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Higher-dimensional topological phases play a key role in understanding the lower-dimensional
topological phases and the related topological responses through a dimensional reduction procedure.
In this work, we present a Dirac-type model of four-dimensional Z2 topological insulator (TI) protected by
CP symmetry, whose 3D boundary supports an odd number of Dirac cones. A specific perturbation splits
each bulk massive Dirac cone into two valleys separated in energy-momentum space with opposite second
Chern numbers, in which the 3D boundary modes become a nodal sphere or a Weyl semimetallic phase. By
introducing the electromagnetic (EM) and pseudo-EM fields, exotic topological responses of our 4D
system are revealed, which are found to be described by the ð4þ 1ÞD mixed Chern-Simons theories in the
low-energy regime. Notably, several topological phase transitions occur from a CP-broken Z2 TI to a Z TI
when the bulk gap closes by giving rise to exotic double-nodal-line or nodal-hyper-torus gapless phases.
Finally, we propose to probe experimentally these topological effects in cold atoms.
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Introduction.—The prediction and discovery of topo-
logical insulators (TIs) and topological semimetals (TSMs)
has led to an explosion of activity in studying topological
aspects of band structures in the past decade. Nowadays,
topological phases of matter have been at the forefront of
the condensed matter and artificial systems [1–8]. One
reason for the excitement is that these topological phases
beyond Landau’s spontaneous symmetry breaking theory
are protected by certain symmetries which support non-
trivial boundary states associated with a topological invari-
ant in the bulk. Another significant feature relies on their
corresponding topological electromagnetic (EM) responses
which are described by topological field theories. For
instance, the ð2þ 1Þ-D Chern-Simons theory describes
the quantum anomalous Hall effect in 2D Chern insulators
[9], the ð3þ 1ÞD axion field theory describes the mag-
netoelectric effect in 3D Z2 TIs [10], and the ð3þ 1ÞD
mixed axion theory [11] describes the EM response in
certain 3D topological crystalline insulators [12]. Similarly,
TSMs also exhibit topological transport phenomena
described by the mixed Chern-Simons or axion theory
[13–17] and can be understood via quantum anomalies
[18], such as parity anomaly in 2D and 4D TSMs [19,20],
chiral anomaly in 3DWeyl semimetals [21,22], and Z2 and
chiral anomalies in 3D Dirac semimetals [23].

On the other hand, higher-dimensional topological
phases (HDTPs) are much less explored due to their
impossible realization in solid-state materials. However,
4D topological phases can be implemented in synthetic
matter as recently shown in Refs. [24–30]. Moreover,
HDTPs play an important theoretical role in lower-
dimensional topological phases. For instance, the well-
known 2D and 3D TIs can be obtained from a 4D
time-reversal-invariant (TRI) insulator through dimensional
reduction as well as their effective field-theoretical descrip-
tions [10]. The 3D boundaries of such a Z-class 4D TI
supports an odd number of Weyl points with the same
chirality which cannot be realized in any 3D systems due to
the Nielsen-Ninomiya no-go theorem. Inspired by this idea,
one may wonder: Does there exist a 4D TI phase that
supports an odd number of different types of nodal
structures on its 3D boundaries? Are there novel topo-
logical responses if this system does exist?
In this Letter, we answer positively to both questions. We

first present a Z2 4D TI model that supports an odd number
of real Dirac points on its 3D boundary normal to the fourth
dimensions, which are protected by CP symmetry beyond
the tenfold way classification [31](C and P denote particle-
hole and inversion symmetries, respectively). The bulk Z2

invariant ν2 can be defined by the second spin Chern
number (CN), i.e., the higher-dimensional generalization of
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the spin CN in 2D TRI insulators without spin-orbit-
coupling (SOC). Subsequently, we will introduce a per-
turbation which will break the degeneracy of the bulk
spectrum forming two valleys with opposite second CNs.
In this case ν2 remains unchanged and is associated with the
second valley CN which is defined as the half difference of
the second CNs for two valley indices instead of “spin.” On
the 3D boundary, each real Dirac point will split into two
Weyl points with opposite chirality in the separation of
energy forming a Weyl nodal sphere or of momentum
forming a Weyl semimetallic phase, see Fig. 1. Moreover,
we will show that such a Z2 phase has some novel
electromagnetic responses upon applying the EM and
pseudo-EM fields [22,32–34]. The field theoretical-
description of “4D quantum spin Hall effect” in our model
is also developed. We identify two novel quantum effects,
coined, “valley-induced electromagnetic effect,” and “4D
quantum valley Hall effect.” These bulk responses are
consistent with the anomaly equations of the 3D boundary
Dirac or Weyl modes arising from theZ2 or chiral anomaly.
Furthermore, we explore several types of topological phase
transitions from a Z2 TI to a Z TI where the phase
transition occurs only when a bulk gap closes. We will
show that there are many exotic topological phases that
appear during the transition processes including the double-
nodal-line (DNL) and nodal-hyper-torus (NHT) semime-
tallic phases and the 4D quantum Hall insulator (QHI)
phases with higher second CNs. Finally, we will propose to
realize such a 4D model and to detect the predicted
responses in a 3D optical lattice with an extra periodic
parameter using ultracold atoms.

Model and bulk topology.—Let us start with the minimal
model of a 4D Z2 TI which takes the form,

H0ðkÞ ¼ dxΓ1 þ dyΓ2 þ dzΓ3 þ dwΓ4 þ dmΓ0; ð1Þ

with the Bloch vector being di ¼ sin ki and dm ¼ m −P
i cos ki with i ¼ x, y, z, w. The 8 × 8 matrices Γi

satisfying a Clifford algebra are presented in Ref. [35].
This system hosts two fourfold degenerate bands with the

spectrum, E� ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2x þ d2y þ d2z þ d2w þ d2m

q
.

This model preserves the CP symmetry, i.e.,
fCP;H0g¼0, with CP ¼ iG112K satisfying ðCPÞ2 ¼ −1.
We label Gijk¼σi⊗σj⊗σk hereafter and K as the com-
plex conjugate operator. Thus this system is characte-
rized by a Z2 invariant [36]. We next move to discuss
the bulk topology of this system. The Hamiltonian
commutes with a matrix Γ5¼G332, i.e., ½Γ5;H0�¼0. It
implies that this model can be block diagonalized after
rotating Γ5 into G300 through a unitary matrix U ¼
exp ½−ðiπ=4ÞG100� exp ½ðiπ=4ÞG132�, and is written in the
form of HBD ¼ UH0U−1 ¼ Hþ ⊕ H−, where each block
Hamiltonian is given by

H�ðkÞ¼−dxG33þdyG10−dzG31−dwG20�dmG32; ð2Þ

with Gij ¼ σi ⊗ σj.
HBD preserves CP symmetry with CP ¼ iG120K.

Although H� breaks CP symmetry, each block
Hamiltonian preserves the time-reversal-symmetry (TRS)
and thus falls into class AII with T ¼ iG20K satisfying
T 2 ¼ −1. Therefore, each block model is a 4D QHI
characterized by the second CN [10],

C�
2 ¼ 1

32π2

Z
T4

d4k ϵμνρσtrðF�
μνF�

ρσÞ; ð3Þ

with the values C�
2 ¼ �3sgnðmÞ for 0 < jmj < 2, C�

2 ¼
∓ sgnðmÞ for 2 < jmj < 4, and C�

2 ¼ 0 elsewhere. Here
the non-Abelian Berry curvature F�

μν ¼ ∂μA�
ν − ∂νA�

μ −
i½A�

μ ;A�
ν �, where ðA�

μ Þαβ ¼ ihu�α j∂μju�β i denotes the non-
Abelian Berry connection defined by the occupied eigen-
states ju�α i of each block (we set the Fermi energy at
ϵF ¼ 0). Therefore, although the total second CN is zero,
namely, C2 ¼ Cþ

2 þ C−
2 ¼ 0, we can define a Z2 number

given by

ν2 ¼ C2s mod 2; ð4Þ

with the second spin CN [37] being C2s ¼ ðCþ
2 − C−

2 Þ=2
which can be regarded as a generalization of the first spin
CN in a 2D TRI system without SOC. Note that one can
also define the Z2 number ν2 in terms of the Green’s
function for the original model H0 [38].

E
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FIG. 1. Schematic of low-energy spectra for 2 < m < 4 near
k ¼ 0. (a) (upper panel) A real Dirac cone as a boundary state on
the 3D boundary when considering open boundary condition
along the w direction, while a double massive Dirac cone as the
bulk spectrum is presented in the bottom panel. (b) Upper
(bottom) panel shows that vector field bμ lifts the degeneracy
of the 3D boundary massless (4D bulk massive) Dirac cone which
induces two Weyl points (valleys) with opposite chirality (second
CN) separated in energy and in momentum with difference 2b0
and 2b1, respectively.

PHYSICAL REVIEW LETTERS 129, 196602 (2022)

196602-2



This system enjoys more extra symmetries [39], e.g.,
RT , mirror, time-reversal, particle-hole, and chiral sym-
metries; see Supplemental Material [39] for details. Thus it
implies that this model will host a very rich phase diagram
when we introduce some extra symmetry-protected or
broken perturbations. In the following part, we mainly
focus on the Z2 topological phases and discuss the
perturbations that commuting with Γ5 which means these
terms can be block diagonalized, i.e., ν2 is still well defined
and unchanged unless there is a gap closing phase
transition in the bulk. For concreteness, we introduce the
CP-broken but Γ5-protected perturbation,

Δ ¼ Γ5

�
b0 þ

X3
i¼1

biΓi

�
: ð5Þ

Boundary physics.—Without loss of generality, we
mainly address the 3D boundary physics by considering
a boundary perpendicular to the w direction with a lattice
length Lw. The cases for open boundary conditions along
the other directions are presented in the Supplemental
Material [39]. Now let us first focus on the case of H0

where 2 < m < 4 and thus C�
2 ¼∓ 1. The effective

boundary Hamiltonian at L ¼ 0 is given by Heff ¼
− sin kxG13 þ sin kyG30 − sin kzG11. It supports a real
Dirac point at the origin with the expanded Hamiltonian,

HRDðkÞ ¼ −kxG13 þ kyG30 − kzG11: ð6Þ

Note that this model preserves PT symmetry, i.e.,
½PT ;HRD� ¼ 0, with PT ¼ K satisfying ðPT Þ2 ¼ þ1.
Thus this model presents a real Dirac monopole with a
Z2 classification and carries a monopole charge νR ¼ 1
defined in terms of the real CN [53] or the first Euler
number [54–56]. Moreover, one can see that a real Dirac
point consists of two Weyl points with opposite chirality
under the rotation representation [57].
Next we add the above-mentioned term Δ to H0, i.e.,

H1 ¼ H0 þ Δ. The system now hosts two Dirac valleys
with energy and momentum differences δE ¼ 2b0 and
δk ¼ 2b in the bulk, respectively, see Fig. 1. In the block
diagonal representation, each block Hamiltonian still hosts
the unchanged second CN C�

2 and thus we have ν2 ¼
C2v mod 2with C2v ¼ C2s which is nothing but the second
valley CN. To be more clear, we first discuss the case when
only b0 is nonzero. Now the total low-energy 3D boundary
Hamiltonian becomes

HNSðkÞ ¼ HRDðkÞ þ b0γ5; ð7Þ

with γ5 ¼ G32. Note that γ5 commutes with HRD, i.e.,
½γ5;HRD� ¼ 0. This model represents a 3D Weyl nodal
sphere with spectrum E� ¼ �jkj � jb0j, exhibiting a band
degeneracy at the Fermi level E ¼ 0 on a sphere defined by

jkj ¼ jb0j with jkj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y þ k2z

q
. This model breaks

PT but keeps the γ5 symmetry, and thus the nodal sphere
carries a Z monopole charge [58,59].
In the case when only b ¼ ðb1; b2; b3Þ is nonzero, we

obtain a Weyl semimetallic phase on its 3D boundary with
the low-energy effective Hamiltonian given by

HWS ¼ HRDðkÞ þ b1G21 þ b2G02 þ b3G23: ð8Þ

Its spectrum reads E� ¼
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkx � b1Þ2 þ ðky � b2Þ2 þ ðkz � b3Þ2

q
, which repre-

sents a pair of Weyl points with opposite charge or chirality
at k�

W ¼ �ðb1; b2; b3Þ.
In other words, the 3D boundary physics ofH1 describes

a pair of Weyl points with opposite chirality separated in
energy-momentum space with δE ¼ 2b0 and δk ¼ 2b, as
shown in Fig. 1. Generally, there are jC2vj gapless boun-
dary modes on its 3D boundary when m varies in different
regions [60]. Notice that the 2D (0D) topological charge
implies that the boundary band structure with an odd
number of real Dirac points (nodal spheres) cannot be
realized by any 3D systems, and it can only exist at the
boundary of a 4D gapped system.
Topological responses.—For later convenience, we here

consider the simplest case in the block diagonal represen-
tation, i.e., HBD. To calculate the continuum response we
couple each continuum Hamiltonian with its own gauge

field AðaÞ
μ via kμ → kμ þ AðaÞ

μ . The topological action of the
4D QHI in each block is described by the ð4þ 1ÞD Chern-
Simons theory [10], i.e.,

SðaÞeff ¼
CðaÞ
2

24π2

Z
d5k ϵμνλρσAðaÞ

μ ∂νA
ðaÞ
λ ∂ρA

ðaÞ
σ ; ð9Þ

where a ¼ � for each block, and Aμ ¼ 1
2
½AðþÞ

μ þ Að−Þ
μ �,

Ãμ ¼ 1
2
½AðþÞ

μ − Að−Þ
μ �. The symmetric combination of the

gauge fields AðþÞ
μ and Að−Þ

μ represents the usual EM field Aμ;
while the antisymmetric combination is a spin gauge field
Ãμ, such that we obtain a new kind of mixed Chern-Simons
action,

Seff ¼
C2s

4π2

Z
d5x ϵμνλρσÃμ∂νAλ∂ρAσ

þ C2s

12π2

Z
d5x ϵμνλρσÃμ∂νÃλ∂ρÃσ: ð10Þ

This action can also be derived in a direct diagrammatic
calculation by evaluating the diagram [20,61]. Varying it
with respect toAμ and Ãμ, respectively, we obtain the corres-
ponding charge and spin currents, i.e., Jμ ¼ δSeff=δAμ, and
J̃μ ¼ δSeff=δÃμ. For instance, considering a simple field
configuration,
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Ãμ ¼ 0; Aμ ¼ ð−zEz;−yBz; 0; 0; 0Þ; ð11Þ

we obtain

Jw ¼ 0; J̃w ¼ C2s

4π2
EzBz: ð12Þ

Here E and B denote the components of the usual EM field
defined later. J̃w denotes the spin current upon applying an
EM fieldwhich can be regarded as the 4Dquantum spinHall
effect. Note that the index spin abovemay also include but is
not limited to the following internal degree of freedom of
different physical objects, e.g., hyperstates and orbits of
atoms, etc.
The above results can actually be understood by con-

necting to the 2D cases [39]. Integrating over x, y
dimensions with periodic boundary conditions and assum-
ing Ez does not depend on ðx; yÞ, we have

Z
dxdy J̃w ¼ C2s

2π
NxyEz; ð13Þ

where Nxy ¼
R
dxdyBz=2π denotes the number of flux

quanta through the xy plane, which is always quantized to
be an integer. Thus, we can understand this result in a Z2

ð4þ 1ÞD insulator with the second spin CN C2s. This
formula denotes the quantum spin Hall effect with a spin
Hall conductance C2sNxy=2π in the zw plane induced by a
magnetic field with flux 2πNxy in the normal xy plane.
On the other hand, since this model supports jC2sj Dirac

cones on its 3D boundary, we can explore the 3D boundary
response properties from the bulk. Integrating out with
respect to w [picking the gauge as Eq. (11)] in Seff , we
obtain the boundary term

SBD ¼ C2s

12π2

Z
d4x ϵμνρσð3ÃμAν∂ρAσ þ ÃμÃν∂ρÃσÞ; ð14Þ

where μ ¼ t, x, y, z. The corresponding currents are given
by

jz ¼ 0; j̃z ¼ C2s

4π2
zEzBz: ð15Þ

After varying above currents with respect to z, we obtain
∂zjz ¼ Jw and ∂zj̃z ¼ J̃w are the same as those presented in
Eq. (12). This result can be also directly derived from the
boundary Dirac Hamiltonian [39]. We emphasize that such
a nonzero spin current j̃z only appears on the boundary of
4DZ2 TIs which stems from the odd number of (real) Dirac
cone structure that cannot be realized by any 3D sys-
tems [53].
In what follows we consider the case ofH1. By coupling

each block Hamiltonian with Að�Þ
μ via kμ → kμ þ Að�Þ

μ and

treating bμ as an axial gauge field with Að�Þ
μ ¼ Aμ � bμ,

where bμ ¼ ðb0;b; 0Þ, we have bμ ≡ A5
μ ¼ 1

2
½AðþÞ

μ − Að−Þ
μ �.

Consequently, we obtain the effective action just by re-
placing Ãμ with bμ, i.e.,

Sv;eff¼
C2vϵ

μνλρσ

12π2

Z
d5xð3bμ∂νAλ∂ρAσþbμ∂νbλ∂ρbσÞ: ð16Þ

Note that this bulk response matches with the EM response
of a 4D topological semimetal that hosts two 4D mono-
poles separated in energy-momentum space where we find
precisely half of coefficient occurs [20,61]. The corre-
sponding charge and valley currents are derived from Jμ ¼
δSv;eff=δAμ and J

μ
5 ¼ δSv;eff=δbμ, respectively. Without loss

of generality, we take bμ ¼ ½b0; b1ðyÞ; b2; b3ðtÞ; 0� and Aμ

the same as in Eq. (11). Defining the (pseudo-) magnetic
and (pseudo-) electric fields as B ¼ ∇ ×A (B5 ¼ ∇ × b),
and E ¼ ∂tA −∇A0 (E5 ¼ ∂tb −∇b0), respectively. We
obtain the charge and valley currents,

Jw ¼ C2v

2π2
ðE5

zBz þ EzB5
zÞ; ð17aÞ

Jw5 ¼ C2v

4π2
ðEzBz þ E5

zB5
zÞ: ð17bÞ

Since the charge current Jw induced by a varying bμ and
magnetic (electric) field, we name it valley-induced mag-
netic (electric) effect. Jw5 is related to the 4D quantum valley
Hall effect, where two valley Hall currents propagate along
opposite directions.
We can also integrate Jw and Jw5 with respect to x, y and

obtain

Z
dxdy Jw ¼ C2v

π
ðNxyE5

z þ N5
xyEzÞ; ð18aÞ

Z
dxdy Jw5 ¼ C2v

2π
ðNxyEz þ N5

xyE5
zÞ; ð18bÞ

where N5
xy ¼

R
dxdyB5

z=2π now denotes the number of
pseudoflux quanta through the xy plane, which can be also
quantized to be an integer as Nxy, mentioned above. The
understanding of these terms will be similar to the case in
Eq. (13). For instance, the second (first) term in Eq. (18a)
could be treated as the (pseudo-) Hall effect with a
quantized hall conductance C2vN5

xyðNxyÞ=π in the zw plane
induced by a pseudo-(usual) magnetic field with flux
2πN5

xyð2πNxyÞ in the normal xy plane. Similarly, the
(second) first term in Eq. (18b) represents the (pseudo-)
valley Hall effect in the zw plane induced by a (pseudo-)
usual magnetic field in the xy plane.
From the viewpoint of 3D boundary physics, bμ splits a

Dirac point into two Weyl points with opposite chirality
separated in energy and in momentum, i.e., there are jC2vj
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pairs of Weyl points on the boundary. One can straight-
forwardly obtain the boundary effective action and the
corresponding response currents from the bulk as we did
above. It is possible to show that the 3D boundary supports
topological responses upon applying EM, and pseudo-EM
fields are the same as those derived from the 3D Weyl
Hamiltonian, which has been widely studied in the previous
work [62]. The boundary response is actually a signature of
a bulk response. Interestingly, when bμ is constant, we
obtain nonzero chiral magnetic and anomalous Hall current
in the 3D boundary even though the 4D bulk charge current
is zero.
Topological phase transitions.—In the presence of Δ,

the systemH1 breaks all the symmetries and falls into class
A. Even though each block subsystem breaks TRS, each of
them is still a 4D QHI in class Awhich is quite robust and is
characterized by the unchanged second CN C�

2 and hosts
nontrivial boundary modes. So the system continues to host
a Z2 number until a topological phase transition occurs
when the bulk gap closes with a critical value bμ. This
indicates a phase transition from a Z2 TI to a trivial
insulator where the corresponding topological response
predicted from Eqs. (17a) and (17b) also changes from
nontrivial to trivial. Moreover, we can add a term Δa ¼
cG302 þ b0G332 to H0. The model now falls into class A
and goes through a phase transition from a Z2 TI to a
nontrivial DNL=NHT semimetallic phase and then finally
becomes a trivial insulator by increasing jcj. Such a DNL
structure is characterized by the first CN while a NHT is the
3D torus protected by the γ5 symmetry associated with a 0D
Z-value number [39]. Furthermore, the term Δz ¼ δzG032

that will induce a phase transition from Z2 to Z TIs falls
into class AII when jδzj is large enough. This term induces a
very rich phase diagram that supports higher second CNs
(e.g., C2 ¼ �2;�4;�6) by varying m and δz [39].
Conclusion and outlook.—We have proposed a novel Z2

TI model characterized by a Z2 number ν2 associated with
the second spin (valley) CN, whose 3D boundaries support
an odd number (pairs) of real Dirac (Weyl) points, and
investigated its topology. In particular, we have revealed
several new types of topological responses upon applying
the EM and the pseudo-EM fields. Several external terms
induce topological phase transitions and give rise to very
rich phase diagrams. These topological quantum effects can
also appear in the 4D Z2 TIs in class CII and C [39]. Note
that the predicted responses could be experimental studied
in 3D quantum-engineered setups extended by a synthetic
or artificial dimension [63], as could be realized in the
photonic or phononic crystals [7,8] where the pseudo-EM
field can be induced by a strain field [64,65], in electric
circuits [29,30], or in optical lattices with cold atoms
[4,5,66,67], etc. In the Supplemental Material, we present
an experimentally feasible proposal for realizing the Z2 TI
model and detecting the predicted responses in a 3D optical
lattice with an external periodic parameter using ultracold

atoms [39]. These results may pave the way for exploring
topological responses in the HDTPs and in artificial
systems.
Finally, we note that topological crystalline [68,69] or

higher-order topological phases [70,71] can be induced
from H0 and the corresponding effective field-theoretical
descriptions are worth exploring. By using the dimensional
reduction method, one can explore the 2D Z2 pumping of
H0, where ν2 can be measured through the drift of the
center of mass of atom clouds [72]. Besides, the inves-
tigation of a non-Hermitian 4D Z2 TI and its topological
field theory [73,74] is also one of the possible directions.
Moreover, some interesting physics in spin and anomalous
planar Hall systems [75,76] can be generalized into four
dimensions while our model with interacting may reveal
more novel physics regarding the current progress [77–81].
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