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We show that, by using a saturable gain gsat, generalized PT (GPT ) symmetry can be achieved in the
intrinsically unbalanced (non-PT -symmetric) high-order wireless power transfer systems. A topology
decomposition approach is implemented to analyze the parity of the high-order wireless power transfer
systems. In the coupling parametric space, a global GPT -symmetric eigenstate is observed along with the
spontaneous phase transition of the local GPT -symmetric eigenstates on the exceptional contour. GPT
symmetry guarantees a highly efficient and stable power transfer across the distinct coupling regions,
which introduces a new paradigm for a broad range of application scenarios involving asymmetric
coupling.
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Existing wireless power transfer (WPT) systems can be
categorized into two groups, i.e., radiative transfer [1] and
nonradiative near-field transfer. The latter corresponds to
typical non-Hermitian systems, including inductive [2–5]
or resonance-based [6–9] WPT schemes, which constitute
the majority of systems in practical use owing to their
superior efficiency. However, for nonradiative WPT sys-
tems, a high efficiency is maintained only when the power
transfer distance is comparable to the dimensions of the
transmitting and the receiving components. The current
nonradiative WPT schemes suggest a lack of robustness to
variations in the application conditions. On the other hand,
parity-time (PT ) symmetry [10–13] opens up a new
perspective in the study of non-Hermitian systems in which
gain and loss are the key to optimal resonance performance
in different environmental conditions. PT symmetry has
been extensively explored in different fields [14–25] and
recently has been exploited to enable robust WPT systems
with high efficiency [1,26–30].
In the previousPT WPT investigation, thePT symmetry

can only be realized either in a second order (two-body)
systemof balanced gain and loss rate (γ ¼ g) [1,26,28,30], or
in a third order (three-body) system of balanced coupling
rates (κ12 ¼ κ23) [29]. Those systems suffer from two
limitations. First, they rely on an inherently balanced
coupling configuration. Second, due to the spontaneous
symmetry breaking, high power efficiency can only be
achieved locally in the strong coupling (SC) region at
“PT -symmetric phase.” Therefore, the construction of a
global PT symmetry in WPT systems is not only important
to achieveglobally optimal power transfer efficiency, but also
to understand the topological properties of intrinsically
asymmetric non-Hermitian systems.
In this Letter, we theoretically demonstrate generalized

parity-time (GPT ) symmetry in high-order non-Hermitian
asymmetric WPT systems. By applying a two-step parity

decomposition approach, the topology correlation between
the three-body and two-body PT -symmetric WPT systems
is analyzed. The GPT -symmetric states are described as
on-band steady states in a high dimensional parametric
space (γ, g, κ12, κ23), with a saturation gain gsat. Accordingly,
a band theory interpretation is developed to analyze the
off-band efficiency-compromised states with respect to the
band surface, i.e., gsatðγ; κ12; κ23Þ in the parametric space.
Meanwhile, a maximized and stable power efficiency is
guaranteed by a global GPT -symmetric state over both the
weak coupling (WC) and SC regions.
Here, the third order WPT system [Fig. 1(d)] is

represented as a mutual-coupled resonance system consis-
ting of a transmitter (Tx, resonator 1), an intermediator

FIG. 1. GPT symmetric states in the parametric space. (a) Band
surface of ReðωeÞ in ðκ12; κ23Þ space. (b) gsat of the eigenstates in
ðκ12; κ23Þ space. (c) Dynamics of exceptional point upon γ tuning.
(d) Schematic of the high-order GPT symmetric wireless power
transfer system.
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(Ix, resonator 2), and a receiver (Rx, resonator 3). Each
resonator is characterized by a resonance frequency
(ω1, ω2, and ω3) and a coupling rate (γ1, g, and γ3). The
coupling rate defined here is a theoretical aggregate of two
components: (i) the interactional coupling rate representing
the gain and loss from the coherent source and load outside
theWPT system; and (ii) the intrinsic loss rate δ. The power
interaction between the nearest resonators is described by
the coupling rates κ12 and κ23, which decrease exponen-
tially with the increasing separation distance, d12 and d23,
between the resonators [28,29]. The dynamics of the
system can be analyzed using temporal coupling mode
theory [31], and may be further described by the following
Hamiltonian [Eq. (1)], in which the eigenstates, a ¼ ða1;
a2; a3ÞT , correspond to the complex amplitude of the
energy stored in each resonator.

−i d
dt

a ¼ ωa ¼ Ha;

H ¼

0
B@

ω1 − iγ1 κ12 0

κ12 ω2 − ig κ23

0 κ23 ω3 þ iγ3

1
CA: ð1Þ

Considering the coherent coupling condition (ω1 ¼
ω2 ¼ ω3 ¼ ω0) and a fixed and equal input and output
rate at the source (γ1) and the load (γ3), i.e., γ1 ¼ γ3 ¼ γ, a
characteristic equation can be obtained to determine the
eigenstates of the WPT system, jH−ωj¼ ðωd− iγÞ×
ðωd− igÞðωdþ iγÞ−κ223ðωd− iγÞ−κ212ðωdþ iγÞ¼0. Here,
ωd ¼ ω0 − ω. In contrast to the systems in previously
reported studies [29], the WPT systems considered in this
Letter are inherently asymmetric and can be defined by the
asymmetric coupling rates, i.e., κ12 ≠ κ23. Importantly, a
GPT symmetry can be reestablished by introducing a
nonzero saturable gain gsat into the intermediator. Based on
the real frequency assumption, we observe that (i) the real
part of the characteristic function can be separated to obtain
three eigenfrequencies of the steady states [Eq. (2)]; and
(ii) gsat required can be derived from the imaginary part.
Obviously, the formulation of gsat is associated with the
eigenfrequency. According to Eq. (2), when κ12 < κ23,
gsat > 0, while, when κ12 > κ23, gsat < 0. gsat serves as a
measure of the asymmetric orientation of the system,
indicating the functionality of gsat in adjusting the sym-
metry property of the system.

ωe1 ¼ ω0; ωe2;3 ¼ ω0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ223 þ κ212 − γ2

q

gsat ¼ γ
κ223 − κ212

ðω − ω0Þ2 þ γ2
; gsat1 ¼

κ223 − κ212
γ

or gsat2;3 ¼ γ
κ223 − κ212
κ223 þ κ212

: ð2Þ

Figure 1(a) illustrates the band surfaces of the three
steady states, i.e., the eigenfrequency (real part, normal-
ized to ω0) in the parametric space of κ12 and κ23, when
γ ¼ 0.0125. An exceptional contour is observed at
κ212 þ κ223 − γ2 ¼ 0, which divides the parametric space
into the SC region (κ212 þ κ223 − γ2 > 0) and the WC region
(κ212 þ κ223 − γ2 < 0). The second and third eigenfrequen-
cies require κ212 þ κ223 − γ2 ⩾ 0, corresponding to the
steady and PT -symmetric states in the SC region. In
other words, spontaneous symmetry breaking occurs as
the second and third eigenstates enter the WC region. The
first eigenstate sustains a global PT symmetry in both
regions. Therefore, in the SC region, a bifurcation phe-
nomenon can be identified between three eigenstates,
ðωe1; gsat1Þ, ðωe2; gsat2Þ, and ðωe3; gsat3Þ, while in the WC
region, three eigenfrequencies coalesce into a unity value.
Similar eigenstates coalescing inside the exceptional
contour (the black curve at exceptional contour) can also
be observed on the gsat surface [Fig. 1(b)], where the red
(gray) surface is the gsat representative of the second and
the third (first) eigenstates. Furthermore, the condition
gsat2;3 ¼ gsat1 ¼ 0 along the diagonal direction in ðκ12; κ23Þ
space is attributed to the inherently symmetric condition,
i.e., κ12 ¼ κ23 [29]. Namely, the PT -symmetric condition
is merely a special case in the GPT -symmetry system.

This inclusion relation illustrates the generality of the
GPT symmetry. Figure 1(c) illustrates the dynamics of
the exceptional contour when κ12 ¼ 0.01. Clearly, the
exceptional point moves toward the zero as the input
and output rate γ decreases. Moreover, if γ < κ12, the
spontaneous symmetry breaking (exceptional point) dis-
appears due to a permanent SC condition (κ212 − γ2 > 0).
Thus, the second and the third eigenstates can only be
globally PT symmetric at a limited input and output
rate γ.
Here, the equivalence between the steady states and the

GPT symmetry is rigorously illustrated. The time reversal
operator is applied, i.e., T̂ †tT̂ ¼ −t, to any time dependent
physical quantities. The parity operator gives P̂†r̂ P̂ ¼ −r̂,
and can be applied to any coordinate related polar vectors. In
principle, the PT -symmetric Hamiltonian commutes with
the combinative operation of P̂ T̂ . In the proposed three-
body WPT system, the coordinate transformation (r̂ → −r̂)
can be explicitly expressed as an index reversal from

ð1; 2; 3Þ → ð3; 2; 1Þ. The parity operator P̂ ¼
� 0 0 1

0 1 0

1 0 0

�
.

At the steady states, the transformation of the Hamiltonian
under the simultaneous action of P̂ and T̂ can be derived as
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P̂ T̂ Hðr̂; tÞT̂ −1P̂−1 ¼ P̂H�ðr̂;−tÞP̂−1 ¼ P̂

0
B@

ω0 þ iγ κ12 0

κ12 ω0 þ igsatðr̂Þ κ23

0 κ23 ω0 − iγ

1
CAP̂−1 ¼ H�ð−r̂;−tÞ

¼

0
B@

ω0 − iγ κ21 0

κ21 ω0 þ igsatð−r̂Þ κ32

0 κ32 ω0 þ iγ

1
CA: ð3Þ

gsat is odd symmetric, i.e., −gsatðr̂Þ ¼ gsatð−r̂Þ, which
corresponds to a transformation from an input (gain) to
an output (loss) interaction at the intermediator. Thus,
P̂ T̂ Hðr̂; tÞT̂ −1P̂−1 ¼ Hðr̂; tÞ is demonstrated, i.e., ½P̂ T̂ ;
Hðr̂; tÞ� ¼ 0. Physically speaking, the non-Hermitian
Hamiltonian of the three-bodyWPT system is P̂ T̂ invariant
at its steady states.
From an evolutionary perspective, three-body WPT sys-

tems can be viewed as generalized two-body WPT systems,
especially when κ12 ≠ κ23. Accordingly, the generalized
parity reversal operation of the three-body system can be
sequentially decomposed into one local and one global
second order parity operation. One example (κ12 < κ23) is
presented in Fig. 2. Reasonably, the Tx is analogized as a
“monopole” (red sphere) of positive input rate (gain), while
the Ix and the Rx are collectively interpreted as a “dipole”
with the polarity defined by the unbalanced input and output
(in general, g ≠ γ) at the two poles. Consequently, the
generalized parity reversal operation P̂ can be intuitively
decomposed into a global parity inversion (P̂G) and a
local parity inversion (P̂L). P̂G ¼ σx is based on the
position inversion between the monopole and the dipole
(P̂†

Gr̂GP̂G ¼ −r̂G, corresponds to ½1; ð2; 3Þ� → ½3; ð1; 2Þ�).
P̂L ¼ σx reverses the two polar ends of the dipole
[P̂†

Lr̂LP̂L ¼ −r̂L, corresponding to ð2; 3Þ → ð3; 2Þ].
Meanwhile, T̂ †tT̂ ¼ −t, is universal. Accordingly, the
Hamiltonian of the three-body system is reformulated
according to Eq. (4):

Hðr̂G; HL; tÞ ¼
�
ω0 − iγ κ12

κ12 HLðr̂L; tÞ

�
; ð4Þ

HLðr̂L; tÞ ¼
�
ω0 − ig κ23

κ23 ω0 þ iγ

�
; ð5Þ

where the local HamiltonianHL describes the dipole internal
interaction under a local coordinate definition. Compared
with the two-body WPT system [28], the three-body top-
ology is equivalent to that of a global two-body topology
embedded with a local two-body system at one pole, which
suggests that a GPT -symmetric three-body topology and a
PT -symmetric two-body topology are globally equivalent.
Therefore, P̂G ¼ P̂L ¼ σx, which describes the coordinate
inversion on different hierarchies of the system, aggregately
controls the generalized parity of the third order system.
Accordingly, the generalized PT symmetry of the three-
body system can be demonstrated by a two-step parity
operation and a universal time reversal operation (details
are provided in Ref. [32]). Furthermore, this parity decom-
position method can also be applied to high-order WPT
systems (see detailed discussion in Ref. [32]).
In contrast to the coupling limitations observed in linear

two-body systems [28], the GPT -symmetric states of the
three-body configuration, ðωe1; gsat1Þ, ðωe2; gsat2Þ, and
ðωe3; gsat3Þ, can achieve the maximum power transfer
efficiency in both the WC and SC regions. In particular,
the first steady state, ðωe1; gsat1Þ, is not only globally GPT
symmetric, but also does not require an adaptive operating
frequency across the distinct coupling regions. According
to Eq. (6), each steady eigenstate, a ¼ ða1; a2; a3ÞT , with
the corresponding saturable gain gsat defines the theoretical
limit of the power transfer efficiency of three-body WPT
systems. Therefore, a band theory interpretation can be
established in analogy to laser theory [28]. The imperfec-
tion of any efficiency-compromised states can be analyzed
with respect to these “on-band” steady states.

η ¼ γ3ja3j2
γ1ja1j2 þ gja2j2

: ð6Þ

In 4D parametric space, the band surfaces of the steady
states can be represented by gsatðγ; κ12; κ23Þ, while any
imperfect state of a random coupling rate definition

FIG. 2. Local and global parity decomposition of the general-
ized parity based on a dipole-monopole analog.
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ðγ; g; κ12; κ23Þ can be virtually denoted as a point in the
space. For simplicity, we set κ12 ¼ 0.01, κ23 ¼ 0.005, and
0.015. Thus, the band surface degenerates into a 2D curve,
gsatðγÞ [Fig. 3(b)]. The plot contains two coupling regions,
the upper [lower (gray)] half under Rx-dominated
(Tx-dominated) coupling, κ12 < κ23 (κ12 > κ23). In each
half, the black (red dashed) curve denotes gsat1ðγÞ of the
first steady state [gsat2;3ðγÞ of the second and the third
steady states]. Importantly, a similar degeneracy between
eigenstates can still be observed at the exceptional point.
When κ12 > κ23, for a system of any fixed rate ðγ; gÞ,

there will be four states. If gðγÞ ¼ gsatðγÞ, the system
operates on band with the maximum power transfer
efficiency. Otherwise, state ðγ; gÞ is an off-band state with
a compromised efficiency. The first off-band state denoted
by the black dot (I) corresponds to the oversaturated
parameters of both γ and g, and is defined as the over-
saturated state, which can be considered as an “excited
state” induced by an external stimulation of rate g. This
state can transit to an on-band “ground state” via either a
“stimulated emission” (reduction in g indicated by the
downward solid arrow) or a “momentum matching”
(reduction in γ indicted by the leftward solid arrow). On
the contrary, the state, represented by the gray dot (II), is
categorized as the unsaturated state, which cannot directly
transit to an on-band state without an extra “feed.” In
addition, when the system satisfies either gðγÞ > gsatðγÞ,
γðgÞ < γsatðgÞ or γðgÞ > γsatðgÞ, gðγÞ < gsatðγÞ [red circles
(III) and (IV), respectively, in Fig. 3], it is at a hybrid state
or a semisaturated state. A similar analysis can be imple-
mented when κ12 > κ23. Instructively, the power transfer
efficiency across the parametric space can be derived by
following this methodology.
With the loose coupling constraints, the GPT symmetry

has immense potential for high-order WPT systems with

greatly improved efficiency and practical feasibility.
To further illustrate this, as shown in Fig. 4, we calculated
the power efficiency η under different gain and loss rate
schemes (g) with adaptive frequencies (i.e., eigenfrequen-
cies). In this calculation, the distance between the Ix and the
Tx (or Rx) was fixed, i.e., κ12 (or κ23) ¼0.01, while κ23 (or
κ12) is the only variable of the system. Operating at the first
eigenfrequency ω ¼ ωe1, two gain scenarios, i.e., the static
gain g ¼ γ ¼ 0.0125 and the adaptive gain g ¼ gsat;1, are
presented as the dashed and solid black curves, respectively,
in both Figs. 4(a) and 4(b). Similarly, forω ¼ ωe2, these two
gain schemes are plotted as the dashed and solid red curves,
respectively. In the same manner, the power transfer effi-
ciencies under the corresponding gain schemes are presented
in both Figs. 4(c) and 4(d). For comparison purposes, the
highest efficiency of the two-body WPT system [blue curve
in Figs. 4(c) and 4(d)] and the corresponding gain rate [blue
curve in Figs. 4(a) and 4(b)] are also presented. An equal
dissipation rate δ ¼ 0.0005 is applied to all terminals in the
system: a loss model ðδ1; δ2; δ3Þ ¼ ð5; 5; 5Þ × 10−4 is assi-
gned for the three-body system and ðδ1; δ2Þ ¼ ð5; 5Þ × 10−4
for the two-body system.
For a κ23-dependent system, with an adaptive gain, g ¼

gsat;1 or g ¼ gsat;2, the system can operate on band at a
GPT -symmetric state. In theWC region, the efficiencies of
the first and second GPT -symmetric state (black and red
solid curves) are identical due to the mode degeneracy
[Fig. 4(c)]. Compared with the two-body system (blue
curve), the three-body system shows lower WPT efficiency

FIG. 3. Band theory interpretation of the WPT system in a high-
dimentional parametric space ðg; γ; κ12; κ23Þ.

FIG. 4. WPT efficiency with different gain configurations g in a
κ23-dependent and κ12-dependent system. (a) Static gain rate
g ¼ γ ¼ 0.0125 and adaptive gain rate g ¼ gsat for both κ23-
dependent systems operating at ωe1 and ωe2. The WC range
(κ212 þ κ223 − γ2 < 0) is highlighted by the shadowed area. (b) Same
definition as (a) in a κ12-dependent system. (c) WPT efficiency of
the κ23-dependent system under the corresponding gain rate in (a).
(d) Same definition as (c) in a κ12-dependent system.
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in this region due to the lossy intermediator. As κ23
increases to the SC region, the first GPT -symmetric
state exhibits optimal efficiency, while the efficiency of
the second GPT -symmetric state achieves saturation at the
highest value of the two-body system (blue curve).
Otherwise, based on a static gain scenario (g ¼ γ), the
three-bodyWPT system functions at off band states with no
GPT symmetry. Under this circumstance, a dramatic
efficiency drop can be observed for both the states of
ωe1 [black dashed curve in Fig. 4(c)] and ωe2 (red dashed
curve) across the entire coupling range. As predicted by the
band theory interpretation, the GPT -symmetric states
(adaptive gain schemes) are superior to the non-PT -
symmetric states (static gain schemes) in terms of the
global efficiency. Therefore, the intersection points of the
black solid and dashed curves, at g ¼ gsat;1 ¼ γ, indicate
the maximum efficiency that can be attained under the
static gain scheme. Furthermore, given the fact that g ¼ γ is
an asymptote of gsat;2, the red dashed curve can only move
close to the red solid efficiency curve.
On the other hand, for a κ12-dependent system [Fig. 4(b)],

the adaptive gain curves exhibit symmetric behavior (with
respect to g ¼ 0) compared with those of the κ23-dependent
system due to orientation reversal of the asymmetric con-
figuration. The efficiency of the first and second GPT -
symmetric states [red and black solid curve in Fig. 4(d)]
dominate by 90% in theWC region. The observed efficiency
distribution across the coupling range is complementary
relative to that of the two-body system, which significantly
enhances the power efficiency in the WC region. In particu-
lar, an up-to-90% power efficiency can now be achieved
globally with the generalized PT symmetry. Even the off-
band state with a static gain rate [red and black dashed curve
in Fig. 4(d)] can achieve a close-to-60% efficiency in theWC
region. Furthermore, the GPT symmetry provides not only
globally higher efficiency, but also an additional degree of
freedom to tailor the corresponding loss profile based on the
orientation of the system asymmetry (see detailed analysis
in Sec. 4 in Ref. [32]). We note that, compared with the
previously reported PT -symmetric two-body and three-
body systems, the proposed WPT system is primarily
superior in two important aspects: (1) It requires no structural
symmetry to realize an optimal WPT efficiency, and (2) it
exhibits a globallyGPT -symmetric statewhich is capable of
sustaining high WPT efficiency without a frequency detun-
ing (see Sec. 5 in Ref. [32]).
In conclusion, the generalized PT symmetry of a third

order WPT system has been proposed and demonstrated in
non-PT -symmetricWPT systemswith a dynamic saturation
gain. In principle, the similarity and difference between the
topology of a three-body WPT system and its two-body
counterparts are revealed via a parity operation decomposi-
tion. A transition between the PT -symmetric phase and the
broken phase was observed at the exceptional contour in
the parametric space, with a concomitant mode degeneracy.

Importantly, a globally PT -symmetric state, which pos-
sesses an optimal efficiency across the strong and weak
coupling regions, was identified. Moreover, relative to the
on-band GPT -symmetric states, a band theory interpreta-
tion was utilized to fully characterize the imperfect states in
the parametric space. Our results show thatGPT symmetry
can significantly improve the robustness and efficiency of
wireless power transfer systems under unbalanced coupling
conditions. Furthermore, the intrinsic asymmetry configu-
ration offers an additional degree of freedom for loss profile
management.
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