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We present a hydrodynamic theory of incompressible polar active fluids with quenched random field
disorder. This theory shows that such fluids can overcome the disruption caused by the quenched disorder
and move coherently, in the sense of having a nonzero mean velocity in the hydrodynamic limit. However,
the scaling behavior of this class of active systems cannot be described by linearized hydrodynamics in
spatial dimensions between 2 and 5. Nonetheless, we obtain the exact dimension-dependent scaling
exponents in these dimensions.
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One of the most important themes of condensed matter
physics is the competition between order and disorder. One
of the most powerful results on this topic is the Mermin-
Wagner-Hohenberg theorem [1,2], which states that equi-
librium systems cannot spontaneously break a continuous
symmetry in spatial dimensions d ≤ 2 at nonzero temper-
ature. Much of the current interest in “active matter” is
stimulated by the discovery [3–6] that nonequilibrium
“movers” can spontaneously break a continuous symmetry
(rotation invariance) in the presence of noise even in d ¼ 2,
by “flocking”—that is, moving coherently with a nonzero
spatially averaged velocity hvðr; tÞi ≠ 0.
In equilibrium systems, even arbitrarily weak quenched

(i.e., static) random fields destroy long-ranged ferromag-
netic order in all spatial dimensions d ≤ 4 [7–10]. This
raises the questions: what is the effect of disorder on active
materials [11–20] and, more precisely, can an ordered polar
active fluid form when quenched random field disorder is
present?
The answers to these questions are crucial for under-

standing how coherent motion is possible in any realistic
biophysical situation. Consider, for example, a large cluster
of cells moving through an extracellular polymerized
matrix. That matrix will inevitably contain local random
spatial heterogeneities that are fixed on the experimentally
relevant timescale (i.e., quenched) [21]. Is there a maximal
cluster size, or can arbitrarily large clusters move coherently
in this disordered matrix?
In this Letter, we investigate these questions for incom-

pressible polar active fluids. Models assuming incompress-
ibility have been extensively and successfully used to
describe cell layers [22] and bacterial fluids [23–26].

While these systems are generally spatiotemporally chaotic
[27–32], which is accounted for in the models by the
introduction of a negative viscosity, the same model with a
positive viscosity should account for coherent motion as
observed in cellular clusters, for instance. Because of either
steric interaction in the high packing limit [33] or cell-cell
avoidance by long-distance sensing through fast-diffusing
signaling molecules, incompressibility is natural in cellular
materials. Further, an even wider class of living materials
ranging from intracellular gels [34–37] to cells [38–41] to
cell layers and aggregates [39,42] have been modeled as
two-component incompressible active fluids [43–46]. If the
birth and death of active components are taken into account
in these materials (as they should be in most of these
systems at long enough timescales), all of them are again
described by the model we consider.
We show in this Letter that incompressible active fluids

can move coherently even through disordered matrices in all
spatial dimensions d > 2, i.e., a polar phase survives in the
presence of a finite amount of quenched random field
disorder. Furthermore, we find that for 2 < d < 5, there is a
breakdown of linearized hydrodynamics, just as there is in
simple thermal fluids [47] for d ≤ 2, and flocks without
quenched disorder for d ≤ 4 [4,5]. That is, the spatiotem-
poral scaling of fluctuations in these systems is not correctly
given by a linear theory, due to strong nonlinear coupling
between large fluctuations. Nonetheless, there is universal
scaling of correlations in this range of spatial dimensions,
and we have been able to determine its scaling exponents
exactly.
In previous papers [48], we have shown that incompress-

ible polar active fluids retain long-range order, even in
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d ¼ 2, in the presence of quenched random field disorder.
Since the effect of fluctuations is expected to decrease with
increasing dimensionality, this would seem to directly imply
long-range order for all d > 2 as well. However, the
incompressible flock in d ¼ 2 is qualitatively distinct from
that in higher dimensions [49,50] since it lacks a true “soft”
or hydrodynamic mode for most directions of wave vector
because incompressibility constrains the dynamics to a
much greater degree in d ¼ 2. As a result, the findings
in Ref. [48] do not automatically imply long-range order in
d > 2. Our conclusion here that there is long-range order in
all d > 2 is therefore nontrivial and new.
In the following, we will first present a hydrodynamic

theory of incompressible polar active fluids with both
annealed disorder (which represents endogenous fluctua-
tions due to, e.g., errors made by a motile agent while
attempting to follow its neighbors [3]) and quenched
random field disorder. We then apply a dynamic renorm-
alization group (DRG) analysis to obtain the exponents that
fully characterize the scaling behavior of the system in the
moving phase. Specifically, choosing our coordinates so
that the x axis is along the mean velocity hvi of the flock
(i.e., hvi ¼ v0x̂), and defining the fluctuation uðr; tÞ of the
velocity at the point r at time t away from this mean
velocity via uðr; tÞ ¼ vðr; tÞ − v0x̂, we find that the two
point correlations huðr; tÞ · uð0; 0Þi of these fluctuations is
of the form

huðr; tÞ · uð0; 0Þi ¼ r2χ⊥GQ

�jxj
rζ⊥

�
þ r2χ

0
⊥ GA

�jx − γtj
rζ

0
⊥

;
jtj
rz

0
⊥

�
;

ð1Þ

where GQ and GA are universal scaling functions, “⊥”
denotes directions perpendicular to x̂, γ is a model-
dependent nonuniversal speed, and the universal scaling
exponents are given by

ζ ¼ dþ 1

3
¼ 4

3
; χ ¼ 2 − d

3
¼ −

1

3
; ð2aÞ

ζ0 ¼ 2ðdþ 1Þ
dþ 7

¼ 4

5
; z0 ¼ 4ðdþ 1Þ

dþ 7
¼ 8

5
; ð2bÞ

χ0 ¼ −
�
d2 þ 4d − 9

2ðdþ 7Þ
�
¼ −

3

5
ð2cÞ

for spatial dimensions between 2 and 5, where the final
equalities hold in the physically relevant case d ¼ 3.
Hydrodynamic description.—We start with the hydro-

dynamic equation of motion (EOM) of a generic incom-
pressible polar active fluid with both quenched and annealed
fluctuations constructed using symmetry arguments [4,5].
The only hydrodynamic variable we need to account for is
the velocity field v. However, in contrast to the Navier-
Stokes equations for passive incompressible fluids, v is

hydrodynamic not because it is conserved—it is not, since
momentum is not conserved—but because it is a broken
symmetry variable (more precisely, certain components of it
are). Our EOM also contains terms that violate momentum
conservation and Galilean invariance because the motile
agents move through a frictional (and disordered) medium.
Furthermore, because the system is nonequilibrium, many
terms forbidden in equilibrium are allowed here [51]. These
considerations imply the following EOM [4,5]:

∂tvþ λ1ðv ·∇Þv ¼ −∇P − ðv ·∇P1Þvþ UðjvjÞv
þ μ1∇2vþ μ2ðv · ∇Þ2vþ fQ þ fA; ð3Þ

where the “pressure” P acts as a Lagrange multiplier to
enforce the incompressibility constraint: ∇ · v ¼ 0, the
“anisotropic” pressure is an arbitrary function of the speed
jvj, andUðjvjÞ < 0 for jvj > v0 andUðjvjÞ > 0 for jvj < v0;
these last two inequalities ensure that the system has a
nonzero preferred speed v0, which allows it to be in the
ordered phase. Furthermore, fQ and fA are respectively the
quenched and annealed noises, which have zero means and
correlations of the form

hfiQðr; tÞfjQðr0; t0Þi ¼ 2DQδijδ
dðr − r0Þ; ð4aÞ

hfiAðr; tÞfjAðr0; t0Þi ¼ 2DAδijδ
dðr − r0Þδðt − t0Þ; ð4bÞ

where the indices i, j enumerate the spatial coordinates. In
the EOM, Eq. (3), we have only included terms that are
relevant to the universal scaling behavior, based on the DRG
analysis below.
We focus on the broken-symmetry moving phase, and

consider the local velocity deviation uðr; tÞ, from the mean
flow v0x̂: u ¼ v − v0x̂, whose EOM is obtained from
Eq. (3) by keeping only relevant terms (some of which,
however, are nonlinear):

∂tux ¼ −∂xP − ðγ þ bÞ∂xux − α

�
ux þ

u2

2v0

�
þ fxQ þ fxA;

ð5aÞ

∂tu⊥ ¼ −∇⊥P − γ∂xu⊥ − λ1ðu⊥ · ∇⊥Þu⊥ þ f⊥Q þ f⊥A

−
α

v0

�
ux þ

u2

2v0

�
u⊥ þ μ⊥∇2⊥u⊥ þ μx∂

2
xu⊥; ð5bÞ

where γ ≡ λ1v0, α≡ −v0ðdU=djvjÞjvj¼v0 , b≡
v20ðdP1=djvjÞjvj¼v0 , μ⊥ ¼ μ1, and μx ¼ μ1 þ μ2v20.
Linear theory.—First we examine the linearized

version of Eqs. (5a) and (5b). In terms of the spatiotempor-
ally Fourier-transformed field uðq;ωÞ ¼ ð2πÞ−ðdþ1Þ=2R
dtddr e−iðq·r−ωtÞuðr; tÞ, the linearized EOMs read

½−iðω − ðγ þ bÞqxÞ þ α�ux ¼ −iqxPþ fxQ þ fxA; ð6aÞ
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½−iðω − γqxÞ þ ΓðqÞ�uL ¼ −iq⊥Pþ fLQ þ fLA; ð6bÞ

½−iðω − γqxÞ þ ΓðqÞ�uT ¼ f TQ þ f TA; ð6cÞ

where we have decomposed u⊥ into a single “longitudinal”
component uLðq;ωÞq̂⊥ along q̂⊥ and (d − 2) “transverse”
components uTðq;ωÞ normal to q̂⊥, i.e., u⊥ðq;ωÞ ¼
uLðq;ωÞq̂⊥ þ uTðq;ωÞ, and made the same decomposition
for fA=Q. We have also introduced the q-dependent damping
coefficient:

ΓðqÞ≡ μ⊥q2⊥ þ μxq2x: ð7Þ

We now calculate the autocorrelation functions in this linear
theory. Since the EOM of uT is completely decoupled from
the other two modes, its autocorrelation function can be
obtained immediately:

huTðq;ωÞ · uTðq0;ω0Þi ¼ CT
Aðq;ωÞδðωþω0Þδðqþ q0Þ

þCT
QðqÞδðωÞδðω0Þδðqþ q0Þ; ð8Þ

where

CT
Aðq;ωÞ ¼

2DAðd − 2Þ
ðω − γqxÞ2 þ ½ΓðqÞ�2 ; ð9aÞ

CT
QðqÞ ¼

4πðd − 2ÞDQ

γ2q2x þ ½ΓðqÞ�2 ; ð9bÞ

and the subscripts A and Q denote the annealed and
quenched parts, respectively. The correlation of uT con-
stitutes the most divergent part of the velocity correlator,
since ux is the “massive” mode, and uL is “almost massive”
because ux is enslaved to it by the incompressibility
condition qxux þ q⊥uL ¼ 0. This renders it impossible,
for most directions of q, to create a nonzero uL without
also creating a massive ux field along with it. We explicitly
calculate the autocorrelations of ux and uL in the
Supplemental Material (SM) [52].
Using Eqs. (8) and (9), the fluctuations of u in real space

and time can be obtained by integrating over all wave
vectors q and frequencies ω. Performing the frequency
integral gives

hjuðr; tÞj2i ¼ ðd− 2Þ
ð2πÞd

Z
ddq

�
DA

ΓðqÞþ
2DQ

γ2q2xþ½ΓðqÞ�2
�
: ð10Þ

In the infrared limit (q → 0), the second term in the
integrand (due to the quenched disorder DQ) is more
divergent and thus dominates the fluctuations in the system.
The integral of this term is logarithmically divergent in
d ¼ 3, which implies quasi-long-range orientational order
at this lower critical dimension. Further, the scaling of

Eqs. (9) and (10) yields the scaling exponents for the
quenched and annealed fluctuations in this linear theory:

ζlin ¼ 2; χlin ¼
3 − d
2

; ð11aÞ

ζ0lin ¼ 1; χ0lin ¼
2 − d
2

; z0lin ¼ 2: ð11bÞ

However, all of the above conclusions are modified by the
nonlinearity in the EOM when d < 5. In particular, the
flock moves coherently, i.e., has long-range order, for all
d > 2. That is, the nonlinearity changes the lower critical
dimension dLC of this system from the linear theory’s
prediction dLC ¼ 3 to dLC ¼ 2.
Nonlinear theory.—As indicated by the linear theory,

fluctuations in u are dominated by those of u⊥ (more
precisely the transverse components of u⊥, i.e., uT). The
full EOM of u⊥, Eq. (5b), after eliminating all irrelevant
terms [52], becomes

∂tu⊥ ¼ −∇⊥P − γ∂xu⊥ − λ1ðu⊥ · ∇⊥Þu⊥ þ μ⊥∇2⊥u⊥
þ μx∂

2
xu⊥ þ f⊥Q þ f⊥A : ð12Þ

We will now obtain exact scaling exponents from Eq. (12)
using a DRG argument [47]. In this DRG analysis, we first
decompose the field u⊥ into the rapidly varying and slowly
varying parts, which are supported in the small- and large-
momentum space, respectively. We then average the EOM
over the rapidly varying fields to get an effective EOM for
the slowly varying fields. In this process the various
coefficients in the EOM get renormalized and this renorm-
alization can be represented by Feynman diagrams. We will
therefore refer to all corrections that arise due to this part of
the DRG process as “graphical corrections.” Next we
rescale the time, lengths, and the field as follows:

t→ tezl; x→ xeζl; r⊥ → r⊥el; u⊥ →u⊥eχl; ð13Þ

to restore the supporting momentum space (i.e., the
Brillouin zone) back to its original size. This procedure
is repeated infinitely, leading to the following recursion
relations for the various coefficients:

dμ⊥
dl

¼ ðz − 2þ η⊥Þμ⊥; ð14aÞ

dμx
dl

¼ ðz − 2ζÞμx; ð14bÞ

dγ
dl

¼ ðz − ζÞγ; ð14cÞ

dλ1
dl

¼ ðzþ χ − 1Þλ1; ð14dÞ
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dDQ

dl
¼ ½2z − 2χ − ζ − ðd − 1Þ�DQ; ð14eÞ

dDA

dl
¼ ½z − 2χ − ζ − ðd − 1Þ�DA; ð14fÞ

where η⊥ represents the graphical correction to μ⊥—the
only graphical correction to the DRG flow equations above.
We explain why there are no other graphical corrections in
the SM [52].
This quantity η⊥ is a function of all of the parameters μ⊥,

μx, γ, λ1, and DQ. We only know how to calculate its
dependence on those parameters in perturbation theory,
which can be organized by Feynman graphs, as described
in [47].
However, because only μ⊥ gets any graphical corrections,

we can actually determine the value η⊥ðμ⊥; μx; γ; λ1; DQÞ
must take on at the fixed point of the DRG without
calculating this functional dependence at all! We will
explain how this is done below.
Having established the form of the DRG recursion

relations, Eq. (14)—that is, the fact that only μ⊥ gets
any graphical corrections [those denoted by η⊥ in
Eq. (14a)]—we will now show that the quenched random
field disorder is always relevant at the “annealed” fixed
point that controls the ordered phase in the absence of
quenched disorder, even when graphical corrections are
taken into account, and determine the universal scaling
exponents, Eq. (2), in the presence of quenched random
field disorder exactly.
Note that the form of the recursion relations is exactly the

same in the absence of quenched disorder as in its presence;
that is, the recursion relations, Eq. (14), continue to hold,
albeit with different values for η⊥ depending on whether
quenched disorder is present or not. This is because the
arguments presented in the SM [52] for the quenched
problem apply equally well to the annealed problem.
(The argument for the nonrenormalization of λ1 is different
in the annealed case [49], but the result stands.) Therefore,
the same conclusion holds: only μ⊥ gets graphically
corrected. The only differences that the absence of
quenched disorder makes are (1) the graphical correction
η⊥ will now be generated entirely by the annealed noise
rather than the quenched noise, and (2) the values of the
exponents z, ζ, and χ will change to the values found in the
study of the annealed problem [49]. Those values were
determined in [49] by choosing z, ζ, and χ to fix μx, μ⊥, and
DA, since those parameters control the dominant fluctua-
tions in the absence of quenched disorder. To see that only
these parameters matter in the annealed problem, one need
simply inspect the annealed contribution (i.e., the DA term)
in Eq. (10).
Making this choice, and noting that the DRG eigenvalues

of DA and DQ [i.e., the terms in square brackets in
Eqs. (14e) and (14f)] differ by precisely z, it follows that,
since we are choosing z, ζ, and χ to make the DRG

eigenvalue of DA vanish, that the eigenvalue for DQ is
given by z. Since z for incompressible flocks without
quenched disorder is always positive [z ¼ ½2ðdþ 1Þ=5�
for d ≤ 4 and z ¼ 2 for d > 4 [49] ], it follows that the
quenched noise is always strongly relevant, i.e., it will
change the long-distance and time scaling of fluctuations.
We can calculate the new scaling that ensues in the

presence of quenched noise by much the same reasoning
that we just outlined for the annealed problem. The only
change is that it is now μ⊥, γ, and DQ that we must keep
constant at this fixed point, since they control the dominant
(i.e., quenched) fluctuations in Eq. (10). The coefficient of
the relevant nonlinear term λ1 must also be fixed at this
stable fixed point. This implies that the right-hand sides of
the recursion relations Eqs. (14a), (14c), (14e), and (14d)
for γ, μ⊥,DQ, and λ1 must vanish. This requirement leads to
four linear equations for the three exponents z, χ, and ζ, and
the graphical correction η⊥:

z − 2þ η⊥ ¼ 0; z − ζ ¼ 0; ð15aÞ

2z − 2χ − ζ − ðd − 1Þ ¼ 0; zþ χ − 1 ¼ 0: ð15bÞ

Solving these equations we find

z ¼ ζ ¼ dþ 1

3
; χ ¼ 2 − d

3
; η⊥ ¼ 5 − d

3
: ð16Þ

We see that ζ and χ differ from those obtained from the
linear theory, Eq. (11a), and only become equal to those
linear values at the upper critical dimension d ¼ 5.
Furthermore, χ < 0, which implies long-range order, for
all d > 2. At exactly two dimensions, our present analysis
no longer holds since the only “soft” dimension is coupled
directly to the “hard” dimension (i.e., along the direction of
collection motion) through the incompressibility condition,
and a completely different formulation of the problem is
required, as described in [48]. We note that d ¼ 2 is also a
singular limit of incompressible flocks without quenched
disorder [49,50] (see Fig. 1 of the SM [52]).
The alert reader might be puzzled that we were able to

obtain this result without actually calculating the functional
dependence of the graphical correction η⊥ to μ⊥ on the
parameters γ, μ⊥, DQ, and λ1. We elaborate on what makes
this possible in the SM [52]; for now, we simply note that
similar arguments are used in every problem for which
exact exponents can be obtained, and they invariably do not
require the actual calculation of the graphical corrections to
any parameters. Indeed, such a calculation can never give
exact results, since all graphical calculations are inherently
perturbative in nature [53]. Examples of such problems
include the Navier-Stokes equation forced by a momentum
nonconserving noise [47], the one-dimensional Kardar-
Parisi-Zhang equation [54], and incompressible flocks in
d > 2 without quenched disorder [49].
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Scaling behavior.—Using the exponents, Eq. (16), we
now derive the u-u correlation function, Eq. (1), and the
exponents, Eq. (2), and discuss the scaling behavior of the
correlation function in different limits. The dominant part
of the u-u correlation function in Fourier space is displayed
in Eq. (8), with μx, γ, andDA;Q given by their “bare” values,
since there are no graphical corrections to them, μ⊥ is now a
q-dependent quantity:

μ⊥ðqÞ ¼ μ⊥0

�
q⊥
Λ

�
−η⊥

fμ⊥

�
qx=Λ0

ðq⊥=ΛÞζ
�
; ð17Þ

where fμ⊥ is a scaling function with the limiting behaviors

fμ⊥ðsÞ ∝
�
constant; s ≪ 1;

s−η⊥=ζ; s ≫ 1.
ð18Þ

Here, Λ is the nonuniversal ultraviolet cutoff, and
Λ0 ¼ ðμ⊥0=γÞΛ2. The subscript “0” in μ⊥ denotes the bare
value.
Fourier-transforming huTðq;ωÞ · uTðq0;ω0Þi, we obtain

huðr; tÞ · uð0; 0Þi ¼ CAðr; tÞ þ CQðrÞ; ð19Þ

where

CAðr; tÞ ¼
Z

dωddq
ð2πÞdþ1

eiðq·r−ωtÞ

×

�
2ðd − 2ÞDA

ðω − γqxÞ2 þ ½μxq2x þ μ⊥ðqÞq2⊥�2
�
; ð20aÞ

CQðrÞ ¼
Z

ddq
ð2πÞd

�
2ðd − 2ÞDQ

γ2q2x þ ½μ⊥ðqÞq2⊥�2
�
eiq·r ð20bÞ

are the correlations coming from the annealed and
quenched noises, respectively.
For CQðr; tÞ, by changing the variables of integration to:

k⊥ ≡ q⊥ðr⊥ΛÞ and kx ≡ qxðr⊥ΛÞζ, Eq. (20b) can be
written as

CQðrÞ ¼ r2χ⊥GQ

�jxj
rζ⊥

�
; ð21Þ

where GQ is a scaling function given in [52].
For CAðr; tÞ, the annealed part of the correlation function,

the dominant contribution to the integral in Eq. (20a) comes
from the region in which the two terms inside the square
brackets in the denominator become comparable:

μx0q2x ∼ μ⊥ðqÞq2⊥: ð22Þ

Since μ⊥ðqÞ diverges at small q [see Eq. (17)], Eq. (22)
implies qx ≫ q⊥ and hence qx ≫ qζ⊥ since ζ > 1 for d > 2

[see Eq. (16)]. Using this in Eq. (17) we get

μ⊥ðqÞ ¼ μ⊥0

�
qx
Λ0

�
−η⊥

ζ

: ð23Þ

Inserting Eq. (23) into Eq. (20a), introducing ω0 ¼ ω − γqx,
and further changing variables of integration k⊥ ≡ q⊥r⊥,
kx ≡ qxðr⊥ΛÞζ0 , Ω≡ ω0ðr⊥ΛÞz0 , we obtain

CAðr; tÞ ¼ r2χ
0

⊥ GA

�jx − γ0tj
rζ

0
⊥

;
jtj
rz

0
⊥

�
; ð24Þ

where ζ0, z0, χ0 are given in Eq. (2b), and GA is a scaling
function given in [52].
Inserting Eqs. (21) and (24) into Eq. (19) gives Eq. (1).

We now delineate its scaling behavior in distinct regimes.
Since χ > χ0 and ðχ=ζÞ > ðχ0=ζ0Þ, the equal-time correla-
tion is dominated by the contribution from the quenched
fluctuations. Specifically,

huðr; 0Þ · uð0; 0Þi ¼ r2χ⊥GQ

�
x

rζ⊥

�

∝

(
r2χ⊥ ; jxj ≪ rζ⊥;

jxj2χζ ; jxj ≫ rζ⊥:
ð25Þ

On the other hand, the time dependence of the correlation is
solely determined by the annealed fluctuations, since the
quenched fluctuations are constant in time. However, the
quenched fluctuations do affect the equal-position corre-
lation indirectly by renormalizing the diffusion coefficient
μ⊥, which is one of the controlling parameters of the
annealed fluctuations [see Eq. (20a)]. As a result, the
difference between the equal-position correlation function
at time t and its value at t ¼ 0 is given by

huð0; tÞ · uð0; 0Þi − huð0; 0Þ · uð0; 0Þi ¼ CAð0; tÞ ¼ Ajtjθ;
ð26Þ

where A is a nonuniversal constant and

θ ¼ 2χ0

ζ0
¼ −

�
d2 þ 4d − 9

2ðdþ 1Þ
�
¼ −

3

2
; ð27Þ

with the last equality holding in the physical case d ¼ 3.
We give the detailed argument for this expression for θ in
the SM [52]. In Fig. 1 of the SM [52], we show how some
of the scaling exponents vary with spatial dimension, and
how they compare with those in the purely annealed
case [49,50].
Summary and outlook.—We have considered the effects

of quenched random field disorder in incompressible polar
active fluids in the flocking phase, and shown that the
quenched disorder makes the scaling behavior of the
system very different from that predicted by linearized
hydrodynamics, and from that of an incompressible polar
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active fluid with only annealed disorder. Crucially, we
demonstrate that flocks are not inevitably destroyed by
random-field disorder. While this Letter focuses on a one-
component active fluid in the incompressible limit, an
interesting future direction would be to consider the
hydrodynamic behavior of active suspensions, which are
two-component (swimmers and solvent) systems that
are only incompressible as a whole.
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