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The presence of large scale magnetic fields in nature is often attributed to the inverse cascade of magnetic
helicity driven by turbulent helical dynamos. In this Letter, we show that in turbulent helical dynamos, the
inverse flux of magnetic helicity toward the large scales ΠH is bounded by jΠHj ≤ cϵk−1η , where ϵ is the
energy injection rate, kη is the Kolmogorov magnetic dissipation wave number, and c an order one constant.
Assuming the classical isotropic turbulence scaling, the inverse flux of magnetic helicity ΠH decreases at

least as a −3=4 power law with the magnetic Reynolds number Rm: jΠHj ≤ cϵlfRm−3=4 max½Pm; 1�1=4,
where Pm is the magnetic Prandtl number and lf the forcing length scale. We demonstrate this scaling with
Rm using direct numerical simulations of turbulent dynamos forced at intermediate scales. The results
further indicate that nonlinear saturation is achieved by a balance between the inverse cascade and
dissipation at domain size scales L for which the saturation value of the magnetic energy is bounded by

Em ≤ cLðϵlfÞ2=3Rm1=4 max½1; Pm�1=4. Numerical simulations also demonstrate this bound. These results
are independent of the dynamo mechanism considered. In our setup, they imply that inviscid mechanisms
cannot explain large scale magnetic fields and have critical implications for the modeling of astrophysical
dynamos.
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Introduction.—Magnetic fields are observed in a pleth-
ora of astrophysical objects from planetary to galactic
scales [1–3]. Their generation and sustainment is often
attributed to dynamo action: their self-amplification by a
continuous stretching and refolding of magnetic field lines
due to the underlying (turbulent in most cases) flow [4,5].
In many cases the magnetic structures formed span the
entire astrophysical object, reaching scales much larger
than the small scale turbulence that generates them. The
pioneering work of [6] showed that large scale magnetic
fields can be generated from small scale flows if the
advecting flow is helical. This result is based on an
expansion for large scale separation and is referred as
“alpha dynamo.” However, such expansion can be formally
done only below a critical value of the magnetic Reynolds
number Rm (the ratio of Ohmic to dynamic timescales).
Above this critical value small scale dynamo action begins
and the expansion ceases to be valid [7–9].
The validity of the alpha model is further questioned in

the nonlinear regime for which the magnetic field feeds
back to the velocity field through the Lorentz force. In
[10,11] it was argued that the growth of alpha dynamos
saturates when the large scale magnetic field B becomes
larger thanUrmsRm−1=2, whereUrms is the root mean square
value of the velocity fluctuations. This gives a very weak
magnetic field for most astrophysical applications for
which Rm ≫ 1. Two scale models have also been

extensively used to predict saturation magnetic energy
[12,13] but their application is limited for large Rm where
turbulence sets in.
An alternative way of explaining the formation of large

magnetic fields is through the inverse cascade of magnetic
helicity [14,15]. This intrinsically nonlinear mechanism
(which is, however, compatible with alpha dynamos)
predicts that magnetic helicity will be transferred by
nonlinear interactions to larger scales. Indeed, several
works that followed [16–21] demonstrated with numerical
simulations that when magnetic helicity is injected in a flow
(by a dynamo or other mechanism), it cascades inversely to
larger scales. The values of Rm examined ranged from a
few times the small scale dynamo onset Rmc ≃ 10 [16–19]
to much larger [20,21]. However, to our knowledge, the
dependence of the inverse cascade of magnetic helicity on
Rm has not been tested before. A quantitative under-
standing of how turbulent helical dynamos saturate
with clear predictions on the saturating amplitude does
not exist.
In this Letter, we demonstrate by analytical arguments

and numerical simulations that in dynamo flows, the
inverse cascade of magnetic helicity is bounded from above
by a decreasing power of Rm. Thus, it cannot survive the
infinite Rm limit. This leads to a prediction for the
saturation amplitude of the magnetic field that we test
with numerical simulations.
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Theoretical arguments.—We begin by considering the
magnetohydrodynamics (MHD) equations for the incom-
pressible velocity u and magnetic field b given by

∂tuþ u · ∇u ¼ −∇Pþ ð∇ × bÞ × bþ ν∇2uþ f ; ð1Þ

∂tb ¼ ∇ × ðu × bÞ þ η∇2b; ð2Þ

in a cubic periodic domain of size 2πL, with ν being the
viscosity, η the magnetic diffusivity, P the pressure, and f
an external mechanical force. In the absence of viscous and
Ohmic dissipation, and external forcing, the total energy
E ¼ 1

2
hjuj2 þ jbj2i and magnetic helicity H ¼ 1

2
ha · bi are

conserved; here, the angular brackets stand for spatial
integration and a ¼ −∇−2∇ × b is the vector potential.
Their balance reads

∂tE ¼ IE − ϵ; ∂tH ¼ −ϵH; ð3Þ

where IE ¼ hf · ui is the energy injection rate, ϵ ¼ ϵu þ ϵb
is the energy dissipation rate with ϵu ¼ νhj∇uj2i the
viscous dissipation rate, and ϵb ¼ ηhj∇bj2i the Ohmic
dissipation rate. Finally ϵH ¼ ηhb · ∇ × bi is the helicity
generation or dissipation rate. The forcing f is assumed to
act on a scale lf ¼ k−1f ≪ L while dissipation acts at the
smaller viscous scale lν and Ohmic scale lη. For large

Reynolds number Re ¼ ϵ1=3l4=3
f =ν and large magnetic

Reynolds number Rm ¼ ϵ1=3l4=3
f =η, the dissipation length

scales lν, lη scale like [22]

lν ∝ lfRe−3=4 and lη ∝ lfRm−3=4 ð4Þ

for Pm ≤ 1 while for Pm ≥ 1

lν ∝ lfRe−3=4 and lη ∝ lfRm−3=4Pm1=4; ð5Þ

where Pm ¼ ν=η is the magnetic Prandtl number.
At intermediate scales l (so-called inertial scales

lf ≪ l ≪ lη;lν), there is a constant flux of energy across
scales given by

ΠEðkÞ ¼ hu<k · ðu ·∇u − b ·∇bÞ − b<k · ð∇ × u × bÞi; ð6Þ
where u<k , b

<
k stand for the filtered velocity and magnetic

field, respectively, so that only Fourier modes with wave
numbers of norm smaller than k ¼ 1=l are kept [23].
Conservation of energy by the nonlinear terms implies that
the energy flux at the inertial scales is constant in k and
equals the energy dissipation rate ΠEðkÞ ¼ ϵ.
Similarly, there is a flux of magnetic helicity [18]

ΠHðkÞ ¼ −hb<k · ðu × bÞi ð7Þ

that also has to be constant at scales in which dissipation
plays no role. However, unlike energy, the forcing does not

inject magnetic helicity, which can be only generated or
destroyed by the Ohmic dissipation at rate ϵH. Nonetheless
if the forcing is helical the flow can transport magnetic
helicity from the small Ohmic scales to ever larger scale
L0 > lf up until the domain size reached L0 ≃ L, where a
helical condensate will form. Conservation of magnetic
helicity by the nonlinear terms implies again that the flux of
helicity at scales L0 ≫ l ≫ lη has to be constant in k ∝
1=l with ΠHðkÞ ¼ ϵH.
The two cascades, energy and helicity, are not indepen-

dent and the first limits the latter [24]. To show that, we
write the magnetic field in Fourier space b̃k using the
helical basis b̃k ¼ bþk h

þ
k þ b−k h

−
k , where

h�k ¼ 1
ffiffiffi

2
p k × ðk × eÞ

jk × ðk × eÞj �
i
ffiffiffi

2
p k × e

jk × ej ð8Þ

are the eigenvectors of the curl operator with e an arbitrary
vector (nonparallel to k) [25,26]. By doing that we can
write the magnetic energy spectrum as EbðkÞ ¼ Eþ

b ðkÞ þ
E−
b ðkÞ and the magnetic helicity spectrum as HðkÞ ¼

½Eþ
b ðkÞ − E−

b ðkÞ�=k, where E�
b ðkÞdk ¼ P

k≤jkj<kþdk jb�k j2
is the sum of the energy of the b� Fourier modes on a
spherical shell of width dk and radius k. Since magnetic
helicity is primarily generated at Ohmic wave numbers
kη ¼ 1=lη for any wave number k in the range k ≤ kη, we
can write

jΠHðkÞj ¼ jϵHj

≃ η

�

�

�

�

Z

∞

k
q½Eþ

b ðqÞ − E−
b ðqÞ�dq

�

�

�

�

≤ ηk−1
Z

∞

k
q2jEþ

b ðqÞ þ E−
b ðqÞjdq

¼ k−1ϵb: ð9Þ
This result holds for any k in the inertial range. Choosing
k ¼ kη=c, where c > 1 is an order one constant, and using
ϵb ≤ ϵ, we obtain our final result:

jΠHðkÞj ≤ cϵ=kη: ð10Þ

In other words, the maximum possible value of jϵHj is
obtained if all magnetic energy at Ohmic scales k−1η is
concentrated at only positive or only negative helicity
modes, in which case jϵHj ¼ ϵb=kη. Thus, the flux of
magnetic helicity is bounded by the energy injection rate
divided by the Ohmic dissipation wave number kη. Note
that this bound is saturated if the magnetic field at small
scales is fully helical. If not, jΠHj can be much smaller than
Eq. (10). Using the estimates for kη for isotropic MHD
turbulence we obtain

jΠHðkÞj ≤ cϵk−1f Rm−3=4max½1; Pm�1=4; ð11Þ
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where c is an order one constant. Given the very large
values of Rm in nature, this gives very little hope of
observing such fluxes.
However, despite having a diminishing flux of magnetic

helicity for large Rm, this does not mean that large scale
dynamos cannot be observed. In a finite domain of size L a
magnetic helicity condensate will form. Its magnetic field
amplitude B will be determined by a balance of magnetic
helicity flux with the magnetic helicity dissipation at that
scale so that ΠH ∝ ηB2=L. Using the previous estimate for
the flux leads to the prediction for the large scale energy
Em ¼ B2 given by

Em ≤ cϵ2=3Lk1=3f Rm1=4max½1; Pm�1=4: ð12Þ

We note that a very long time T ∼ ðB2LÞ=ΠH ∝ Rm would
be required for such a field to be formed. Furthermore if
there is an other η-independent mechanism for magnetic
helicity saturation, like magnetic helicity expulsion [27,28],
then the amplitude of the large scale magnetic field will
diminish to zero as Rm → ∞.
Finally, we note that this result is based on strong

turbulence scaling of kη. One can argue that as the large
scale magnetic field builds up the relation between kη and
Rm can change from that of strong turbulence to that of
weak turbulence [29] or turbulence driven by the large scale
magnetic shear [30]. Both of these options lead to a faster
increase of Em with Rm as Em ≲ cϵ2=3L5=6k−8=15f Rm2=5 that
is not found, however, in the numerical studies that follow.
Numerical solutions.—To demonstrate the above argu-

ments we perform a series of numerical simulations that
solve the MHD Eqs. (1) and (2) using the pseudospectral
code GHOST [31] in a cubic domain of side 2πLwith a fully
helical random delta correlated forcing at wave number
kf ¼ 1=lf that fixes the energy injection rate ϵ. The
magnetic Prandtl number Pm ¼ ν=η was set to unity for
all runs. The resolution used varied from 1283 grid points to
10243 grid points for the largest Rm. The resolution was
chosen so that the largest inertial range is obtained while
remaining well resolved with a clear dissipation wave
number range. All measurements were obtained by time
averaging at steady state.
As a first step to accommodate for the large scale pileup

of magnetic helicity, we introduce a magnetic hypodissi-
pation term ηh∇−2b in Eq. (2) that arrests large scale
magnetic helicity. With the inclusion of this term, the
simulations quickly reach a steady state where the helicity
generated at the small scales by ϵH is transported and
dissipated at the largest scales by hypodissipation.
Figure 1 shows the magnetic helicity flux (top) and

energy flux (bottom) for a series of runs varying Rm as
shown in the legend for kfL ¼ 8. The energy flux shows its
classical behavior increasing as Rm is increased, approach-
ing its maximal value ΠE ∼ ϵ in the inertial range. On the

other hand, ΠHðkÞ first starts to increase with Rm once the
dynamo onset is crossed (and magnetic energy and helicity
appear in the system), reaches a maximum, and then starts
to decrease again when the cascades build up so that the
constraint in Eq. (10) becomes relevant.
The magnetic helicity generation spectrum ηk2HðkÞ for

the largest Rm is shown in Fig. 2. The solid line
corresponds to positive values of ηk2HðkÞ, while the
dashed line corresponds to negative values of ηk2HðkÞ;
thus, negative magnetic helicity is generated at the smallest
scales. In the same plot we show the normalized magnetic
energy spectrum ηkEbðkÞ that bounds ηk2jHðkÞj ≤
ηkEbðkÞ with the equality corresponding to a fully helical
magnetic field.

FIG. 1. Magnetic helicity flux ΠH (top) and total energy flux
ΠE (bottom) for several values of the magnetic Reynolds number
Rm for kfL ¼ 8.

FIG. 2. Magnetic helicity dissipation or generation spectrum
ηk2HðkÞ and normalized magnetic energy spectrum ηkEbðkÞ for
the case with hypodissipation with kfL ¼ 8 and the largest
attained magnetic Reynolds number Rm.
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The dependence of the magnetic helicity cascade with
Rm is best seen in Fig. 3, where the magnetic helicity
generation rate ϵHkf=ϵ (circles) and the magnetic helicity
flux ΠHðkÞ at k ¼ kf=2 (crosses) are plotted as a function
of Rm for three different scale separations kfL ¼ 4, 8, 16 in
a log-log plot. All series show an initial increase of ϵH and
ΠHðkf=2Þ followed afterward by a power-law decrease
with ϵH ≃ ΠHðkf=2Þ. The dashed lines give the predicted
scaling Rm−3=4 that appears to fit very well the observed
power, verifying our prediction in Eq. (11).
A second series of numerical simulations with kfL ¼ 8

were performed without the hypoviscous term. The sim-
ulations were run for very long times until a steady state
was reached such that magnetic energy did not increase
further. The timescale to reach saturation is very long and
this has limited us to using grids of size up to 5123 and
values of Rm 4 times smaller than the case with hypo-
dissipation. Figure 4 shows with a red line the mag-
netic helicity dissipation spectrum ηk2HðkÞ for the largest
Rm examined for these runs. Positive magnetic heli-
city is concentrated in a large scale condensate at
k ¼ 1=L ¼ kf=8, while it is negative for all smaller scales.
As in Fig. 2, we also show ηkEbðkÞ with a blue line. Note
that, while the large scales are fully helical, small scales are
less. The amplitude of the large scale condensate (at the
smallest k ¼ kf=8) is so large that despite the small value of
η the negative magnetic helicity generated at small scales
by Ohmic diffusion is balanced by the positive helicity
generated at the largest scale again by Ohmic diffu-
sion. This leads to the flux of (negative) helicity from
small to large scales shown in the lower panel of the same
figure.
The balance between the magnetic helicity generated at

small scales and dissipated at the large leads to the
prediction [Eq. (12)] of a weak power-law increase of

magnetic energy Em with Rm. Figure 5 shows Em as a
function of Rm in a log-log plot. The last three points
appear to agree with the predicted power law. The range of
values of Rm compatible with this law is, however, rather
limited and smaller power laws or logarithmic increases
cannot be excluded. In the inset of the same figure,

FIG. 3. Magnetic helicity generation rate ϵH (circles) and
magnetic flux ΠHðkf=2Þ (crosses) as a function of the magnetic
Reynolds number Rm for three different values of kfL ¼ 4

(blue), kfL ¼ 8 (green), and kfL ¼ 16 (red).

FIG. 5. Saturation of the magnetic energy Em;sat as a function of
the magnetic Reynolds number Rm for kfL ¼ 8 in a log-log plot.
The dashed line gives the prediction Rm1=4. Inset: same figure in
lin-log plot.

FIG. 4. Top panel: magnetic helicity dissipation or generation
spectrum ηk2HðkÞ and normalized magnetic energy spectrum
ηkEbðkÞ for the runs with no hypodissipation, with kfL ¼ 8, and
the largest attainedmagnetic Reynolds numberRm. Bottom panel:
magnetic helicity flux for the same run. The inset shows a
visualization of the y component of the magnetic field for this run.
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we show the same data in a lin-log plot demonstrating that
the data could also be fitted to a logarithmic increase. A
logarithmic increase, if true, is still compatible with the
bound [Eq. (12)] but does not saturate it, and would imply
that small scales become less and less helical as Rm is
increased.
Conclusion.—This Letter gives for the first time esti-

mates for the flux of magnetic helicity and the saturation of
the magnetic field for the nonlinear state of a large Rm
turbulent helical dynamo. Remarkably, even for asymp-
totically large values of Rm, it has been shown that the
magnetic helicity flux still depends on Rm and in fact it has
to decrease at least as fast as ΠH ≤ ϵ=kη ∼ ϵ=kfRm−3=4.
This analytical result has also been clearly demonstrated by
numerical simulations that are shown to follow this upper
bound scaling. Furthermore, it was shown that saturation is
achieved by a balance of the inverse magnetic helicity flux
with the helicity dissipation at the condensate scale. This
has led to the prediction that the magnetic field amplitude at
steady state is smaller than Rm1=4. Numerical simulations
are compatible with this result although the covered range
of Rm cannot exclude other small power laws or loga-
rithmic increases with Rm. It is important to note that these
results are based on magnetic helicity conservation and are
independent of the actual dynamo mechanism involved
(alpha or other). They are thus rather general. Therefore,
our Letter excludes any inviscid nonlinear theory for large
scale dynamos from being realized. This means that any
theory or model that attempts to explain the origin and
amplitude of large scale magnetic fields should depend
explicitly on resistivity, or find a way to circumvent the
limitations imposed by our Letter by some other
mechanism.
Such a circumvention can occur by magnetic helicity

injection or expulsion through boundaries because our
results were demonstrated and apply in closed periodic
domains. In open domains like stars, magnetic helicity can
be expelled (or injected) through boundaries. Then mag-
netic helicity at large scales can saturate by expulsion and
not Ohmic dissipation. In that case, however, we expect that
the large scale magnetic field will be reduced to zero as
Rm → ∞. This conjecture, however, needs to be verified by
future research.
The present results have critical implications for large

magnetic fields in astrophysical systems and their origin
because the basic understanding of the physical mecha-
nisms involved and their estimates are put in question. As
such the parametrization of stellar and solar evolution
models needs to be reexamined.
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