϵ ¼ 0.4. The distribution changes through three distinct regimes: approximately
Gaussian for 0 < p < ptails ≃ 0.1, power law for p ¼ ptails, exponential for p > ptails. (b) Accuracy of the classifier. Inset: The Binder
ratio shows a crossing at ptails ≃ 0.1. (c) The mean entropy as an order parameter for the success transition, above which Eve can
systematically make accurate predictions in the thermodynamic limit. Inset: the Binder ratio has a crossing at psuccess ≃ 0.2.
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To get a better sense of the distribution of the classifier
predictions across different measurement outcomes, we
define the “probability of correct label” Pcorr as follows.
Suppose the initial state has charge Q� (unknown to Eve).
Eve begins with no information about the charge, then
updates her probabilities based on the observed measure-
ment outcomes. Her posterior probability for the correct
charge label Q� is denoted Pcorr: i.e., Pcorr ¼ PðQ�jfm⃗gÞ.
Note that since Eve is told the value ofQ� at the end of each
run, Pcorr is measurable for each run, so Eve has access to
the entire probability distribution PðPcorrÞ, plotted in
Fig. 2(a). In terms of Pcorr, the accuracy [Fig. 2(b)]
is PðPcorr > 0.5Þ.
The entropy of the binary distribution fPcorr; 1 − Pcorrg

corresponds to the confidence of the classifier in its
decision—irrespective of the ground truth label. The binder
ratio [64] of the entropy has a crossing at psuccess ≈ 0.2,
which corresponds to a “success transition.” Above psuccess,
Eve can reconstruct the charge of the system exactly (i.e.,
with success probability tending to 1 as L → ∞). Note that
while Eve succeeds whenever Pcorr > 1=2, we need
Pcorr → 1 to guarantee that the measurement record
uniquely identifies the charge. Interestingly, this success
transition in the classifier also has an interpretation as a
charge-sharpening transition in a charge-conserving model
with large on-site Hilbert space [41], and its critical
properties are Kosterlitz-Thouless-like [42]. In general,
we have the constraint p# ≤ psuccess, with p# ≃ 0.09 for
qubit systems [41]: classifiers can only make systematic,
exact predictions above the sharpening transition.
The full distribution of Pcorr [Fig. 2(a)] reveals a richer

structure. For low p < ptails ≃ 0.1, the measurement rate is
insufficient for the observer to fix the charge, resulting is an
approximately Gaussian distribution of Pcorr. Around
p ¼ ptails, the tails of distribution of Pcorr empirically
change from Gaussian to power-law like. This apparent
transition in the tails of the distribution can also be detected
from the Binder ratio [64] of Pcorr [inset of Fig. 2(b)], and
from the power-law shape of the distribution of Pcorr, see
inset of Fig. 2(a). Note that even though the quantity 1 −
EðPcorrÞ [where Eð…Þ denotes an average] is itself an order
parameter for the success transition [61], the heavy-tailed
distribution allows its Binder ratio to cross at a measurement
rate that is different from psuccess. It would be interesting to
analyze these tail transitions further in future work.
Biased classifier.—While the above classifier is optimal

without additional knowledge about the circuit, it can be
improved if Eve has some information about the underlying
dynamics of the system (learning scenario). Let us assume
now that for each run of the experiment, Eve receives the
set of measurement outcomes and locations fm⃗; x⃗g, and the
details of the unitary gates fUitg∀ i;t that were applied to
generate this measurement record.
There is a trivial, optimal, exponentially classically hard

algorithm—the observer can run the circuit starting from

jQ0i, and jQ1i, measure the charge in the locations
specified and count how many times the measurement
record m⃗ arises. We expect this algorithm to succeed above
the charge-sharpening transition (p > p#). A more inter-
esting task is to find an efficient classical algorithm that
improves on the zero-knowledge classifier above. Define
the hopping amplitude of a unitary hðUÞ ¼ jh01jUj10ij2.
This has the properties hðUÞ ¼ 1

2
, where the overline

indicates average over Haar, hðSWAPÞ ¼ 1 and
hðIÞ ¼ 0. We can then modify the classifier above using
the disordered hopping probabilities:

TiðtÞ ¼

0
BBB@

1 0 0 0

0 pit 1 − pit 0

0 1 − pit pit 0

0 0 0 1

1
CCCA ð4Þ

and three classifiers—unbiased, with pit ¼ 1
2
, biased, with

pit ¼ 1 − hðUitÞ, and antibiased, with pit ¼ hðUitÞ. The
unbiased model is the same as before, the biased model has
hopping amplitudes that match the Haar-random circuit,
and the antibiased model has hopping amplitudes that are
opposite to the biased one. The performance of the biased
classifier is summarized in Fig. 3. As expected, the biased
model improves the accuracy of the classifier, although it
does not change the location of the accuracy transition.
The biased model has a lower success transition at
psuccess ≃ 0.15, closer to the fundamental sharpening bound
p# ≃ 0.09. Additional results on the antibiased classifier are
presented in the Supplemental Material [61].
Discussion.—When the measurement rate p is high

enough, the history of measurement outcomes suffices to
distinguish any two initial states, and quantum information
in the system is unprotected from its environment. Even if
the environment contains this “which-state” information,

(a) (b)

FIG. 3. Biased classifier. (a) The success transition is lowered
by including information about the hopping probabilities in the
classifier (biased model), while the accuracy transition remains
unchanged. The color code is the same as in Fig. 2. (b) The
classifier accuracy α is improved by including information about
the hopping probabilities in the classifier.
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extracting it and predicting the state of the system naively
requires (a) full knowledge of the circuit, and (b) eL

resources for a chain of length L. We showed here that,
for local dynamics with a conservation law, one can extract
which-state information with polynomial overhead and
with no knowledge of the gates in the circuit, by exploiting
hydrodynamic correlations between measurements at dif-
ferent times. The threshold for in-practice extractability,
psuccess, exceeds that for in-principle extractability, p#. An
interesting open question is whether, between these thresh-
olds, the charge can be extracted given full knowledge of
the circuit but only polynomial resources on a classical
computer.
Our setup is analogous to the problem in black-hole

physics where Alice drops a qubit into an old black hole
and Bob attempts to reconstruct it from the emitted
radiation [55]. The question addressed here is distinct
(but in a sense “dual”) to the problem of finding optimal
decoders in the volume-law phase of the standard MIPT
[10,11,53]. There, the measurement record contains no
information about the encoded qubit, but is instead used to
find a unitary operation on the circuit that unscrambles the
input qubit. In our setup, the input qubit has leaked into
the environment, and the task is instead to unscramble the
environment. It would be interesting to extend our results to
this decoding problem in symmetric circuits, and to explore
consequences for covariant error correction [65,66].
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