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One-dimensional Bose and Fermi gases with contact interactions are known to exhibit the weak-strong
duality, where the equilibrium thermodynamic properties of one system at weak coupling are identical to
those of the other system at strong coupling. Here, we show that such duality extends beyond the
thermodynamics to the frequency-dependent complex bulk viscosity, which is provided by the contact-
contact response function. In particular, we confirm that the bulk viscosities of the Bose and Fermi gases
agree in the high-temperature limit, where the systematic expansion in terms of fugacity is available at
arbitrary coupling. We also compute their bulk viscosities perturbatively in the weak-coupling limit at
arbitrary temperature, which via the duality serve as those of the Fermi and Bose gases in the strong-
coupling limit.
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Introduction.—A one-dimensional gas of bosons with a
contact interaction is known as the Lieb-Liniger model [1],
which has been a paradigmatic model in low-dimensional
quantum many-body physics. It is not just a mathematical
toy but has been realized experimentally with ultracold
atoms [2,3]. The Lieb-Liniger model is exactly solvable
with the Bethe ansatz, from which the ground-state energy
and the excitation spectrum were obtained [1,4].
Furthermore, the thermodynamic Bethe ansatz developed
by Yang and Yang allows us to determine the equilibrium
thermodynamic properties of the system at finite temper-
ature (T) and chemical potential (μ) [5], although static and
dynamic correlation functions remain more challenging to
compute in general [6,7].
Another fascinating aspect of the Lieb-Liniger model lies

in the fact that its dual system composed of fermions can be
constructed via Girardeau’s Bose-Fermi mapping, so that
all the energy eigenvalues are identical between the two
systems [8]. In particular, it is the weak-strong duality,
where one system at weak coupling corresponds to the
other system at strong coupling, and the dual Fermi system
is known as the Cheon-Shigehara model [9]. Although such
duality applies to the equilibrium thermodynamic proper-
ties of the two systems, it does not apply to general
correlation functions with an exception of the structure
factor provided by the density-density response function
[10,11]. If the weak-strong duality is established for other
correlation functions, it should be highly valuable because
their strong coupling regime can be accessed with the
perturbation theory of the dual system.
The purpose of this Letter is to extend the Bose-Fermi

duality further to the frequency-dependent complex bulk
viscosity, which has been subjected to active study for
Fermi gases in higher dimensions as a measure of con-
formality breaking [12–26]. To this end, we apply

Girardeau’s Bose-Fermi mapping to its Kubo formula,
showing that the bulk viscosities of one-dimensional
Bose and Fermi gases with contact interactions are identical
at the same scattering length (a). We also compute the bulk
viscosities in the high-temperature limit at arbitrary cou-
pling as well as in the weak-coupling limit at arbitrary
temperature both for bosons and for fermions. The two
results in the high-temperature limit are useful to confirm
the Bose-Fermi duality explicitly, whereas those in the
weak-coupling limit are applicable to the Fermi and Bose
gases in the strong-coupling limit, as indicated in Fig. 1.
We will set ℏ ¼ kB ¼ 1 throughout this Letter and the

bosonic and fermionic frequencies in the Matsubara formal-
ism are denoted by p0 ¼ 2πn=β and p0

0 ¼ 2πðnþ 1=2Þ=β,
respectively, for n ∈ Z and β ¼ 1=T. Also, an integration
over wave number or momentum is denoted by

FIG. 1. Bulk viscosities of Bose and Fermi gases are evaluated
in the high-temperature limit as well as in the weak-coupling
limit, which corresponds to a → −∞ for bosons (BG) and a →
−0 for fermions (FG). The system is thermodynamically unstable
at a > 0.
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R
p ≡

R
∞
−∞ dp=ð2πÞ for the sake of brevity, whereas the same

definitions as in Ref. [25] are employed for the response
function and Kubo’s canonical correlation function [see
Eqs. (10) and (11) therein].
Bose-Fermi duality.—According to the linear-response

theory [27–29], the complex bulk viscosity at frequency ω
is microscopically provided by

ζðωÞ ¼ βKππðwÞ þ
N
iw

�
∂p
∂N

�
S=N

ð1Þ

with the substitution of w ∈ C → ωþ i0þ on the right-
hand side [25]. Here, KππðwÞ is Kubo’s canonical corre-
lation function of the stress operator (scalar in one
dimension) at zero wave number, whereas p, N , and S
are the pressure, the number density, and the entropy
density, respectively. In particular, its zero-frequency limit
ζ ≡ ζð0Þ is referred to as the static bulk viscosity, which is
real and corresponds to the bulk viscosity in
hydrodynamics.
We first apply the above Kubo formula to the Lieb-

Liniger model described by

Ĥ ¼ ∂xϕ̂
†
∂xϕ̂

2m
þ gB

2
ϕ̂†ϕ̂†ϕ̂ ϕ̂; ð2Þ

where ϕ̂ is the bosonic field operator and the coupling
constant is related to the scattering length via
gB ¼ −2=ðmaÞ > 0. From the momentum continuity equa-
tion ∂tP̂ þ ∂xπ̂ ¼ 0 for P̂ ¼ ½ϕ̂†ð∂xϕ̂Þ − ð∂xϕ̂†Þϕ̂�=ð2iÞ, the
stress operator is found to be

π̂ ¼ 2Ĥþ Ĉ
ma

−
∂
2
xðϕ̂†ϕ̂Þ
4m

ð3Þ

with Ĉ≡ ϕ̂†ϕ̂†ϕ̂ ϕ̂ being the so-called contact density
operator [30]. Then, by substituting Eq. (3) into Eq. (1)
and by employing the thermodynamic identities such as
dp ¼ SdT þN dμ − ðC=ma2Þda as detailed in Ref. [25],
we obtain

ζðωÞ ¼ 1

iw
RCCðwÞ
ðmaÞ2 þ 1

iw
1

m

�
∂C
∂a

�
N ;S

; ð4Þ

where C ¼ hĈi is the contact density and RCCðwÞ is the
response function of the contact density operator at zero
wave number.
Let us next turn to the Cheon-Shigehara model described

by

Ĥ ¼ ∂xψ̂
†
∂xψ̂

2m
þ gF

2
ð∂xψ̂†Þψ̂†ψ̂ð∂xψ̂Þ; ð5Þ

where ψ̂ is the fermionic field operator and the coupling
constant is related to the scattering length via

1

gF
¼ −

mΛ
π

þ m
2a

< 0 ð6Þ

with Λ being the momentum cutoff for regularization
[30,31]. Although the three-body interaction term
∼jðgFψ̂∂xψ̂Þψ̂ j2 is necessary for the complete correspon-
dence to the Lieb-Liniger model beyond the two-body level
[30,32], it can be omitted for our analysis below within the
two-body level because such a scale invariant term
does not contribute to the stress operator other than in
the Hamiltonian density [33]. From the momentum con-
tinuity equation ∂tP̂ þ ∂xπ̂ ¼ 0 for P̂ ¼ ½ψ̂†ð∂xψ̂Þ−
ð∂xψ̂†Þψ̂ �=ð2iÞ, the stress operator is found to be

π̂ ¼ 2Ĥþ Ĉ
ma

−
∂
2
xðψ̂†ψ̂Þ
4m

ð7Þ

with Ĉ≡ ðmgF=2Þ2ð∂xψ̂†Þψ̂†ψ̂ð∂xψ̂Þ being the contact
density operator. Again, by substituting Eq. (7) into
Eq. (1) and by employing the thermodynamic identities
[25], we obtain

ζðωÞ ¼ 1

iw
RCCðwÞ
ðmaÞ2 þ 1

iw
1

m

�
∂C
∂a

�
N ;S

; ð8Þ

which is expressed by the contact density operator in
exactly the same form as Eq. (4).
We now recall that the Lieb-Liniger model and the Cheon-

Shigehara model share the common energy eigenvalues and
thus the common equilibrium thermodynamic properties at
the same scattering length [8,9]. If the matrix elements of the
contact density operator with respect to any energy eigen-
states are also common between the two systems, their
contact-contact response functions prove to be identical as
seen in the Lehmann representation. Indeed, the resulting
matrix elements in first quantization read as

hnjĈðxÞjn0i¼NðN−1Þ
Z

dx3 � ��dxN
×Φ�

nðx;x;x3;…;xNÞΦn0 ðx;x;x3;…;xNÞ ð9Þ

for N bosons and

hnjĈðxÞjn0i ¼ NðN − 1Þ
Z

dx3 � � � dxN
× Ψ�

nðx; xþ 0þ; x3;…; xNÞ
× Ψn0 ðx; xþ 0þ; x3;…; xNÞ ð10Þ

for N fermions. Because their wave functions are related to
each other via Girardeau’s Bose-Fermi mapping [8],
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Ψnðx1; x2;…; xNÞ ¼
�Y
i<j

sgnðxi − xjÞ
�
Φnðx1; x2;…; xNÞ;

ð11Þ

Eqs. (9) and (10) are identical with the mapping factor
squared being unity. Consequently, theBose-Fermi duality is
established for the frequency-dependent complex bulk vis-
cosity provided by Eqs. (4) and (8) equivalently, which
constitutes the main outcome of this Letter. In particular, it is
the weak-strong duality, where a → −∞ corresponds to
weakly interacting bosons but to strongly interacting fer-
mions and a → −0 corresponds to strongly interacting
bosons but to weakly interacting fermions, as indicated
in Fig. 1.
Bulk viscosity of a Bose gas.—We then evaluate the

frequency-dependent complex bulk viscosity in Eq. (4) for
the Lieb-Liniger model both in the high-temperature limit
and in the weak-coupling limit, where systematic expan-
sions in terms of small parameters are available. For the
sake of dealing with the two cases as coherently as possible,
it is convenient to follow Ref. [25] by introducing the pair
propagator in the medium,

1

DBðip0;pÞ
¼ 1

ma
þ
�
2

Z
q

1þfBðεp=2−qÞþ fBðεp=2þqÞ
ip0− εp=2−q − εp=2þq

�−1
;

ð12Þ

whose diagrammatic representation is depicted in Fig. 2.
Here, εp ¼ p2=ð2mÞ − μ is the single-particle energy and
fBðεÞ ¼ 1=ðeβε − 1Þ is the Bose-Einstein distribution
function.
The contact-contact response function in terms of the

pair propagator is provided by

RCCðik0Þ ¼
1

β

X
p0

Z
p
DBðik0 þ ip0; pÞDBðip0; pÞ; ð13Þ

whose diagrammatic representation is also depicted in
Fig. 2. The Matsubara frequency summation can be
performed by employing the spectral representation of
the pair propagator, so that we obtain

RCCðwÞ ¼ −
Z
p

ZZ
∞

−∞

dE
π

dE0

π
½fBðEÞ − fBðE0Þ�

×
Im½DBðE − i0þ; pÞ�Im½DBðE0 − i0þ; pÞ�

wþ E − E0

ð14Þ

under the analytic continuation of ik0 → w. Similarly, the
contact density in terms of the pair propagator is depicted in
Fig. 2. Its partial derivative with respect to a is provided by

�
∂C
∂a

�
β;μ

¼ −
1

ma2
1

β

X
p0

Z
p
½DBðip0; pÞ�2; ð15Þ

which together with Eq. (13) leads to

RCCðwÞ
ðmaÞ2 þ 1

m

�
∂C
∂a

�
β;μ

¼ RCCðwÞ − RCCð0Þ
ðmaÞ2 : ð16Þ

We now focus on the high-temperature limit at fixed
number density, where the fugacity z ¼ eβμ → 0 serves as a
small parameter for the quantum virial expansion [38]. Its
dependence in Eq. (14) can be exposed by changing the
integrationvariables to εð0Þ ¼ Eð0Þ − p2=ð4mÞ þ 2μ and then
by expanding the distribution functions as fBðε − nμÞ ¼
zne−βε þOðznþ1Þ. Because the pair propagator in Eq. (12)
fully incorporates two-body physics, the contact-contact
response function in Eq. (13) is actually exact up to Oðz2Þ
where only two-body physics is relevant [22,25].
Furthermore, because of ð∂C=∂aÞN ;S¼ð∂C=∂aÞβ;μþOðz3Þ,
Eqs. (14) and (16) substituted into Eq. (4) lead to

ζðωÞ ¼
ffiffiffi
2

p
z2

ðmaÞ2λT

ZZ
∞

−∞

dε
π

dε0

π

e−βε − e−βε
0

ε − ε0

×
Im½D0ðε − i0þÞ�Im½D0ðε0 − i0þÞ�

iðωþ ε − ε0 þ i0þÞ þOðz3Þ;

ð17Þ

where λT ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πβ=m

p
is the thermal de Broglie wavelength

and D0ðεÞ≡DBðεþ p2=4m − 2μ; pÞjz→0 ¼ m=ð1=a −ffiffiffiffiffiffiffiffiffiffi
−mε

p Þ is the pair propagator in the center-of-mass frame
in the vacuum. The resulting formula constitutes the fre-
quency-dependent complex bulk viscosity of the Lieb-
Liniger model in the high-temperature limit to the lowest
order in fugacity. In particular, the static bulk viscosity at

FIG. 2. Diagrammatic representation of (upper) the pair propa-
gators in Eqs. (12) and (19), (lower left) the contact-contact
response function in Eq. (13), and (lower right) the contact
density in Eq. (15). The single and double lines represent the
single-particle and pair propagators, respectively, whereas the
filled dot is the interaction vertex carrying the coupling constant
−gB;F=2, the open dot carries just unity for bosons butmgF=2 for
fermions, and the square is to insert the contact density operator.
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Oðz2Þ varies nonmonotonically under the inverse scattering
length as plotted in Fig. 3. Here, it is found to vanish
analytically ζ → 2

ffiffiffi
2

p
z2a2=λ3T at a → −0 but nonanalyti-

cally ζ → ½z2λT=ð
ffiffiffi
2

p
π2a2Þ� lnð2πe−1−γa2=λ2TÞ at a → −∞,

which closely resembles the static bulk viscosity of a two-
component Fermi gas in three dimensions [22–24].
On the other hand, there exist only two diagrams depicted

in Fig. 4 that potentially contribute to the contact-contact
response function in the weak-coupling limit a → −∞.
However, the left diagram therein proves to vanish at zero
wave number, whereas the remaining right diagram is
already incorporated in Fig. 2 as the lowest-order diagram.
Therefore, the contact-contact response function in theweak-
coupling limit is obtained simply by expanding Eq. (14) to
the lowest order in coupling. Furthermore, because of
ð∂C=∂aÞN ;S ¼ ð∂C=∂aÞβ;μ þOða−3Þ, Eqs. (14) and (16)
substituted into Eq. (4) lead to

ζðωÞ ¼
�

2

ma

�
2
Z
p;q;q0

fBðεp=2−q þ εp=2þqÞ− fBðq→ q0Þ
2εq − 2εq0

×
½1þ fBðεp=2−qÞ þ fBðεp=2þqÞ�½q→ q0�

iðωþ 2εq − 2εq0 þ i0þÞ þOða−3Þ;

ð18Þ

which constitutes the frequency-dependent complex bulk
viscosity of the Lieb-Liniger model in the weak-coupling
limit. We note that the resulting formula at zero frequency is
logarithmically divergent at q ∼ q0 ∼ 0, which is to be

cut off by 1=jaj after its resummation as seen in the
high-temperature limit. Therefore, the static bulk
viscosity to the lowest order in coupling is actually
O½ðlna2Þ=a2�, which variesmonotonically under the temper-
ature as plotted in Fig. 5. Here, it is found to diverge as
ζ → ð5N 7 lna2Þ=½πðmTÞ4a2� at T → 0 and then decrease
toward ζ → ð2N 2 lna2Þ=½ ffiffiffi

π
p ðmTÞ3=2a2� at T → ∞ in

agreement with the high-temperature limit.
Bulk viscosity of a Fermi gas.—Let us turn to the

frequency-dependent complex bulk viscosity in Eq. (8) for
the Cheon-Shigehara model, which can be evaluated sys-
tematically both in the high-temperature limit and in the
weak-coupling limit in parallel with the Lieb-Liniger model.
First, the pair propagator in the medium is provided by

1

DFðip0; pÞ

¼ 1

ma
−

2

m

Z
q

�
1þ q2

m

1 − fFðεp=2−qÞ − fFðεp=2þqÞ
ip0 − εp=2−q − εp=2þq

�
;

ð19Þ

whose diagrammatic representation is depicted in Fig. 2.
Here, fFðεÞ ¼ 1=ðeβε þ 1Þ is the Fermi-Dirac distribution
function and the regularization is applied under Eq. (6)
with Λ → ∞.
The contact-contact response function and the contact

density in terms of the above pair propagator are depicted in
Fig. 2, so that all the results presented in Eqs. (13)–(16) are
valid just by replacing DB with DF. Because of DFðεþ
p2=4m − 2μ; pÞjz→0 ¼ m=ð1=a −

ffiffiffiffiffiffiffiffiffiffi
−mε

p Þ ¼ D0ðεÞ in the
high-temperature limit, the frequency-dependent complex
bulk viscosity of the Cheon-Shigehara model to the lowest
order in fugacity is provided by exactly the same formula as
Eq. (17) for the Lieb-Liniger model. This is indeed
expected and confirms the extended Bose-Fermi duality
established by this Letter.

0.01 0.10 1 10 100
0.00

0.02

0.04

0.06

0.08

FIG. 3. Static bulk viscosity of the Lieb-Liniger model and the
Cheon-Shigehara model in the high-temperature limit z → 0 from
Eq. (17) as a function of the inverse scattering length. The number
density is provided by N ¼ z=λT þOðz2Þ.

FIG. 4. Diagrams potentially contributing to the contact-contact
response function in the weak-coupling limit.
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FIG. 5. Static bulk viscosity of the Lieb-Liniger model in the
weak-coupling limit a → −∞, corresponding to the Cheon-
Shigehara model in the strong-coupling limit, from Eq. (18) as
a function of the temperature. The number density is provided by
N ¼ R

p fBðεpÞ þOða−1Þ.
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Similarly, only the right diagram in Fig. 4 contributes to
the contact-contact response function in the weak-coupling
limit a → −0, which is already incorporated in Fig. 2 as the
lowest-order diagram. Therefore, by expanding Eq. (14) for
DF instead of DB to the lowest order in coupling, we now
obtain

ζðωÞ ¼
�
2a
m

�
2
Z
p;q;q0

fBðεp=2−q þ εp=2þqÞ − fBðq → q0Þ
2εq − 2εq0

× q2q02
½1 − fFðεp=2−qÞ − fFðεp=2þqÞ�½q → q0�

iðωþ 2εq − 2εq0 þ i0þÞ
þOða3Þ; ð20Þ

which constitutes the frequency-dependent complex bulk
viscosity of the Cheon-Shigehara model in the weak-
coupling limit. Thanks to the extended Bose-Fermi duality,
the resulting formula is also applicable to the Lieb-Liniger
model in the strong-coupling limit, whereas Eq. (18) is
applicable to the Cheon-Shigehara model in the strong-
coupling limit, both of which are otherwise inaccessible. In
particular, the static bulk viscosity at Oða2Þ varies mono-
tonically under the temperature as plotted in Fig. 6,where it is
found to vanish as ζ → mTN a2=π at T → 0 and then
increase toward ζ → 2ðmTÞ1=2N 2a2=

ffiffiffi
π

p
at T → ∞ in

agreement with the high-temperature limit.
Summary and prospects.—In summary, we showed that

the weak-strong duality between one-dimensional Bose and
Fermi gases with contact interactions extends beyond the
thermodynamics to the frequency-dependent complex bulk
viscosity. This was achieved by applying Girardeau’s Bose-
Fermi mapping to its Kubo formula expressed in terms of
the contact-contact response function. We also evaluated
their bulk viscosities in the high-temperature, weak-
coupling, and strong-coupling limits (shaded regions in
Fig. 1), whose formulas are provided by Eqs. (17), (18),
and (20) with their static limits presented in Figs. 3, 5,

and 6. Although the static bulk viscosity was found to be
finite at its lowest orders in all the three limits, a Drude peak
divergent at zero frequency proves to appear at higher
orders, which will be reported elsewhere [39].
Away from such limits where systematic expansions in

terms of small parameters are unavailable, we plan to
compute the frequency-dependent complex bulk viscosity
numerically with the aid of the Bethe-ansatz solution along
the line of Refs. [6,7]. To this end, the sum rule and the
high-frequency tail,

Z
∞

−∞

dω
π

ζðωÞ ¼ −
1

m

�
∂C
∂a

�
N ;S

; ð21Þ

lim
jωj→∞

ζðωÞ ¼ C
jmωj3=2a2 −

i
mω

�
∂C
∂a

�
N ;S

; ð22Þ

valid at arbitrary temperature, density, and scattering length
will be useful to benchmark the numerics.
The resulting bulk viscosity may be relevant to the

hydrodynamics of a one-dimensional gas of bosons real-
ized with ultracold atoms [2,3], where the integrability is
inevitably broken at long timescales, for example, by an
emergent three-body interaction [40,41]. Furthermore, the
frequency-dependent complex bulk viscosity can be
extracted experimentally by measuring the contact, energy,
or entropy density under the periodic modulation of the
scattering length [21,22]. Hopefully, our findings in this
Letter shed new light on nonequilibrium dynamics of
ultracold atoms in one dimension.
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