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Spontaneous fluctuations and stimulus response are essential features of neural functioning, but how
they are connected is poorly understood. I derive fluctuation-dissipation relations (FDR) between the
spontaneous spike and voltage correlations and the firing rate susceptibility for (i) the leaky integrate-and-
fire (IF) model with white noise and (ii) an IF model with arbitrary voltage dependence, an adaptation
current, and correlated noise. The FDRs can be used to derive thus far unknown statistics analytically
[model (i)] or the otherwise inaccessible intrinsic noise statistics [model (ii)].
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Small physical systems often display considerable fluc-
tuations that can be characterized by correlation functions or
power spectra. Fluctuation-dissipation relations connect the
statistics of these spontaneous fluctuations of certain observ-
ables to their mean response to a time-dependent perturba-
tion. Originally proposed for equilibrium thermodynamic
systems [1,2], they have been extended to nonequilibrium
setups with a steady state [3–6]. Fluctuation-dissipation
theorems can be used to infer the response properties from
observations of purely spontaneous activity, to prove in a
model-free way that a system operates outside thermody-
namic equilibrium [7,8], or to test whether a system obeys a
Markovian description [9,10]; for general reviews on appli-
cations of fluctuation-dissipation relations (FDRs), see the
comprehensive reviews [11,12].
Fluctuations are especially prominent in neural systems,

specifically in the spike generation of neurons (nerve cells)
in the brain, which is reflected in a long history of
stochastic modeling in neuroscience [13,14]. Neurons
are notoriously noisy due to intrinsic sources of fluctuations
(e.g., channel noise and unreliable synaptic transmission);
in the recurrent networks of the cortex, the nonlinear
interactions among many pulse-generating units lead to a
strong chaotic variability (a network noise) even if single
units follow a completely deterministic dynamics (i.e., the
above mentioned channel noise, for instance, is neglected)
and even if external (noisy) stimulation is absent. Most
importantly, the response to external signals is of over-
arching importance for nerve cells, as it characterizes the
transmission and processing of information, which is the
main task of these cells. So, it is of vital importance to
understand potential connections between the statistics of
spontaneous activity and the response to a time-dependent
perturbation in the case of spiking neurons.
Let us consider a paradigmatic stochastic model of

computational neuroscience, the leaky integrate-and-fire
(IF) model with white noise ξðtÞ and a time-dependent
current signal sðtÞ:

dv
dt

¼ −vþ μþ sðtÞ þ
ffiffiffiffiffiffiffi
2D

p
ξðtÞ: ð1Þ

The voltage across the nerve membrane vðtÞ upon reaching
a threshold vT is reset to vR < vT and, simultaneously, the
time instant is registered as a spike time ti. The most
important output of this model is the spike train, xðtÞ ¼P

δðt − tiÞ (this is what is communicated to other cells). In
Eq. (1) time and voltage are measured in multiples of the
membrane time constant τm and the threshold-reset dis-
tance, respectively. The mean constant input μ and the
intensity of the white noiseD are important parameters that
determine the stochastic regime of the model [15].
For the spontaneous activity [sðtÞ≡ 0] the power spec-

trum of the spike train can be analytically calculated
and expressed in terms of parabolic cylinder functions
DaðxÞ [16]:

SxxðωÞ ¼ r0
jDiωðzTÞj2 − e

z2
R
−z2

T
2 jDiωðzRÞj2

jDiωðzTÞ − e
z2
R
−z2

T
4 DiωðzRÞj2

: ð2Þ

Here zT=R ¼ ðμ − vT=RÞ
ffiffiffiffi
D

p
and r0 ¼ hxðtÞi is the stationary

firing rate [17] with the angular brackets indicating an
ensemble average.
The response to a weak signal sðtÞ is quantified by the

time-dependent rate modulation rðtÞ ≈ r0 þ Kx � sðtÞ,
given in terms of a convolution with the linear-response
function KxðtÞ or in terms of the susceptibility χxðωÞ (the
Fourier transform of Kx), which can be expressed by
confluent hypergeometric functions [18] or, equivalently,
again in terms of parabolic cylinder functions [19]:

χxðωÞ ¼
ir0ω=

ffiffiffiffi
D

p

iω − 1

Diω−1ðzTÞ − e
z2
R
−z2

T
4 Diω−1ðzRÞ

DiωðzTÞ − e
z2
R
−z2

T
4 DiωðzRÞ

: ð3Þ
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There is some structural similarity in the expressions for
power spectrum and susceptibility—both are given in terms
of ratios of differences of parabolic cylinder functions, but,
apparently, it is not possible to express one in a simple way
by the other. So, even in this case, where we know the
explicit solutions for the two characteristics of spontaneous
fluctuations and of the response to a stimulus, it does not
help us to connect them in a fluctuation-dissipation
relation. The situation is similar (analytical expressions
are known but cannot be related) for IF models with shot
noise [20,21], with dichotomous background noise [22], or
escape noise [23].
Here I connect the statistics of spontaneous spiking and

the firing rate response to a weak signal by means of a
simple calculation, which is markedly different from the
typical derivation of the standard FDR [24] and also to
recent calculations for IF models in discrete time and
embedded in networks [25]. The approach here builds on
two ideas: (i) the reset can be incorporated into the
Langevin dynamics by means of the spike train (see,
e.g., Refs. [26] or [27]), which permits one to average
this and related equations, leading by the Rice method to
equations for spectral measures, and (ii) by means of the
Furutsu-Novikov theorem [28,29], I can relate the noise-
spike-train correlator to the exact linear-response function.
I first outline this calculation for the simple model in Eq. (1)
and then treat the biophysically more realistic and dynami-
cally richer exponential IF model endowed with correlated
(colored) current noise.
LIF model with white noise.—Without signal current

[sðtÞ≡ 0], one can rewrite Eq. (1) as follows:

dv
dt

¼ −vþ μþ
ffiffiffiffiffiffiffi
2D

p
ξðtÞ − ðvT − vRÞxðtÞ; ð4Þ

where the last term formally imposes the fire-and-reset rule:
the delta functions in xðtÞwill push the voltage back from the
threshold at vT to the reset point vR. Having incorporated the
reset rule into the equation, one can now take averages over a
stationary ensemble. A direct average of Eq. (4), for instance,
yields ðd=dtÞhvi¼ 0¼ μ− hvi− ðvT −vRÞr0;which leads to
hvi ¼ μ − ðvT − vRÞr0, a nontrivial relation between mean
membrane voltage and firing rate.
More importantly, one obtains relations for the second-

order statistics, specifically cross spectra and power spec-
tra, as follows. Taking the complex-conjugated Fourier
transform of Eq. (4) at nonvanishing frequency, I get
ð1þ iωÞṽ� ¼ ffiffiffiffiffiffiffi

2D
p

ξ� − ðvT − vRÞx̃�. Multiplication with
x̃ and averaging over the noise ensemble yields

ð1þ iωÞSxvðωÞ ¼
ffiffiffiffiffiffiffi
2D

p
hx̃ξ̃�i − ðvT − vRÞSxxðωÞ: ð5Þ

To calculate hx̃ξ̃�i one may invoke the Furutsu-Novikov
theorem [28,29]. To see how this works for the specific
problem, I split the Gaussian noise ξ� into N independent
statistically identical subprocesses ξ�n with power spectra

Snn ¼ Sξξ=N. The average is now hx̃ξ̃�i ¼ Phx̃ξ̃�ni ¼
Nhx̃ξ̃�ni (with an arbitrary index n) and can be split into
averages over the single noise realization ξn and over
realizations of the remaining noise processes ξn0 :

hx̃ξ̃�ni ¼ hhx̃ξ̃�nin0≠nin ¼ hhx̃in0≠nξ̃�nin: ð6Þ

For N → ∞ the single subprocess ξn becomes infinitely
weak, satisfying perfectly the requirement of linear-
response theory and the time-dependent mean value’s
Fourier transform (for a frozen realization of ξn) satisfies
hx̃in0≠n ¼ χðw;DÞ ffiffiffiffiffiffiffi

2D
p

ξ̃n. Here I have highlighted the
explicit dependence of the susceptibility on the noise
intensity (that I later will omit again)—for N → ∞ practi-
cally all of the noise (i.e., the remaining processes ξn0 ) act as
a background noise. Combining all the results above, one
obtains hx̃ξ̃�i¼ ffiffiffiffiffiffiffi

2D
p

χðωÞSξξ ¼
ffiffiffiffiffiffiffi
2D

p
χðωÞ (because Sξξ ¼ 1

for the white noise), resulting in

χxðωÞ ¼
ðvT − vRÞSxxðωÞ þ ð1þ iωÞSxvðωÞ

2D
: ð7Þ

On the left hand side, we find the susceptibility of the
firing rate with respect to a weak time-dependent signal, as
can be, for instance, determined by a periodic stimulation
sðtÞ ¼ ε cosðωstÞ from the rate modulation rðtÞ ¼ hxðtÞi ¼
r0 þ jχxðωsÞj cosfωst − arg½χxðωsÞ�g [here argð·Þ is the
complex argument] or, equivalently, by a weak broadband
stimulus as was used in Fig. 1(a). On the right side of
Eq. (7) are statistics of the spontaneous activity [sðtÞ≡ 0]:
Besides the spike-train power spectrum, the cross spectrum
between the subthreshold membrane voltage and the
generated spikes emerges—this is the missing link between
the spontaneous fluctuation statistics and the response
statistics. For a selected parameter set, the relation is tested
and confirmed in Fig. 1(a).
Because in the special case of the LIF model [Eq. (1)]

one knows most of the statistics by explicit expressions,
one can use the relation above to determine the cross
spectrum between vðtÞ and xðtÞ analytically:

SxvðωÞ ¼
2DχxðωÞ − ðvT − vRÞSxxðωÞ

1þ iω
; ð8Þ

which by virtue of Eq. (2) and Eq. (3) can be expressed by
parabolic cylinder functions and is confirmed in Fig. 1(b)
by numerical simulations.
Exponential IF model with adaptation current and

colored noise.—We now turn to a more general and
biophysically more realistic model, which, in its essential
ingredients, has been justified on theoretical grounds [30]
but also extracted from data [31]. As suggested by Brette
and Gerstner [32], I include an adaptation current [33] and
replace the linear leak term with the function fðvÞ ¼ μ −
vþ Δv exp½ðv − vtÞ=Δv� (see also Ref. [30]):
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dv
dt

¼ fðvÞ − aþ ηðtÞ − ðvT − vRÞxðtÞ þ sðtÞ;

τa
da
dt

¼ −aþ ΔaτaxðtÞ: ð9Þ

Additionally, the white noise ξðtÞ has been replaced by a
temporally correlated (colored) Gaussian noise ηðtÞ with a
nonflat power spectrum SηηðωÞ. We note that the parameter
vt < vT sets a kind of soft threshold, but we still keep a
hard threshold at vT and a corresponding reset rule (this has
been already incorporated above). The variable aðtÞ acts as
an inhibitory current that pushes the voltage away from
threshold. It evolves according to the slow dynamics given
in the second equation (the ratio of its time constant to the
membrane time constant is typically τa ≫ 1) but every
spike generated by the model kicks the adaptation variable
up by the amount Δa, which implements the negative
feedback that results in the spike-frequency adaptation seen
in so many brain cells [33].

One can again use the same methods to derive equations
for correlation functions and cross spectra and power
spectra, namely, Fourier transformation, multiplication
with x̃, averaging, and once more invoking the Furutsu-
Novikov theorem yield a fluctuation-dissipation relation for
the adapting exponential integrate-and-fire model with
colored noise:

χx ¼
ðvT − vR þ Δaτa

1þiωτa
ÞSxx þ iωSxv − SxfðvÞ
Sηη

: ð10Þ

Again, on the left hand side we have exclusively the
response to a weak stimulus, which can be determined
by means of a periodic or a broadband stimulus sðtÞ. On the
right hand side, we find exclusively statistics of the
spontaneous activity for sðtÞ≡ 0. Several observations
can be made: (i) the adaptation dynamics enters only by
modifying the prefactor of the spike-train power spectrum
in a frequency-specific manner, and (ii) instead of only the
cross spectrum of the subthreshold membrane voltage and
the spike train (which still appears on the rhs), we now also
get the cross spectrum of the spike train xðtÞ and the
subthreshold nonlinearity f½vðtÞ�, which in some situations
can be extracted from experiments [31].
As examples I pick two cases in Fig. 2, which both

confirm the FDR for the adapting neuron with colored
noise. For both cases it is not known how to calculate
analytically any of the statistics shown or used here.
In Fig. 2(a) I use a slow adaptation current and a low-

pass filtered noise (its correlation time is 10 times the
membrane time constant). The adaptation current leads to a
high-pass shape of the susceptibility [34], and the cut-off
frequency of the noise results in additional shoulders in real
and imaginary parts of χðωÞ; both features are in marked
contrast to white-noise-driven IF models without adapta-
tion [15]. Remarkably, the numerical fluctuations of the
susceptibility determined by stimulation or from the spon-
taneous statistics via Eq. (10) behave very differently: at
small and up to intermediate frequencies (ω < 1) the rhs of
Eq. (10) provides the more reliable estimate of the
susceptibility while in the high-frequency limit it is the
other way around.
In Fig. 2(b) the intrinsic noise process is more complex:

two independent low-pass-filtered noise processes with
distinct cut-off frequencies (noise from two populations of
ion channels with different kinetics; see, e.g., Ref. [35]) and
a narrow band noise, a harmonic noise [36] (stochastic
network oscillations; see, e.g., Ref. [37]). In the suscep-
tibility, one still sees adaptation-mediated high-pass filter-
ing, shoulders at the cut-off frequencies of the low-pass
filtered noise, and a dip in the real part at the frequency of
the narrow band noise—complex effects that deserve closer
investigation in future studies. In any case, Eq. (10) is
confirmed again, and the fluctuation statistics reflects the
rich statistical features of the susceptibility.
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FIG. 1. White-noise-driven leaky IF model. (a) Confirmation of
the FDR for real (top) and imaginary part (bottom) as functions of
frequency for the left side (response properties) and the right side
(spontaneous activity) of Eq. (7) for μ ¼ 0.8, D ¼ 0.1 and a
broadband stimulus (uniform power for jωj < 2π · 100) and a
small variance of hs2ðtÞi ¼ 0.1. For both sets of simulations, 104

trials, a time step of Δt ¼ 10−4 and a time window of T ≈ 100
were used (for real neurons with τm ¼ 10 ms, this would translate
into a time window of 1s). (b) Cross spectrum between spike train
and subthreshold voltage according to the analytical solution,
Eq. (8) (solid lines), and from simulations (symbols).
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In the test of Eq. (10), I had to assume knowledge of the
noise spectrum SηηðωÞ. In the more typical case, in which
SηηðωÞ is not known, but one can determine the response
function and the spontaneous spectra independently,
Eq. (10) can be used to infer the otherwise inaccessible
noise spectrum SηηðωÞ. The result gives a satisfying
estimate of the true noise spectrum both for the case
of a simple Lorentzian, i.e., a low-pass filtered noise
[cf. lowest panel in Fig. 2(a)] and for the more complex

case of three distinct contributions [two Lorentzians and a
narrow band spectrum, cf. lowest panel in Fig. 2(b)].
Conclusions.—In this Letter the relation between spon-

taneous fluctuations and the response to external perturba-
tions have been worked out for an important class of
spiking neuron models of the IF type. Two applications of
the FDRs have been demonstrated: The analytical deriva-
tion of the cross spectrum between spike train and
subthreshold voltage for the LIF model with white noise
and the determination of the (in experimental situations
often unknown) colored-noise spectrum from the response
and the spontaneous activity.
However, there is still work to be done: With the same

approach based on Eq. (4), it is easily possible to derive
relations for the susceptibility of the subthreshold mem-
brane voltage and its spontaneous power spectrum. The
simple method introduced here can be applied to all types
of neuron models with spike-associated reset such as the
two-dimensional Izhikevich model [38] or the generalized
IF model [39] if the voltage dynamics is driven by Gaussian
noise. Moreover, it can even be extended to recurrent
networks of IF models delay coupled by current synapses,
e.g., to the celebrated Brunel model [40]; here one obtains a
system of equations for susceptibilities, power and cross
spectra of spike trains, and subthreshold voltage variables,
which is currently under investigation.
I note that an entirely independent set of fluctuation-

dissipation relations can be derived by the more common
approach to nonequilibrium thermodynamic systems with a
steady state going back to Agarwal [3,4] and discussed also
more recently in the literature [5,9,10]. This approach will
lead to relations in terms of the correlation function of the
conjugated variable that is a highly nonlinear function of
the membrane voltage steady state distribution. Finally,
there is also work on fluctuation-dissipation relations for IF
models in discretized time by Cessac et al. [25], the relation
of which to the results derived here has to be clarified.
The division into subthreshold voltage and spike train

used in the derived relations may appear as an artifact of the
integrate-and-fire framework. However, it is meaningful
because the spike train represents the important signal that
is communicated to other neurons. In this context, it will
also be useful to generalize the analysis to conductance-
based neuron models of the Hodgkin-Huxley type. As the
above mentioned multidimensional IF models approximate
conductance-based models in many situations surprisingly
well, I expect that the FDRs found here may also hold true
(at least approximately) for these more detailed models of
neural firing.
Finally, I mention constraints due to the FDR that are

worth further investigation. First of all, in the context of
neural information transmission, I note that both suscep-
tibility and spike-train power spectra appear in a frequency-
resolved measure of signal transfer, the coherence function
[41], via CðωÞ ≈ jχðωÞj2SssðωÞ=SxxðωÞ [where SssðωÞ is
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FIG. 2. Confirmation of the FDR [Eq. (10)] for an exponential
IF model with a colored noise and a spike-triggered adaptation
current. Real (top) and imaginary part (bottom) as functions of
frequency for the left side [response property χðωÞ] and the right
side (fluctuation statistics) of Eq. (10) for μ ¼ 0.8, τa ¼ 100,
hs2ðtÞi ¼ 0.2. In (a) we use for ηðtÞ an Ornstein-Uhlenbeck noise
with correlation time τOUP ¼ 10 and variance σ2 ¼ 0.5, estimated
via the FDR in the lowest panel; in (b) we use three independent
stochastic processes: two OUPs with τOUP;1 ¼ 10, σ21 ¼ 0.5, and
τOUP;2 ¼ 1, σ22 ¼ 1 and a harmonic noise, obtained from the noisy
damped harmonic oscillator obeying ẍþ γ _xþ kx ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

2DHN
p

ξðtÞ
with γ ¼ 0.1 and DHN ¼ 0.05. The lowest panel in (b) shows the
three distinct spectra (dotted, dashed, and thin solid red lines) and
an extraction of the noise spectrum via the FDR that agrees well
with the full noise spectrum (thick red line).
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the spectrum of the input signal]; relations like Eqs. (7) and
(10) between χðωÞ and the spontaneous spike-train spec-
trum SxxðωÞ impose (yet to be explored) constraints on the
neural encoding capabilities. Secondly, for neurons in
recurrent networks and in the asynchronous state, the
FDR can be simplified because in this situation due to
the consistency of input and output statistics, the noise
spectrum SηηðωÞ and spike-train spectrum SxxðωÞ become
proportional to each other (see, e.g., Refs. [42–45]). Such
constraints on the single-neuron susceptibility within a
recurrent network may be useful to simplify stochastic
mean-field theories that contain single-neuron susceptibil-
ities and spontaneous power spectra as their essential
building blocks (see, e.g., Refs. [40,46]).

I would like to thank Davide Bernardi, Jonas Ranft and
Magnus Richardson for comments on an earlier version of
this paper.
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