
Puviani et al. Reply: In a Comment by Benfatto et al. [1]
two technical points were questioned. Here, we briefly
describe the corrective steps taken to avoid the two
mistakes of the initial publication.
(1) We firstly admit that only one vertex in Eq. (7) of

Ref. [2] needs to be renormalized. We were misled by
approximating the Higgs propagator to be frequency
independent and momentum independent in order to
provide an analytical solution. However, the double vertex
renormalization in the Raman susceptibility led to an
overcounting of diagrams which we will correct below.
(2) Following Ref. [3] we show in Fig. 1 the lowest order

of the particle-particle interaction for (a) the random phase
approximation (RPA) and for (b) the vertex function,
respectively. In the original Letter [2] we adopted the
standard approximation Vq ¼ Vk−k0 ≈ Vfkfk0 which
yields a q-independent RPA summation for the Raman
response. While this approximation resembles the solution
for small q, we realized that this consideration is not true
for the vertex function Vðf½ðkþk0Þ=2�Þ2 ≉ Vfkfk0 in
Fig. 1(c). In our original publication, where we assumed
a frequency- and momentum-independent Higgs propaga-
tor, this approximation seemed to be justified, since
Vðf½ðkþk0Þ=2�Þ2 ≈ Vfkfk0 holds for d-wave symmetry and
small q. Now, we have improved our wrong approximation
in Eq. (5) of Ref. [2].
We calculate the vertex correction by using the full

Higgs propagator [see Fig. 1(c)], inserting the vertex
correction of Fig. 1(b). Note also that the Higgs propa-
gatorHðq;ωÞ in Fig. 1(c) contains an RPA-like summation
of Vðf½ðkþk0Þ=2�Þ2 with full frequency dependence and
momentum dependence. We define the four-momenta
p ¼ ðp; iΩÞ, q ¼ ðq; iqmÞ, k ¼ ðk; iknÞ, where iΩ and
iqm are Matsubara bosonic frequencies, while ikn are
fermionic. For the external light we use p → 0. The lowest
order bubble is χΓγ, where Γ ¼ γ þ δΓ≡ γτ3 þ Γ1τ1þ
Γ2τ2 þ Γ3τ3. Then, with some physical cutoff the Higgs
propagator (including Coulomb repulsion) is given by
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The advanced solution (involving a complicated Matsubara
summation, similar to Ref. [4]) will be presented in a
forthcoming publication [5]. Here, we proceed, although
knowing the full frequency dependence of the Higgs

propagator from Ref. [6], by fairly approximating
H̃ðk;q; iqmÞ ≈ H̃ðk;q; 0Þ, but still keeping the momentum
q, where now the Matsubara summation can be solved
analytically. Therefore, the contribution for the Raman
response coming from the renormalized vertex in each j
channel assuming T ¼ 0 is
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with α1 ¼ γkεkΔkγkþqεkþqΔkþq, α2 ¼
−16γkγkþqΔkΔkþqðiΩÞ2, α3 ¼ −Δ2

kΔ2
kþqγkγkþq. At this

point we can easily add the Coulomb interaction in
the Raman response [7], defining χ̃ΓγðΩÞ ¼ χΓγðΩÞ−
χΓ3ðΩÞχ3γðΩÞ=χ33ðΩÞ, leading to a conserving approxima-
tion [8]. Finally, we notice that we shall also add the
screening coming from the residual interaction for the B1g

symmetry as in Refs. [9–11] yielding a smaller B1g Raman
response.
In conclusion, while a full calculation with full fre-

quency dependence and momentum dependence in the
vertex channel is still in preparation [5], we already find a
breaking of particle-hole symmetry due to vertex correc-
tions which reflect many-body interactions on the Higgs
mode. This results in a mixing of the τ1 and τ3 channel and
thus will change the magnitudes of both the A1g and B1g

response.
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FIG. 1. Lowest order of the pairing interaction used for (a) the
RPA series (“Higgs production”) and for (b) the vertex correction
(“many-body Higgs oscillations”) introduced in Fig. 1 of Ref. [2]
employing Gorkov notation. (c) Vertex correction due to a single
Higgs mode Hðq;ωÞ used in our calculation.
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