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In a low-disorder two-dimensional electron system, when two Landau levels of opposite spin or
pseudospin cross at the Fermi level, the dominance of the exchange energy can lead to a ferromagnetic,
quantum Hall ground state whose gap is determined by the exchange energy and has skyrmions as its
excitations. This is normally achieved via applying either hydrostatic pressure or uniaxial strain. We study
here a very high-quality, low-density, two-dimensional hole system, confined to a 30-nm-wide (001) GaAs
quantum well, in which the two lowest-energy Landau levels can be gate tuned to cross at and near filling
factor ν ¼ 1. As we tune the field position of the crossing from one side of ν ¼ 1 to the other by changing
the hole density, the energy gap for the quantum Hall state at ν ¼ 1 remains exceptionally large, and only
shows a small dip near the crossing. The gap overall follows a

ffiffiffiffi
B

p
dependence, expected for the exchange

energy. Our data are consistent with a robust quantum Hall ferromagnet as the ground state.
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Quantum ferromagnetism of itinerant electrons has been
a subject of interest for decades [1–3]. In its broadest
context, when the electrons’ exchange energy dominates
over the Fermi (kinetic) and disorder energies, the electrons
should align their spins and form a ferromagnetic ground
state. However, this criterion is extremely difficult to achi-
eve in metallic elements because of the very large Fermi
energies [3]. In flat-band and dilute two-dimensional (2D)
carrier systems, the criterion has been met very recently and
ferromagnetic ground states have been reported [4–7],
although it is important to keep in mind that disorder
can play a very important role [8]. A ferromagnetic ground
state has also been reported in a system of exotic, electron-
magnetic-flux quasiparticles, namely, composite fermions
[9], and a spontaneous valley polarization of itinerant
electrons has been observed in a dilute 2D electron system
where electrons normally occupy two, degenerate conduc-
tion-band valleys [10]; in the latter case, the electrons’
valley degree of freedom plays the role of the spin degree of
freedom.
Another platform for the emergence of quantum ferro-

magnetism is created when the 2D electron system is
cooled to very low temperatures, and placed in a large
perpendicular applied magnetic field (B). In this case, the
electrons’ kinetic energy is quenched as the electrons
occupy the quantized Landau levels (LLs). In the simplest
scenario, the main energy competing with the exchange
energy is disorder and, in a sufficiently clean (low-disorder)
electron system, the so-called quantum Hall (QH) ferro-
magnetism prevails. In particular, when two LLs of
opposite spin polarity, or more generally pseudospin po-
larity, cross at the Fermi level, the 2D carriers form a

polarized, QH ground state with an energy gap separating it
from its excitations [11–40]. The energy gap of such a QH
ferromagnet is directly related to the Coulomb exchange
energy, and the lowest-energy excitations can involve
skyrmions, smooth spin textures, if the Zeeman energy
is sufficiently small [13,16,29,36,41]. The pseudospin
degree of freedom includes the real spin, conduction-band
valley, layer, or electric subband, depending on the nature
of the crossing LLs.
Here we focus on the ground state of a very-high-quality,

dilute, 2D hole system (2DHS) confined to a (001) GaAs
quantum well (QW) near LL filling factor ν ¼ 1 as the two
lowest-energy LLs cross (Fig. 1). (In this Letter, we
implicitly refer to LLs with smaller magnitude of energy,
measured from the band edge, as having lower energy; in
Fig. 1 and other figures, these LLs have the least negative
energy values at any given B.) The crossing of the two
lowest-energy LLs is unusual and challenging to access
experimentally. It can be achieved in 2D electron systems in
GaAs via tuning the g factor through zero by applying
hydrostatic pressure [16], or in AlAs via tuning the valley
splitting energy by applying uniaxial strain [29]. The
2DHSs in GaAs provide a particularly rich platform in
this context because, thanks to the strong spin-orbit
interaction, their LLs are highly nonlinear as a function
of B [42] and can exhibit multiple crossings, even at ν ¼ 1.
Moreover, the field positions of the crossings can be
controlled by varying the QW width [43], or simply by
changing the 2D hole density.
To place our study in a broader perspective, in Fig. 1 we

show the results of our self-consistently calculated 2D hole
energy (E) vs B LLs at p ¼ 5, in units of 1010 cm−2, which
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we use throughout this Letter. The calculations were
performed using the multiband envelope function approxi-
mation based on the 8 × 8Kane Hamiltonian [42]. They are
essentially a Hartree calculation and do not include the
exchange interaction. Since pure spin is not a good
quantum number in a system with strong spin-orbit
interaction, we have grouped the LLs in Fig. 1 into two
pseudospin species, color coded using black and green
[44]. The red dash-dotted line traces the position of the
Fermi energy (EF) as a function of B. The lowest two LLs
have the very unusual characteristic that, depending on the
parameters of the 2DHS, they can cross twice (Fig. 1). The

first crossing occurs between two LLs that have opposite
pseudospin characters, while the second crossing involves a
LL which emanates from an upper (excited) subband.
The second crossing is remarkable on its own and entails
very unusual evolutions of the ground state both at ν ¼ 1
[45,46] as well as at ν ¼ 1=2 where an even-denominator
fractional QH liquid state [47], or an anisotropic, pinned
Wigner solid state [48] can emerge. The details of the first
crossing, which is the subject of our investigation here, are
less known [49]. This is partly because the crossing
typically occurs at small magnetic fields, implying that
very dilute and yet low-disorder samples are needed for its
study. Only very recently the presence of this crossing in a
(001) GaAs 2DHS was demonstrated experimentally and,
using optical techniques, it was shown that the 2DHS spins
undergo a reversal as the LLs cross [40].
Figure 2 highlights in detail the expected evolution of the

LLs and their crossings as a function of density. The
calculations are shown for p ¼ 1.0, 2.0, and 3.0, and
the color coding of the LLs is the same as in Fig. 1. In
all three panels, the two LLs with opposite pseudospin
cross at B slightly below 1 T (magenta up arrows). The
black down arrows indicate the position of ν ¼ 1. For
p ¼ 1.0 [Fig. 2(a)], ν ¼ 1 occurs on the lower-field side of
the crossing. At ν ¼ 1, EF falls in an energy gap between
two LLs and has a small but finite jump whose magnitude
should give the energy gap for the ν ¼ 1 integer QH state
(QHS). The situation for p ¼ 3.0 [Fig. 2(c)] is qualitatively
similar, except that here ν ¼ 1 occurs on the higher-field
side of the LL crossing. At p ¼ 2.0 [Fig. 2(b)], however,
the crossing happens very close to ν ¼ 1; there is no jump
of EF, and one would expect the absence of a ν ¼ 1 QHS.
The evolution presented in Fig. 2 then predicts that the
ν ¼ 1 QHS should vanish and show a reentrant behavior as
the density is tuned from a low to a high value.

FIG. 2. Calculated LL diagrams for a 2DHS confined in a 30-nm-wide (001) GaAs QW at densities (a) 1.0, (b) 2.0, and
(c) 3.0 × 1010 cm−2. The upper axes indicate the filling factor ν. As in Fig. 1, black and green lines indicate LLs of opposite effective
spin [44], and the red dash-dotted line traces the Fermi energy. The downward arrows mark the positions of ν ¼ 1, and the upward
arrows the positions of the first crossing of the two lowest-energy LLs.

FIG. 1. Calculated energy (E) vs magnetic field (B) LL diagram
for a 2DHS confined in a 30-nm-wide, (001) GaAs QW at a
density of 5.0 × 1010 cm−2. The upper axis indicates the filling
factor ν which is proportional to 1=B. Black and green lines
indicate LLs of opposite effective spin [44], and the red dash-
dotted line traces the Fermi energy. The vertical arrows mark the
positions of the two crossings of the two lowest-energy (in
magnitude) LLs.
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As illustrated in the remainder of the Letter, this is very
different from what we observe experimentally. Our mag-
netotransport measurements reveal that the LL crossing at
ν ¼ 1 occurs at a much higher density of p ≃ 4.6, as
signaled by a small dip in the energy gap (1Δ) of the ν ¼ 1
QHS. More important, in the entire density range, from
p ≃ 1.0 to ≃5.5, the measured 1Δ is much larger than the
single-particle effective Zeeman energies, and both its
magnitude and field dependence (∼

ffiffiffiffi
B

p
) are consistent

with what is expected for a QH ferromagnet with an
exchange-enhanced energy gap.
The high-quality 2DHS studied here resides in a 30-nm-

wide GaAs QW grown on a GaAs (100) substrate. The QW
is flanked on each side by a 510-nm-thick Al0.3Ga0.7As
barrier (spacer) layer followed by a C δ-doping layer. The
structure is then buried under a 200-nm-thick Al0.3Ga0.7As
layer, another C δ-doping layer, and a 28-nm-thick GaAs
cap layer on top. The 2DHS has an as-grown density p ¼
3.8 and a low-temperature (T ¼ 0.3 K) mobility μ ¼ 1.3×
106 cm2=Vs. We performed our measurements on a
4 mm × 4 mm van der Pauw geometry sample. Contacts
were made by annealing InZn at 380 °C for 70 sec. To tune
the 2D hole density while keeping the charge distribution
symmetric, we placed the sample on melted In to make a
back gate and deposited Ti=Au on the top surface as the
front gate. The sample was cooled down in a cryogen-free
dilution refrigerator with a base temperature of ≃30 mK,
and also in a 3He cryostat with a base temperature of
≃0.30 K.All transport measurements were performed using
a low-frequency lock-in measurement technique at ≃10 Hz
frequency with a ≃50 nA excitation current.
Figure 3 shows the temperature dependence of the

longitudinal resistance Rxx vs B at p ¼ 3.8 with both

the front and back gates grounded. The vertical lines
indicate the expected positions of several QHSs. The traces
at the lowest temperatures show the presence of a well-
developed fractional QHS at ν ¼ 5=3, as well as at 1=3,
2=5, 3=7, 2=3, 3=5, 4=7, and even at 1=5 at higher B [50];
also see Supplemental Material [43]. The observation of
these fractional QHSs attests to the exceptional quality of
this sample, at such low density. The inset in Fig. 3 shows
an Arrhenius plot Rxx at ν ¼ 1 vs T from which we deduce
the energy gap 1Δ for ν ¼ 1. In the Fig. 3 inset, the red line
is a linear fit through the data points, and yields 1Δ ≃ 8.6 K.
We repeated the activation energy measurements at ν ¼

1 for 2D hole densities ranging from≃1.0 to≃5.5. This was
achieved by gating the sample using both the front and the
back gates while keeping the charge distribution symmet-
ric. A summary of 1Δ as a function of p is shown in Fig. 4.
Error bars for the measured energy gaps, based on the
Arrhenius fits to the data points (see Fig. 3, inset, and also
[43]), are also shown. The red open circles are the gaps
determined from the calculated LLs as shown in Fig. 2,
namely, the magnitude of the jump in EF at ν ¼ 1. A LL
crossing at ν ¼ 1 is experimentally observed at a density of
p ≃ 4.6, evinced by a dip in 1Δ. A clear discrepancy is seen
in Fig. 4 between the predicted and measured positions of
the crossing. This is not a surprise; in previous studies,
similar LL calculations predict a second LL crossing also at
a somewhat lower density compared to the experiments
[47,51]. Besides the discrepancy in the predicted and
measured positions of the crossing in Fig. 4, there is also
a qualitative difference between the calculated and the
experimentally measured gaps: The calculations predict
that, starting from low densities, 1Δ should decrease as a
function of increasing density, vanish when the crossing
occurs at ν ¼ 1, and then increase again as the density is
further increased. In sharp contrast, the experimentally
measured 1Δ remain finite and are significantly larger than
the calculations predict at all densities. The remarkable
prominence of the ν ¼ 1 QHS is also evident in Fig. 3
traces: At higher temperatures, e.g., at 800 mK, the only
minimum seen in Rxx is at ν ¼ 1.
We attribute the fact that the measured 1Δ is by far larger

than the gap expected from the LL calculations to the
presence of a QH ferromagnet at ν ¼ 1 with an exchange-
enhanced energy gap [53]. In an ideal 2D carrier system,
with zero layer thickness, no LL mixing, and no disorder,
the energy gap for single spin flips in a QH ferromagnet is
expected to be equal to the exchange energy Eex ¼ffiffiffiffiffiffiffiffi
π=2

p
e2=4πϵϵ0lB where ϵ is the dielectric constant of

the host material (13 for GaAs) and lB ¼ ffiffiffiffiffiffiffiffiffiffiffi
eℏ=B

p
is the

magnetic length [13,54,55]. This value is reduced by a
factor of 2 if the excitations are skyrmions [13]. Note that
Eex should vary as

ffiffiffiffi
B

p
, and this is indeed what we observe

in our experiments: the measured 1Δ overall follows a
ffiffiffiffi
B

p
fit except in the vicinity of the crossing where it deviates
from the

ffiffiffiffi
B

p
fit (see Fig. 4). Quantitatively, for our sample,

at B ¼ 2 T, the expected, ideal Eex is ≃85 K, much larger

FIG. 3. Temperature dependence of the longitudinal resistance
(Rxx) vs B at p ¼ 3.8 × 1010 cm−2. The vertical marks indicate
the field positions for ν ¼ 1, 2, 3, 4, and 5=3. The inset shows an
Arrhenius plot of Rxx minimum at ν ¼ 1 vs 1=T, and a linear fit
(in red), yielding an energy gap of 8.6 K.
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than our measured 1Δ ≃ 8 K near the LL crossing.
However, this is reasonable and in line with previous
measurements of 1Δ at LL crossings. For example, for
2D electrons in GaAs in the limit of zero g factor, 1Δ ≃
12 K was reported when Eex ≃ 213 K [16], and for AlAs
2D electrons, 1Δ ≃ 6 K was quoted when Eex ≃ 263 K
[29]. The much smaller measured energy gaps compared to
Eex have been attributed to the presence of skyrmions,
finite electron layer thickness, LL mixing, and disorder,
all of which are known to reduce the gap [16,56–58].
Considering these factors, the gap we measure, 1Δ ≃ 8 K, is
in fact surprisingly large, especially taking into account the
significant amount of LL mixing we expect in our 2DHS
because of its very low density and relatively large effective
mass [59,60].
Next we discuss the role of the ν ¼ 1 LL crossing on 1Δ

in our 2DHS. In previous measurements of a ν ¼ 1 LL
crossing in GaAs and AlAs 2D electrons, a pronounced
minimum in 1Δ was observed at the LL crossing [16,29].
The minimum, and the rapid enhancement of 1Δ away from
the crossing, were attributed to the predominance of sky-
rmions at ν ¼ 1 at the crossing and the reduction in the
skyrmions’ size as ν ¼ 1 is tuned away from the crossing.
In our data, we do observe a minimum in 1Δ at the crossing
but it is not as pronounced as in the above cases. It is worth
emphasizing that the experiments of Refs. [16,29] were
performed at constant density and the LL crossing was
induced by applying either hydrostatic pressure [16] or
uniaxial strain [29]. In contrast, in our measurements we
vary the density to cause the LL crossing at ν ¼ 1. This
implies that, if Eex is dominant, we would expect an
increasing 1Δ, reflective of the expected Eex ∼

ffiffiffiffi
B

p
behav-

ior, with a minimum, accounting for the vanishing effective
Zeeman energy (and potential existence of skyrmions),
superimposed on it. Our data in Fig. 4 clearly exhibit theffiffiffiffi
B

p
dependence of the 1Δ, consistent with the increase of

Eex with B [52].
In order to better present the behavior of 1Δ near the

crossing, in the Fig. 4 inset, we show the deviation of the
measured 1Δ from fitΔ as a function of density (lower scale),
or equivalently, B (upper scale). A sharp minimum is
clearly seen near the measured crossing at p ≃ 4.6
(B ≃ 1.9 T). The blue and magenta solid lines show linear
fits to the data points below and above the crossing, giving
slopes of ≃ − 4.8 K=T and ≃3.7 K=T, respectively. Note
that the magenta line fitting is less reliable because of the
relatively larger error bars in 1Δ. Ideally, the ratios of these
slopes to the theoretically calculated slopes in a single-
particle picture should yield a reasonable estimate of the
size of skyrmions near the crossing [16,29]. The slopes we
deduce from Fig. 4 (inset) fits are indeed much larger than
the slopes implied by the calculated LLs (red open circles in
Fig. 4), suggesting large-size skyrmions, consistent with
the conclusions reached in [40]. However, one should
be cautious in determining a quantitative size for the

skyrmions from our study, given the discrepancy between
the observed and calculated positions of the LL crossing.
We emphasize that the fact that our measured 1Δ is much

larger than the effective Zeeman energy expected from the
LL calculations, and its

ffiffiffiffi
B

p
dependence, are both strong

indications that 1Δ is dominated by the exchange inter-
action and signals a robust QH ferromagnet. Our results
should stimulate future many-body calculations that take
the exchange energy of the 2D system into account and
explain the experimental data quantitatively.
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FIG. 4. Summary of the ν ¼ 1 gap (1Δ) as a function of density
(lower scale), or equivalently, B (upper scale). The black circles
are the experimentally measured gaps, with error bars indicated.
The red open circles represent the expected gaps from LL
calculations which do not include exchange energy. Data points
are connected by straight lines as guides to the eye. The black
arrow indicates a dip in the measured gaps, manifesting a LL
crossing at p ≃ 4.6. The red arrow indicates the expected crossing
predicted by the LL calculations. A

ffiffiffiffi
B

p
fit to the measured gaps

(fitΔ) is shown as a red curve [52]. Inset: deviation of the
measured 1Δ from fitΔ as a function of density (lower scale),
or equivalently, B (upper scale). The blue and magenta solid lines
show linear fits to the data points near the measured crossing.
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