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Magic sets of observables are minimal structures that capture quantum state-independent advantage for
systems of n ≥ 2 qubits and are, therefore, fundamental tools for investigating the interface between
classical and quantum physics. A theorem by Arkhipov (arXiv:1209.3819) states that n-qubit magic sets in
which each observable is in exactly two subsets of compatible observables can be reduced either to the two-
qubit magic square or the three-qubit magic pentagram [N. D. Mermin, Phys. Rev. Lett. 65, 3373 (1990)].
An open question is whether there are magic sets that cannot be reduced to the square or the pentagram. If
they exist, a second key question is whether they require n > 3 qubits, since, if this is the case, these magic
sets would capture minimal state-independent quantum advantage that is specific for n-qubit systems with
specific values of n. Here, we answer both questions affirmatively. We identify magic sets that cannot be
reduced to the square or the pentagram and require n ¼ 3, 4, 5, or 6 qubits. In addition, we prove a
generalized version of Arkhipov’s theorem providing an efficient algorithm for, given a hypergraph,
deciding whether or not it can accommodate a magic set, and solve another open problem, namely, given a
magic set, obtaining the tight bound of its associated noncontextuality inequality.
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Introduction.—A magic set for a system of n ≥ 2 qubits
[1–5] is a set of Pauli observables (i.e., those represented by
n-fold tensor products of single-qubit Pauli operators I, X,
Y, and Z) and contexts (subsets of compatible observables
represented by commuting operators and such that their
product is the identity—in the case of “positive” contexts—
or minus the identity—in the case of “negative” contexts—)
with the following properties: (i) each observable is in an
even number of contexts. (ii) The number of negative
contexts is odd. (iii) The set is minimal: properties (i) and
(ii) do not hold if any observable is removed. As a simple
parity argument shows, properties (i) and (ii) make it
impossible to assign a predetermined outcome, either 1 or
−1, to each observable while satisfying that the product of
the outcomes for the observables of a positive (negative)
context is 1 (−1), as predicted by quantummechanics (QM).
Consequently, any magic set provides a simple state-
independent proof of the impossibility of simulating QM
with noncontextual hidden variable (NCHV) models [1–6].
In addition, the most famous magic sets have a fourth

property: (iv) their hypergraph of compatibility (i.e., the
one in which each vertex represents an observable and each
hyperedge a context) is vertex-transitive (i.e., its auto-
morphism group acts transitively on its vertices). A hyper-
graphH ¼ ðV; EÞ is a finite set V of vertices and a finite set
E of hyperedges, where each hyperedge is a multiset of
vertices. Besides symmetry and elegance, vertex transitivity
is helpful for experimental purposes.

There are two famous magic sets. One is the “magic
square,” “Peres-Mermin table,” or “Mermin square” for
n ¼ 2 qubits found [7] by Peres [1–3] and Mermin [4,5]
and shown in Fig. 1(a). The other is the “magic pentagram”
or “Mermin’s star” for n ¼ 3 qubits found by Mermin [4,5]
and shown in Fig. 1(b). Both sets were introduced as
simplified proofs of the Kochen-Specker theorem [8].
The adjective “magic” was first used in [9].
Magic sets have multiple applications (for details, see

Ref. [10]), including Greenberger-Horne-Zeilinger-like
proofs with two observers [13], bipartite Bell inequa-
lities with maximal quantum violation saturating the

FIG. 1. (a) The magic square. (b) The magic pentagram. Each
dot represents a Pauli observable. XZ denotes the observable
represented by σx ⊗ σz. IXI denotes the observable represented
by 1 ⊗ σx ⊗ 1, where 1 is the 2 × 2 identity matrix. Observables
in the same straight line are mutually compatible and the product
of their operators is the identity, except for the three vertical lines
in (a) and the horizontal line in (b), where it is minus the identity.
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nonsignaling bound [13,15,16,31,32], obtaining Kochen-
Specker sets of rays [2,34], nonlocal games [9,17,21],
state-independent noncontextuality inequalities [6,22–25],
measurement-based quantum computation [36–39], non-
locality based on local contextuality [41–43], device-
independent quantum key distribution [44,45], memory
cost of classically simulating sequences of quantummeasure-
ments [57–59], state-independent quantum dimension wit-
nessing [46], entropic inequalities [60], device-independent
self-testing [47–50], and quantum gravity [51].
In a nutshell, the importance of magic sets lies in the fact

that they are minimal structures that capture quantum state-
independent advantage for an n-qubit system and thus are
fundamental tools for investigating the interface between
classical and quantum physics [10].
Magic sets are useful to capture the quantum advantage.

But the quantum advantage grows with n. Therefore, an
interesting question is whether there are magic sets for
n > 3 and how they are related to those for smaller values
of n. A theorem by Arkhipov [53] (see also Ref. [61])
suggests that the cases n ¼ 2 and n ¼ 3 are special.
Arkhipov’s theorem states that the intersection graph of
the contexts of any magic set in which each observable is in
exactly two contexts must contain either the intersection
graph of the contexts of the magic square or the magic
pentagram. The intersection graph of a family of sets is a
graph in which each set is represented by a vertex and edges
connect intersecting sets. A consequence of Arkhipov’s
theorem is that “the magic square and magic pentagram are
‘universal’ for magic games” in which each observable is in
exactly two contexts [53]. A second consequence is that the
magic sets with n > 3 qubits described in the literature [62–
68] derive from the square and the pentagram. However,
Arkhipov’s theorem leaves open some key questions.
(1) For n ¼ 2 qubits, each Pauli observable can be only
in three contexts. Therefore, for n ¼ 2, the only even
number that can be used to define magic sets following
condition (i) is two. But this is not true for n ≥ 3 qubits.
Does the conclusion of Arkhipov’s theorem hold if the
requirement of each observable being in exactly two
contexts is replaced by the requirement of each observable
being in an even number m of contexts? Are there, in this
more general case, magic sets that cannot be reduced to the
square and the pentagram? (2) If the answer to the second
question in (1) is affirmative, are there magic sets that
cannot be reduced to any magic set with n ¼ 2 or n ¼ 3
qubits and thus are genuine to systems of n > 3 qubits?
This is important as it would identify fundamental struc-
tures that are genuine for a specific number of qubits and
thus can be used to certify whether a system has at least n
qubits. (3) If the answer to (2) is affirmative, how does one
identify those magic sets? Is it possible to generalize
Arkhipov’s theorem (which is essentially an efficient
algorithm to check whether or not a hypergraph can
accommodate a magic set under the assumption that each

observable is in exactly two contexts), while removing the
extra assumption?
All these questions seem to be important and, collec-

tively, can be rephrased as follows: are there simple tools to
detect and quantify quantum computational advantage for
n-qubit systems that are specific for each value of n and
have gone unnoticed? In this Letter, we answer all these
questions in the affirmative.
Any magic set provides a logical contradiction between

QM and NCHV models. However, translating that contra-
diction to an experiment requires deriving a noncontex-
tuality inequality [6] that is violated (for any initial state)
measuring the elements of the magic set. There exists a
general method for, given a magic set, obtaining a con-
textuality witness [41]. Calculating the quantum value of
that witness is immediate. Calculating its maximum for
NCHV models is straightforward if the magic set is small.
However, an open problem is obtaining the bound for
NCHV models in general. In this Letter, we also solve this
problem.
Methodology.—Finding all magic sets for any n > 3 is

intractable. There are 4n − 1 Pauli observables, each of
them is in

Q
n−1
j¼1ð1þ 2jÞ positive or negative contexts of

2n − 1 elements. These contexts of maximal size contain
subsets whose product is the identity or minus the identity
(e.g., fIIX; IXI; XII; XXX; IXX; XIX; XXIg contains two
subsets whose product is the identity: fIIX; IXI; XII;
XXXg and fIXX; XIX; XXIg). Unlike the case n ¼ 2,
where m can only be 2 (since, each observable is in exactly
3 contexts of maximal size), the possible values for m grow
with n.
However, since our main motivation is answering

whether or not there are magic sets not covered by
Arkhipov’s theorem, we restrict our computational search
to magic sets in which each observable is in four contexts
(the simplest case not covered by Arkhipov’s theorem) and
assume that contexts have four or five observables. The
theoretical results presented in this Letter do not require
these assumptions.
In addition, we use the following observation. Given a

magic set S, each Pauli observable o ∈ S can be repre-
sented by a vertex v ∈ V and each context by an hyperedge
e ∈ E of its hypergraph of compatibility H ¼ ðV; EÞ. For
example, Figs. 1(a) and 1(b) show H for the magic square
and pentagram, respectively (representing vertices by dots
and hyperedges by straight lines connecting several dots).
For a fixed n, there are different sets of Pauli observables
whose relations of compatibility are represented by the
same H. We say that two magic sets belong to the same
class if they have the same H. For example, for n ¼ 2
qubits, there are 10 magic sets sharing the hypergraph H
shown in Fig. 1(a). Our strategy for finding magic sets is
thus based on identifying hypergraphs H that can represent
magic sets. Specifically, we use the following algorithm.
(a) We fix the number of observables, say N, in the putative
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magic set. We then use the list of groups acting transitively
on N points provided by computer algebra systems such as
GAP [69] or MAGMA [70]. For each group G, we generate
the orbits of G acting on the subsets of f1;…; Ng of size s,
where s ∈ f4; 5g. If any such orbit contains exactly 4N=s
sets, then, by a simple counting argument, these sets are the
hyperedges of a vertex-transitive hypergraph H in which
each vertex is in four edges. (b) We then use a theorem
(Theorem 7 in [10]) to determine whetherH admits a magic
assignment of its vertices by n-qubit Pauli operators for
some n (i.e., an n-qubit magic set). If it does, then we also
determine the smallest such n. We can also iterate through
all such assignments. (c) Whenever we find structures that
are not minimal [i.e., which do not satisfy (iii)], we can find
new structures that are minimal by a method detailed in
[10], which also contains further details on the whole
algorithm. We can also compute the minimum number of
qubits needed and assignments in this case. The examples
we find from this procedure need not be vertex-transitive
and may have contexts of larger size and observables in a
larger number of contexts.
Results.—With the assumptions made above, it can be

seen that H must have N ≥ 13 vertices. By exhaustive
computer search, we have found that there are no magic
sets with fewer than 19 vertices (Pauli observables), even if
we drop the requirement that the hypergraph is vertex-
transitive. We have also found that there are no magic sets
with fewer than 20 vertices that have at least one nontrivial
automorphism.
We have found four classes of irreducible magic sets that

have a vertex-transitive hypergraph of compatibility [i.e.,
that also satisfy property (iv)] like the square and penta-
gram. Their hypergraphs and a magic assignment for each
of them are presented in Figs. 2(a)–2(c), and 3.
The one with the smallest number of observables is the

class shown in Fig. 2(a), which requires n ¼ 4 qubits and
has 21 observables and 21 contexts. Its H is the so-called

Grünbaum-Rigby configuration [71] already described by
Klein [72].
Each of the other three classes has 27 observables and 27

contexts. The class in Fig. 3 requires n ¼ 3 qubits. The
class in Fig. 2(b) requires n ¼ 4 qubits. Its H is the 3-astral
4-configuration in [73] [Fig. 3.7.2(b)]. The class in Fig. 2(c)
requires n ¼ 5 qubits. Its H is the smallest known weakly
flag-transitive configuration [74].
The automorphism groups of the classes in Figs. 2(a)–2(c)

allow for straight line representations in the Euclidean plane
(the ones shown in Fig. 2). However, such a representation is
not possible for the class in Fig. 3. Instead, we can visualize
its hypergraph by describing its automorphism group, as
shown in Fig. 3.
We have also found irreducible magic sets not satisfying

property (iv) (vertex-transitivity). They include one with
n ¼ 6 qubits. See Ref. [10] for details.
These sets by themselves answer question (1): there are

magic sets that cannot be reduced to the square and the
pentagram, including some that also satisfy property (iv).
They also answer question (2): there are magic sets that are
genuine (irreducible to any magic set with a smaller number
of qubits) to systems of n ¼ 4 [Figs. 2(a) and 2(b)], n ¼ 5
qubits [Fig. 2(c)], and n ¼ 6 qubits [10].
Extending Arkhipov’s theorem.—Here, we address

question (3). Arkhipov’s theorem provides an efficient
algorithm to check whether or not an hypergraph yields a
Pauli-based magic assignment satisfying that each observ-
able is in exactly two contexts and the number of negative
contexts is odd. The question is whether there is an efficient
algorithm to check whether or not a hypergraph admits a
Pauli-based magic assignment [i.e., can accommodate Pauli
observables satisfying properties (i), (ii), and (iii)].
Steps (b) to (c) of our algorithm provide an efficient

algorithm to check whether or not a hypergraph admits
a Pauli-based magic assignment satisfying (i) and (ii).
Therefore, in a sense, they answer question (3). Additionally,

(a) (b) (c)

FIG. 2. The three magic sets with vertex-transitive graphs of compatibility with straight line representations in the Euclidean plane that
cannot be reduced to the square or pentagram that we have found in this Letter. The notation is the same as that used in Fig. 1. (a) MS4-
21 requires n ¼ 4 qubits and has 21 observables and 21 contexts. In the example shown, 3 of the contexts are negative. (b) MS4-27
requires n ¼ 4 qubits and has 27 observables and 27 contexts. In the example shown, 5 of them are negative. (c) MS5-27 requires n ¼ 5
qubits and has 27 observables and 27 contexts. In the example shown, 13 of them are negative.
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step (c) allows us to generate and iterate through magic
assignments of minimal structures. The main result we
exploit is the following theorem.
Theorem 1: Let H be a proper Eulerian hypergraph

with valid Gram space V. Let B be any basis for V. Then,
(1) H has a magic assignment with Pauli observables if and
only if there is a magic Gram matrix in B; and (2) H has a
magic assignment with Pauli observables for a system of k
qubits satisfying (i) and (ii) if and only if there is a magic
Gram matrix of binary rank at most 2k in V.
A proper Eulerian hypergraph is a hypergraph with each

vertex in an even number of distinct hyperedges. The valid
Gram space is the set of jVj × jVj matrices M whose
entries satisfy the following linear equations: (a) Mi;j ¼ 0

whenever vertices vi, vj occur in the same hyperedge; and
(b)

P
vi∈e Mi;j ¼ 0, for all 1 ≤ j ≤ jEj for all hyperedges

e ∈ E. A magic assignment α∶V → GLðHÞ, where H is a
Hilbert space, is an assignment such that: (A) αðvÞ2 ¼ I and
αðvÞ is Hermitian for all v ∈ V. (B) αðvÞαðwÞ ¼ αðwÞαðvÞ

whenever v, w are in a common hyperedge e ∈ E.
(C)

Q
v∈e αðvÞ ¼ �I for each hyperedge e ∈ E.

(D)
Q

v∈e αðvÞ ¼ −I for an odd number of hyperedges
e ∈ E.
Using Arkhipov’s result, our methodology yields a novel

algorithm for checking graph planarity ([10], Corollary 12).
Additionally, in the case that the graph G is nonplanar, this
algorithm also produces a magic Gram matrix encoding a
copy of K3;3 or K5 appearing as a topological minor of G.
Noncontextuality inequalities.—Given a set of Pauli

observables satisfying (i) and (ii) (i.e., not necessarily
minimal), let us call Cp its set of positive contexts and
Cn its set of negative contexts. Then, as shown for the
square and the pentagram in [6], and for more general cases
in [41], the following inequality must be satisfied by any
NCHV model:

X

Ci∈Cp

hCii −
X

Cj∈Cn

hCji ≤ b; ð1Þ

where hCii denotes the mean value of the products of all the
observables in context Ci. QM makes a prediction for each
context (that the product is either −1 or 1). The limit for
NCHV models is b ¼ 2s − jCpj − jCnj, where s is the
maximum number of quantum predictions that can be
simultaneously satisfied by a NCHV model [41]. An open
problem [41] is, given a hypergraph H corresponding to a
magic set, what is b? Here, we solve this problem in two
senses. On the one hand, we give a method for computing b
by using results from coding theory (see Ref. [10] for
details). Computing b is important for, e.g., computing the
resistance to noise of the quantum advantage of any magic
set [41]. On the other hand, we prove a more general result.
Theorem 2: Let H ¼ ðV; EÞ be a magic Eulerian

hypergraph with incidence matrix M. Let α be a magic
assignment ofH, and let wmin be the minimum of Hamming
weights of elements of the affine space cðαÞ þ rowðMÞ.
Then, the noncontextual bound for α is b ¼ jEj − 2wmin.
Given a hypergraph H ¼ ðV; EÞ with vertices v1;…; vm

and edges e1;…; en, the incidence matrix ofH is them × n
binary matrix M for which Mi;j ¼ 1 whenever vi ∈ ej. By
rowðMÞ we denote the row space of the matrix M. The
Hamming weight of a binary vector w is the number of
nonzero coordinates of w. Given a magic assignment α
of H, we define cðαÞ ∈ GFð2Þn to be the vector for
which cðαÞi ¼ 0 whenever

Q
v∈ei αðvÞ ¼ 1 and cðαÞi ¼ 1

otherwise.
Conclusions.—Minimal vertex-transitive magic sets are

fascinating objects used in a wide variety of areas as they
capture minimal quantum state-independent advantage for
n-qubit systems and are thus fundamental tools for inves-
tigating the interface between classical and quantum
physics. While Arkhipov’s theorem might have been
taken as an indication that there are only two classes of
irreducible vertex-transitive magic sets, one requiring two

FIG. 3. The fourth magic set with vertex-transitive graph of
compatibility that cannot be reduced to the square or pentagram
that we have found, MS3-27, requires n ¼ 3 qubits and has 27
observables and 27 contexts. It does not admit a straight line
representation in the Euclidean plane. Here, observables are given
by coordinate points ðx; y; zÞ ∈ Z3

3 (the x axis is horizontal, the y
axis goes into the page, and the z axis is vertical) and all contexts
can be obtained by applying translations to a starter context. A
possible starter context β given by the observables corresponding
to the coordinates (0,0,0),(1,0,0),(0,1,0),(0,0,1) is depicted by the
four larger dots. All 27 contexts can be generated by applying the
translations Ta;b;c∶Z3

3 → Z3
3, 0 ≤ a; b; c ≤ 2 given by ðx; y; zÞ →

ðxþ a; yþ b; zþ cÞ to each of the observables of the starter
context. For example, one obtains the context fZYY; XXY;
ZXZ; XYZg by applying the translation T1;2;0 to the observables
of β. In the example shown, all the contexts are negative. The
dotted edges appear only as a visual aid to make clear the
correspondence of the vertices to the coordinates. Like the magic
square [see Fig. 1(a)], MS3-27 can be implemented using all 3n

n-qubit Pauli observables not containing I.
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and the other requiring three qubits, and that all magic sets
derive from them, in this Letter, we have shown that the
landscape of magic sets is quite different from the one
suggested by Arkhipov’s theorem as there are, at least,
four more classes: one requiring three qubits, here called
MS3-27, that cannot be drawn in a plane (see Fig. 3); two
requiring four qubits, here called MS4-21 [see Fig. 2(a)]
and MS4-27 [see Fig. 2(b)]; and one requiring five qubits,
MS5-27 [see Fig. 2(c)]. We have also found other irre-
ducible magic sets requiring from three to six qubits (but
not vertex-transitive ones).
In the light of these results, it seems that each n has its

own set of irreducible vertex-transitive magic sets. Finding
them and especially finding the ones with minimum
number of observables (so far, the magic square for
n ¼ 2, the magic pentagram for n ¼ 3, MS4-21 for
n ¼ 4, and MS5-27 for n ¼ 5) is an interesting challenge
for the reasons that have motivated this Letter (namely,
identifying minimal structures providing state-independent
quantum advantage and requiring a specific number of
qubits). One possible way to obtain these sets would be by
generalizing to a higher number of qubits the geometrical
structure of the sequence pentagram, MS4-21, and MS5-
27, as well as the sequence square and MS3-27.
In addition, we have proven a general expression for the

classical (noncontextual) bound of the inequality associated
to any magic state (minimal or not), which is useful for
many purposes as it allows us, e.g., to compute the robustness
to noise in the implementation of the Pauli observables
(or, in general, versus any type of experimental limitation) for
any given magic set [10]. We hope these results stimulate
further research on magic sets and their applications.
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Appendix A: Sketch of the proof of Theorem 1.—
Theorem 1 describes an algorithm that, given a proper
Eulerian hypergraph H ¼ ðV; EÞ, either proves that H has
no magic assignment using Pauli observables, or deter-
mines the minimal number of qubits needed for a magic
assignment of H using Pauli observables. One can also
generate such assignments if they exist.
Given an assignment of the vertices of H with Pauli

observables, the commutativity relations between all pairs
of observables yield enough information to determine
whether the Pauli observables constitute a magic set. We
encode the commutativity information via a binary matrix
called a Gram matrix. The set of Gram matrices encoding

magic sets associated to H forms an affine subspace of the
valid Gram space of H. Therefore, if a basis for the valid
Gram space of H contains a Gram matrix whose associated
assignments are magic sets, then H admits Pauli-based
proofs. Otherwise it does not.
To determine the number of qubits, we use a result on

symplectic graphs [ [52], Theorem 8.11.1], which, translated
to our problem, states the following: for a Gram matrixM in
the valid Gram space of H and binary rank 2k, k is the
minimum number of qubits for which a Pauli-based assign-
ment of H can respect all commutativity conditions of M.

Appendix B: Sketch of the proofs of Theorem 2.—To
compute the bound of the noncontextuality inequality
associated to a given magic set, one can search over all
possible 2jVj assignments of 1 or −1 to the vertices of H.
We take a different approach. Given a magic set, we
produce another magic set that has the same noncontextual
bound, but for which the NCHVassignment using all 1’s is
optimal.
If two magic sets have the same set of negative contexts,

then they must also have the same noncontextual bound.
Thus, for magic sets represented as magic assignments
of H, α, and α0, we see that if cðαÞ ¼ cðα0Þ, then
bαðHÞ ¼ bα0 ðHÞ.
If a magic set is obtained from another by negating

observables [e.g., replacing XX by −XX in Fig. 1(a)], then
they must have the same noncontextual bound. This can be
expressed using linear algebra via the incidence matrix
of H: if cðαÞ − cðα0Þ ∈ rowðMÞ, then bαðHÞ ¼ bα0 ðHÞ.
Moreover, the set of negative contexts for each of the
possible 2jVj magic sets obtained by negations of observ-
ables is the affine space cðαÞ þ rowðMÞ. The number of
negative contexts of α is exactly the Hamming weight of
cðαÞ [by definition, since each negative context of α
corresponds to a 1 in cðαÞ]. Thus, the magic assignment
α0 with the fewest negative contexts obtainable from α by
observable negations has the property that cðα0Þ is a
minimum Hamming weight element of cðαÞ þ rowðMÞ.
This minimum Hamming weight is wmin in Theorem 2.
For α0, the assignment using all 1’s yields the non-

contextual bound, since flipping a 1 to a −1 produces the
same result as negating the corresponding observable.
The noncontextual bound bαðHÞ is thus jEj − 2wmin.
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