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We put forth a new class of quantum master equations that correctly reproduce the asymptotic state of an
open quantum system beyond the infinitesimally weak system-bath coupling limit. Our method is based on
incorporating the knowledge of the reduced steady state into its dynamics. The correction not only steers the
reduced system toward a correct steady state but also improves the accuracy of the dynamics, thereby
refining the archetypal Born-Markov weak-coupling second-order master equations. In case of equilibrium,
we use the exact mean-force Gibbs state to correct the Redfield quantum master equation. By benchmarking
it with the exact solution of the damped harmonic oscillator, we show that our method also helps correct the
long-standing issue of positivity violation, albeit without complete positivity. Our method of a canonically
consistent quantum master equation opens a new perspective in the theory of open quantum systems leading
to a reduced density matrix accurate beyond the commonly used Redfield and Lindblad equations, while
retaining the same conceptual and numerical complexity.
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Introduction.—The central problem of the theory of
open quantum systems is to describe the dynamics of a
quantum system in contact with a reservoir [1–3]. Most
applications describe the dynamics using a weak-coupling
quantum master equation (QME) such as Lindblad [1,4,5]
or Redfield [1,3,6] that are valid under a stringent set of
assumptions. Going beyond this standard weak-coupling
approach is tedious and despite formal equations available
for the past 45 years [7–10], there exist only a handful of
model-independent practical methods that go beyond weak
coupling [11–28]. However, these approaches are gener-
ally complex and not easily implementable especially
when dealing with many-body quantum systems.
Hence, most studies are restricted to equations that are

second order in the system-bath coupling. While being
simple, such second-order equations are not devoid of
issues. For example, the least approximative Redfield
equation can lead to unphysical negative populations
[26,29–33]. The quantum optical master equation (also
known as the Lindblad equation) gives an equilibrium
reduced density matrix that for a wide class of models is
independent of the system-bath coupling strength [34]
contrary to the notion of the Hamiltonian of mean force
[35,36]. Moreover, any second-order master equation has
issues with its accuracy such that the inaccuracies develop
over time leading to a wrong steady state [37,38].
In this Letter, we use the asymptotic state of the system to

develop a QME that goes beyond these common weak
coupling approximations. A similar approach was highly
successful to improve on the conventional classical Fokker-
Planck equation [39], but its quantum counterpart is still

missing. We address this gap and develop a fully quantum
formulation that uses the asymptotic state to correctly steer
the transient dynamics. In case of a quantum system
connected to a single reservoir, we use the generalized
canonical distribution also known as the mean-force Gibbs
state [40] [see Eq. (5)] to correct for the transient dynamics
and corroborate our findings with the exactly solvable
quantum dissipative harmonic oscillator. The generalized
canonical distribution incorporates effects of finite system-
reservoir coupling giving a solution that also correctly
captures finite-coupling effects. This canonically consistent
quantum master equation (CCQME) is as universal and
versatile as standard weak-coupling QMEs, making it
applicable to a wide range of scenarios ranging from
quantum optics, chemical physics, statistical physics, and
more recently quantum information and -thermodynamics.
A key feature of our approach is its simplicity. Even

though we obtain solutions that are accurate beyond weak
coupling we do not require any additional information than
what is needed in a weak-coupling Redfield equation. In
other words, we do not require cumbersome fourth-order
tensors involving multidimensional integrals [16] or elabo-
rate numerical methods [11,13,17,18,41] that restrict treat-
able Hilbert space dimensions. We even find accurate
agreement with the numerically exact hierarchy equation
of motion approach and demonstrate our methods appli-
cability for an interacting many-body open quantum system
[42]. Moreover, using recent advances in evaluating the
asymptotic state of nonequilibrium quantum systems driven
by multiple reservoirs [43] or an external drive [44,45], our
approach is easily extendable to study the dynamics of

PHYSICAL REVIEW LETTERS 129, 200403 (2022)

0031-9007=22=129(20)=200403(7) 200403-1 © 2022 American Physical Society

https://orcid.org/0000-0001-5512-3954
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.129.200403&domain=pdf&date_stamp=2022-11-08
https://doi.org/10.1103/PhysRevLett.129.200403
https://doi.org/10.1103/PhysRevLett.129.200403
https://doi.org/10.1103/PhysRevLett.129.200403
https://doi.org/10.1103/PhysRevLett.129.200403


externally or boundary driven quantum systems which we
show in the Supplemental Material [42] for the damped
harmonic oscillator driven by two baths.
Preliminaries.—We consider an autonomous system of

interest HS coupled to a thermal bath HB such that the
composite Hamiltonian reads as Htot ¼ H0 þHint with
H0 ¼ HS þHB. The system couples to the reservoir via
a general interaction Hint ¼ S ⊗ B with S (B) being any
Hermitian operator acting in the system (bath) Hilbert space.
This is assumed to keep notation light; the generalization of
our results to interactions that are a sum of such direct
products is straightforward. Throughout this Letter we work
in units where ℏ ¼ kB ¼ 1. The composite system evolves
unitarily, and we are interested in the dynamics of the
reduced density matrix ϱðtÞ ¼ trBðϱtotðtÞÞ≡ Λt½ϱð0Þ�.
Under weak-coupling and Born approximations using
decoupled initial conditions the dynamical map is given
by [1] (see also the Supplemental Material [42])

Λt½·� ≃ Λ0
t

�
I½·� þ

Z
t

0

dτΛ0
−τ½Rτ½Λ0

τ ½·���
�
: ð1Þ

Above,Λ0
t ½·� ¼ exp½−iHSt� · exp½iHSt� is the noninteracting

evolution superoperator, I½X� ¼ X the identity superopera-
tor, and Rt the time-dependent Redfield superoperator
[6] given by Rt½·� ¼

R
t
0 dτð½S̃ð−τÞ·; S�CðτÞ þ H:c:Þ, where

CðtÞ ¼ TrBðexp½iHBt�B exp½−iHBt�BρBÞ is the two-point
bath correlator with ρB ¼ exp½−βHB�=ZB being the initial
density matrix of the bath and S̃ðtÞ ¼ Λ0

−t½S�. To obtain
Eq. (1) one uses the Dyson expansion for the unitary time-
evolution operator of the composite system to obtain a
perturbative series inHint. Any truncation of this series leads
to divergences with respect to time such that at second order
the map Λt diverges linearly in time [15,38] (see also the
Supplemental Material [42]).
Alternatively, in the standard open quantum systems

framework one avoids the map and its divergence by taking
the time derivative of Eq. (1) to obtain a first-order
differential equation,

∂tϱðtÞ ¼ −i½HS; ϱðtÞ� þRt½Λ0
t ½ϱð0Þ��; ð2Þ

which precedes the Redfield equation since the dissipator
Rt acts on the initial state ϱð0Þ. To second order (Born
approximation) in Hint, one often replaces

Λ0
t ½ϱð0Þ� ≈ ϱðtÞ: ð3Þ

As we see from Eq. (1), the above substitution results in
errors at a higher order in system-bath coupling leaving the
differential equation correct up to second order, as desired.
The resulting QME is known as the time-dependent
Redfield equation [6] that violates complete positivity
(CP) and hence is less preferred over the (secular) Lindblad
equation [1,4,5,42]. Despite the lack of CP, a stringent
restriction for physical maps [31,46], the Redfield equation
is able to capture finite system-bath coupling effects for
which the Lindblad equation is insensitive [26,47]. Thus, it
is only recently that the Redfield equation has gained
popularity as a tool to incorporate finite system-bath
coupling effects [34,43,44,48–50]. In Fig. 1 we demon-
strate this for a dissipative harmonic oscillator, described
in detail later in the Letter. The Redfield equation violates
positivity in Figs. 1(a) and 1(b), and errors build up over
time such that the steady state shows finite errors in second
order in Hint [see Fig. 1(d)]. To resolve these issues, we
propose below a scheme that uses the mean-force Gibbs
state from equilibrium statistical mechanics [35,36,40] to
correct the Redfield equation, specifically improving on
the approximation in Eq. (3). Our approach, despite not
being CP, avoids unphysical negative populations for finite
coupling strengths (see Fig. 1) and ensures that the
equilibrium state is mean-force Gibbs [35,36,40] up to
second order in system-bath coupling.

(a) (b)

(c) (d)

FIG. 1. Comparison between the Redfield (dotted red), Lind-
blad (dashed green), CCQME (solid blue), and the nonperturba-
tive exact solution (open circles) for a harmonic oscillator system
with frequency Ω coupled to a thermal bath with strength γ. The
ground-state population dynamics are shown in (a), while
(b) depicts the steady-state populations. The gray regions in
(a) and (b) indicate unphysical regimes where the ground-state
populations exceed 1. Deviation of the density matrix to the exact
result characterized by the trace distance distðϱ; ϱexÞ is shown for
the dynamics in (c) and steady state in (d). The system is initiated
in ϱð0Þ ¼ exp½−HS=Ω�=ZS, and we truncate to the N ¼ 60
lowest levels. The bath temperature is T=Ω ¼ 0.3 and has an
Ohmic Lorentz-Drude spectral density, JðωÞ ¼ γω=ð1þ ω2=ω2

DÞ
with cutoff ωD=Ω ¼ 5 and strength γ=Ω ¼ 0.2 [(a) and (c)]
marked by a gray vertical line in (b) and (d).
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Canonically consistent quantum master equation
(CCQME).—To start with, we assume Qt to be the super-
operator that generates the second-order contributions for
the time evolution

ϱðtÞ ≃ ðI þQtÞ½Λ0
t ½ϱð0Þ��: ð4Þ

To find the Markovian master equation generated by this
dynamical map we take the formal inverse ðI þQtÞ−1 ≃
ðI −QtÞ and use this relation to replace the freely
evolving state on the right hand side of Eq. (2). We obtain
the QME ∂tϱðtÞ¼−i½HS;ϱðtÞ�þRt½ðI−QtÞ½ϱðtÞ��, which
involves a fourth-order correction to the Redfield equation.
Instead of following pathological perturbative expan-

sions for the dynamical map that involve divergences in
each order separately, we make a proposal that can be
viewed to combine notions of quantum mechanics and
statistical mechanics in a holistic way. While quantum
mechanics is a dynamical theory for the microscopic
degrees of freedom, statistical mechanics describes systems
in equilibrium by very few parameters only. Profound
mechanisms have been developed to connect both fields,
such as eigenstate thermalization hypothesis [51], canoni-
cal- [52], and dynamical [53] typicality. For finite coupling,
we assume that once the system is coupled to the reservoir
the system eventually relaxes to the mean force Gibbs
distribution

lim
t→∞

ϱðtÞ ¼ TrBðe−βHtotÞ
Ztot

≃ ðI þ Q̄Þ½ϱG�; ð5Þ

with ϱG ¼ exp½−βHS�=ZS being the canonical Gibbs state
obtained in the infinitesimally weak-coupling long-time
limit of ϱðtÞ. In particular, for finite coupling, the reduced
state of the system deviates from the canonical Gibbs
distribution, and the lowest-order correction Q̄½ϱG� is
second order in system-bath coupling.
Based on the similarities between the dynamical map,

Eq. (4), and the equilibrium state, Eq. (5), it becomes
evident that Q∞ can be replaced with Q̄. Note here that
the superoperators Q∞ and Q̄ are not strictly equivalent.
The difference between them stems from the order in
which the long-time and weak-coupling limits are per-
formed. In equilibrium statistical mechanics, which leads
to the mean-force Gibbs state, we take the infinite-time
limit first, followed by the weak-coupling limit to obtain a
nondivergent Q̄, whereas within the quantum framework
we take the weak-coupling limit first and the infinite-time
limit later to obtain Q∞ that is divergent.
In problems such as those tackled in this Letter, a

sensible (convergent) answer is given when the order of
the limits is dictated by statistical mechanics rather than
quantum dynamics. Therefore, we replace Qt with its long-
time version given by statistical mechanics, Q̄. This gives
our main result, the CCQME

∂tϱðtÞ ¼ −i½HS; ϱðtÞ� þRt½ðI − Q̄Þ½ϱðtÞ��: ð6Þ

It goes beyond standard second-order treatments and is
consistent with statistical mechanics. Note the following
subtlety: Since Eq. (5) only fixes the action of the super-
operator Q̄ on the Gibbs state, the action of Q̄ on all other
states is in principle undetermined. Different CCQMEs are,
thus, possible that are expected to perform equally well for
the steady state; however the transient dynamics depends
on the particular choice.
By construction it is straightforward to prove [using

Eq. (5) in Eq. (6)] that the steady-state solution of the
CCQME is given by the mean-force Gibbs state,

0 ¼ −iΔ½Q̄½ϱG�� þR∞

�
ðI − Q̄Þ½ðI þ Q̄Þ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

≃I

½ϱG��
�
; ð7Þ

with Δ½·� ¼ ½HS; ·�, and terms in the underbrace are
approximated to the identity superoperator by ignoring
sixth-order system-bath coupling strength contributions.
The above equation yields the necessary condition
iΔ½Q̄½·�� ¼ R∞½·�, which we later show to be valid. The
CCQME does not need to be completely positive but
relaxes toward the positive mean-force Gibbs state.
Furthermore, we observe for the dissipative harmonic
oscillator (see below) that the CCQME violates the
positivity of the density matrix when the strength γ is
greater than the frequency Ω of the central oscillator,
improving the validity regime as compared to weak-
coupling approaches [26,54] (see the Supplemental
Material for more details [42]).
Using canonical perturbation theory [34], we show

that one choice for the superoperator Q̄ can be expressed
as (see the Supplemental Material [42])

Q̄½ϱ� ¼ P
1

iΔ
fR∞½ϱ�g

þ Pc

�X
nl

�
LðLnlÞ½ϱ� þ jSnlj2W00

ln
∂ϱ

∂En

��
: ð8Þ

Above P ¼ P
n≠m Pnm is the projector into the coherent

subspace with Pnm ¼ jnihnj · jmihmj. Moreover, jni (En)
are the eigenstates (nondegenerate eigenenergies) of HS so
that the superoperator Δ is invertible in this subspace, and
Pc ¼ P

n Pnn is the projector into the complimentary
subspace of P. Acting with the superoperator iΔ on
Eq. (8), the second term vanishes due to the commutator
in the superoperator Δ, and the first term yields
iΔ½Q̄½·�� ¼ R∞½·�, which satisfies the necessary condition
for the steady-state equation above. In the complementary
subspace for which Pc projects to the populations we
find a Lindblad contribution LðLÞ ¼ L · L† − 1

2
fL†L; ·g
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with jump operators Lnl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jSnlj2V 00

nl

q
jnihlj, with V 00

nl

being the imaginary part of VðEn − ElÞ ¼ V 0
nl þ iV 00

nl.
Here VðEÞ ¼ ∂WðEÞ=∂E is defined using the Fourier-
Laplace transform of the bath correlator WðEÞ ¼R∞
0 dtCðtÞ exp½−iEt� used in the Redfield equation. The
function WðEn − ElÞ ¼ W0

nl þ iW00
nl contains real and

imaginary parts typically referred to as rates and lamb
shifts, respectively. On the other hand the last term in Eq. (8)
can be obtained as [42]

∂ϱ

∂En
¼

P
l≠njSnlj2½V 0

nlpl þ V 0
lnpn�P

l≠njSlnj2W0
ln

jnihnj; ð9Þ

where pn ¼ hnjϱjni are the populations. For the canonical
Gibbs state this term simplifies to ∂ϱG=∂En ¼ −βPnn½ϱG�.
Benchmark with exact dynamics.—We corroborate our

method with the exactly solvable dynamics for the damped
harmonic oscillator whose total system-bath Hamiltonian
[55] reads as Htot ¼ HS þ

P∞
k ½p2

k=ð2mkÞ þmkω
2
kðqk−

ckm−1
k ω−2

k qÞ2=2�. In units where the particle mass is set
to 1 we have HS ¼ p2=2þ Ω2q2=2. For a bath in thermal
equilibrium that is factorized initially from the state of the
oscillator one obtains the exact (nonperturbative in γ) QME
[56–60],

∂tϱexðtÞ ¼ −
i
2
½p2 þ γqðtÞq2;ϱexðtÞ�−DpðtÞfq; ½q;ϱexðtÞ�g

−
i
2
γpðtÞ½q;fp;ϱexðtÞg� þDqðtÞfq; ½p;ϱexðtÞ�g:

Here the damping coefficient γpðtÞ is derived from the
system correlation, and the diffusive coefficients DqðtÞ and
DpðtÞ depend on the bath correlation. A detailed discussion
of the parameters can be found in Refs. [42,56–58].
In Fig. 1 we benchmark the dynamics [(a) and (c)] and the

steady state [(b) and (d)] obtained via the Redfield equation,
the Lindblad equation, and the CCQME with the exact
solution. For all simulations we assume that the bath
correlations decay faster than the timescale of the dynamics
leading to an autonomous generator (see Ref. [42] for the
spin-boson model solved with the full time-dependent
generator). For strong coupling γ=Ω ≃ 0.2 and low bath
temperature T=Ω ¼ 0.3 we observe a breakdown of
the Redfield theory as the ground-state population exceeds
1 in Fig. 1(a). We quantify the deviation from the exact
result, i.e., error, with the trace distance distðϱ; ϱexÞ ¼
ð1=2ÞTrf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ϱðtÞ − ϱexðtÞ�2

p
g, a metric bounded by 1. At

small temperatures the trace distance is nearly equivalent to
the percentage error in the ground-state population, i.e., the
maximum trace distance of 0.08 (for γ ¼ 0.2 Ω) for the
Redfield case in Fig. 1(c) represents a maximum error of
≈8%. The Lindblad equation shows large oscillations in the

trace distance (≈5%) but does not suffer from unphysical
solutions. The CCQME reproduces the ground-state pop-
ulation for all times in Fig. 1(a) and shows small deviations
(< 1% ∀ t) from the exact solution in Fig. 1(c) improving
upon the Redfield and Lindblad solutions in the strong-
coupling and low-temperature regime.
In equilibrium, finite coupling leads to an effective

higher temperature such that the ground-state population
decreases as a function of the coupling strength. In
Fig. 1(b) the CCQME accurately reproduces this trend
and also perfectly matches with the exact curve in the
strong coupling regime. On the one hand, the Lindblad
solution remains independent of the system-bath coupling
γ. On the other hand, the Redfield not only gives an
incorrect ground-state population but also erroneously
predicts that as the system-bath coupling strength
increases the system cools down. At moderate values of
the coupling, the ground-state population ϱ00 > 1 imply-
ing that the excited states have unphysical negative
populations. Since both the exact steady-state solution
and the approximate ones from QMEs contain all powers
of γ, we would like to quantify how much the QMEs
deviate from the exact solution at second order. This
deviation in the solution can be quantified by dividing the
trace distance by the coupling strength and numerically
approaching the limit of γ=Ω → 0 [see Fig. 1(d)]. If the
QME and the exact solutions match at second-order OðγÞ,
this measure approaches zero as γ=Ω → 0 as seen for the
CCQME [solid blue line in Fig. 1(b)]. The other QMEs
give a finite deviation indicating discrepancies at OðγÞ.
To get a complete overview of the deviations even in the

dynamics for the entire parameter space, in Fig. 2 we
calculate the time-averaged trace distance to the exact
result for the entire relaxation process as a function
temperature and coupling strength initiating the system

(a) (b) (c)

FIG. 2. Time-averaged trace distance [distðϱ; ϱexÞ ¼
τ−1R

R τR
0 dt distðϱ; ϱexÞ] over relaxation time τR ¼ 2=γ as a function

of temperature and coupling strength for the Lindblad equation (a),
Redfield equation (b), and CCQME (c). The Redfield steady-state
solution violates positivity in the parameter regime below the solid
teal line. Other parameters are the same as Fig. 1.
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in an out-of-equilibrium initial state. For strong coupling
the Lindblad and Redfield equations are only valid for
high bath temperatures, i.e., deep classical limit.
Contrastingly, the CCQME leads to a more accurate result
in the full parameter regime. Importantly, the CCQME
solution gives positive density matrices in the entire
parameter range in sharp contrast to the Redfield that
fails at low temperatures [below solid teal line in
Fig. 2(b)].
Quantum transport.—The CCQME can also be imple-

mented for transport setups [61–65] wherein the system is
driven by several independent baths HB ¼ P

i H
i
B that

couple via the interaction Hamiltonian Hint ¼
P

i S
i ⊗ Bi.

At second order of the interaction, the Redfield and
Lindblad equation is obtained by adding the dissipative
superoperators for the individual baths. However beyond
second order cross correlations build up [14,16], which
occur naturally in the boundary driven CCQME

∂tϱðtÞ¼−i½HS;ϱðtÞ�þ
X
i

Ri
t

��
I−

X
j

Q̄j

�
½ϱðtÞ�

�
; ð10Þ

by the products of superoperators for different baths. We
elucidate this idea further by studying a boundary driven
harmonic oscillator and corroborating the CCQME with
exact results in the Supplemental Material [42].
Summary.–In this Letter, we proposed a QME that

corrects the standard Born-Markov equations (Redfield
or Lindblad) incorporating effects of higher order system-
bath coupling. The CCQME draws inspiration from the
statistical mean-force Gibbs state and correctly steers the
dynamics of a quantum system coupled with finite strength
to a reservoir. By construction it yields the exact equilib-
rium state and significantly improves the dynamics as
compared to the Redfield or Lindblad equation. Here we
focus on a consistent second-order theory that should be
generalizable to higher order [42]. Despite not being
completely positive our approach does not suffer from
negative solutions. The CCQME is not only accurate but
also easy to implement since it requires no additional
information as compared to the Redfield equation.
Moreover it is model independent and could shed light
onto finding lowest order effects due to the presence of
system-bath coupling in the emerging field of strong-
coupling quantum thermodynamics [35,36,66–68] or in
dissipative quantum many-body systems as demonstrated
in the Supplemental Material using an Ising chain [42].
The CCQME could also be extended to study transport
through systems strongly connected to multiple reservoirs
aiding the field of strong-coupling quantum transport
[24,69–71].
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