
Chaotic Resonance Modes in Dielectric Cavities: Product of Conditionally Invariant
Measure and Universal Fluctuations

Roland Ketzmerick ,1 Konstantin Clauß ,1,2 Felix Fritzsch ,1,3 and Arnd Bäcker 1

1Technische Universität Dresden, Institut für Theoretische Physik and Center for Dynamics, 01062 Dresden, Germany
2Department of Mathematics, Technical University of Munich, Boltzmannstrasse 3, 85748 Garching, Germany
3Physics Department, Faculty of Mathematics and Physics, University of Ljubljana, 1000 Ljubljana, Slovenia

(Received 16 March 2022; revised 19 July 2022; accepted 28 September 2022; published 2 November 2022)

We conjecture that chaotic resonance modes in scattering systems are a product of a conditionally
invariant measure from classical dynamics and universal exponentially distributed fluctuations. The multi-
fractal structure of the first factor depends strongly on the lifetime of the mode and describes the average of
modes with similar lifetime. The conjecture is supported for a dielectric cavity with chaotic ray dynamics at
small wavelengths, in particular for experimentally relevant modes with longest lifetime. We explain
scarring of the vast majority of modes along segments of rays based on multifractality and universal
fluctuations, which is conceptually different from periodic-orbit scarring.
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Eigenfunctions in closed quantum systems with classi-
cally chaotic dynamics, e.g., in quantum billiards, are well
understood based on quantum ergodicity, universal fluctu-
ations, and scarring along unstable periodic orbits [1,2].
Resonance modes in chaotic scattering systems with escape
of particles [3–5], e.g., the paradigmatic three-disk scatter-
ing [6–8], have a fractal support on which they are
distributed depending on their lifetime [9–15] and the
spectrum follows a fractal Weyl law [16–19].
Resonance modes in scattering systems with partial

escape of probability [3] are less understood. The most
relevant example are dielectric microcavities [20], see
Fig. 1. The relation of cavity shape, ray dynamics, mode
structure, and far-field emission pattern has been studied
extensively experimentally and theoretically [21–39]. A
multifractal probability distribution based on ray dynamics
[24], a so-called natural conditionally invariant measure
[40], gives a good description of modes with long lifetimes
[24,29,30,32,33,36,38,39].
However, resonance modes have various lifetimes, while

the natural measure applies to precisely one lifetime. It is
not understood how the multifractal structure of resonance
modes depends on their lifetime, even in the simplest
setting of a cavity shape with fully chaotic ray dynamics.
Experimentally this is most relevant for modes with the
longest lifetimes, which have longer lifetimes than the
natural measure. Their enhanced scarring has been reported
experimentally and numerically [23,26,27,41–47], but the
relation to periodic-orbit scarring is under investigation. On
a fundamental level it is open, which features of a
resonance mode are system specific with a ray-dynamical
origin and which are universal wave phenomena.
In this Letter we answer these questions based on recent

progress on quantum maps with partial escape [48,49],

leading to the following conjecture: Chaotic resonance
modes in scattering systems are a product

jψðrÞj2 ¼ ϱðrÞ · ηðrÞ ð1Þ

(a) (b)

FIG. 1. (a) Spectrum of 9964 antisymmetric TM polarized
modes of a limaçon cavity at small wavelengths. Three poles
highlighted closest to classical decay rates γnat, γtyp, and γinv
(lines, top to bottom). (b) Corresponding modes showing strongly
different overall intensity structures. Two consecutive magnifi-
cations, each by a factor 20, resolve the wavelength.
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of (i) conditionally invariant measures from classical
dynamics with a smoothed spatial density ϱðrÞ depending
on the mode’s lifetime and (ii) universal exponentially
distributed fluctuations ηðrÞ with mean one. An immediate
consequence is that the average intensity of modes with
similar lifetime is determined by the first factor. We support
this conjecture using a dielectric cavity with chaotic ray
dynamics, by factorizing modes into an average of modes
with similar lifetime and universal fluctuations. It is
demonstrated that the multifractal structure of the average
strongly depends on the lifetime. This is described by
appropriate conditionally invariant measures based on ray
dynamics. In particular, this holds for the experimentally
relevant modes of optical microcavities with longest life-
time. We explain the scarring of the vast majority of modes
along segments of rays based on multifractality and
universal fluctuations. It conceptually differs from peri-
odic-orbit scarring and becomes even more prominent in
the semiclassical limit. Our computations are done at very
small wavelengths.
Modes of a dielectric cavity.—We study passive modes

in a limaçon shaped cavity, given in polar coordinates by
ρðφÞ ¼ Rð1þ ε cosφÞ [30,50]. For ε ¼ 0.6 it is nonconvex
and shows chaotic ray dynamics practically everywhere in
phase space, with possible regular regions [51] being
negligibly small. We choose a refractive index n ¼ 3.3
typical for a semiconductor laser cavity [20] and outside the
cavity n ¼ 1. Antisymmetric TM polarized modes ψðrÞ
fulfilling the Helmholtz equation ½Δþ n2ðrÞk2�ψðrÞ ¼ 0
with outgoing boundary conditions are computed for
complex wave numbers with ReðkRÞ ∈ ½3100; 3101� and
ImðkRÞ ∈ ½−0.1; 0�. With nkR ≈ 104 this is more than an
order of magnitude further in the short wavelength limit
than previous studies of dielectric cavities, see, e.g.,
Refs. [20,37–39]. This allows for numerical comparison
to wave chaos experiments with large cavities [39].
One observes a band of resonance poles with two

spectral gaps, one near the real line and one further in
the complex plane, see Fig. 1(a). The upper end of the
spectrum, with long-lived modes of high quality factor
Q¼−ð1=2ÞReðkÞ=ImðkÞ≈4×105, occurs near the classical
natural decay rate γnat from ray dynamics, discussed below.
The lower end of the spectrum, with short-lived modes and
a gap towards external modes [52], occurs near the classical
natural decay rate γinv from the inverted ray dynamics, see
below. The middle of the spectrum corresponds to the
typical classical decay rate γtyp of an ergodic ray [53].
These classical decay rates are indicated in Fig. 1(a) by
horizontal lines at ImðkRÞ ¼ −ðγ=2ÞR=c.
For exemplary modes with long, medium, and short

lifetimes the intensity jψðrÞj2 is presented on a 500 × 560
grid in Fig. 1(b), showing large-scale structures and fluc-
tuations. Consecutive magnifications reveal finer structures
and eventually a smooth wave function on the scale of the
wavelength. As expected, one observes a drastic change of

the overall structure from long-lived to short-lived modes,
with strong intensities shifting from near the boundary to the
center of the cavity and angles of reflection changing from
total internal reflection to perpendicular to the boundary [see
also Fig. 4(b) below]. For modes with a similar lifetime one
finds similar structures, see gallery of modes [54].
Numerically, we determine the modes using boundary

integral equations [55,56]. For analytic boundaries we use
the approach of Ref. [57], which allows us to use just
slightly more than two discretization points per wavelength
on the boundary, giving modes and spectrum with machine
accuracy. Here we need Nb ¼ 11500 points on the desym-
metrized boundary of length L=2 with L ¼ 6.8627R at
wavelength λ ¼ 2π=ReðnkÞ giving b ¼ 2Nbλ=L ¼ 2.06
points per wavelength. We find all poles in a complex
wave number region using a Taylor expansion of the matrix
equation in k, extending an approach for quantum billiards
[58,59] to complex k. We increase the accuracy to machine
precision by applying the method of Ref. [58] to every pole
in a subspace and subsequent convergence steps. Further
details about the numerical approach will be published
elsewhere [60]. The high precision of this approach has
been used for analyzing resonance assisted tunneling with a
resolution of ImðkRÞ ¼ 10−12 [61]. We expect to find all
poles in the considered complex wave number region,
namely, 9964, which is supported by the leading order
Weyl term of a dielectric cavity [62,63] giving N ¼
ðA=4πÞn2ð31012 − 31002Þ ¼ 9960.5 poles, with area A ¼
ðπ=2Þð1þ ε2=2Þ of the desymmetrized cavity. The next
order boundary term for TM modes [62,63] gives a
contribution of less than one mode.
Factorization.—We numerically extract the two factors

of Eq. (1) from the resonance modes. The average intensity
ϱðrÞ ¼ hjψðrÞj2i is determined from the 200 modes nearest
in lifetime. The fluctuations at every point of the grid are
determined by ηðrÞ ¼ jψðrÞj2=hjψðrÞj2i. For the long-lived
mode of Fig. 1(b) this factorization in position space is
visualized in Fig. 2(a).
Such a factorization also applies to the incident Husimi

function Hðs; pÞ [64] on the boundary phase space ðs; pÞ,
where s ¼ 0 is the boundary point for φ ¼ 0 and p is the
normalizedmomentumparallel to the boundary. The average
Husimi function ϱðs; pÞ ¼ hHðs; pÞi is determined from the
200modes nearest in lifetime. The fluctuations at every point
ðs; pÞ are determined by ηðs; pÞ ¼ Hðs; pÞ=hHðs; pÞi. This
factorization is visualized in Fig. 2(b).
One observes that the fluctuations η in position space are

quite uniform and have almost no spatial structure within
the cavity. The same is true for the fluctuations η in the
boundary phase space. This even holds for regions, where
the intensity of the mode and the average are both close to
zero. More generally, we expect that the same factorization
holds in the full phase space restricted to the energy shell.
In the following we will demonstrate that the two factors
fulfill the conjecture.
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Universal fluctuations.—In Fig. 3(a) the nonuniversal
distribution of the intensities I in position space,
I ¼ jψðrÞj2, and phase space, I ¼ Hðs; pÞ, is shown for
the three modes from Fig. 1(b). In contrast, in Fig. 3(b) the
fluctuations η follow a universal exponential distribution of
mean one for more than 3 orders of magnitude in all cases.
This has been conjectured for quantum maps with partial
escape [49], corresponds to the properties of a normalized
complex random vector [65,66], and supports property (ii)
of the conjecture. Accordingly, the complex amplitude
fluctuations ψðrÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hjψðrÞj2i
p

follow a complex Gaussian
distribution of variance one (not shown). We stress, that the
analysis of the fluctuations presented here is possible
only, if the average is determined from sufficiently many
and sufficiently nearby modes in lifetime. We mention
that the fluctuations η of the far-field intensities also agree
with the universal exponential distribution (not shown).

The correlations of ηðrÞ and ηðs; pÞ on the scale of the
wavelength and under time evolution are expected to show
similar behavior as for closed systems [67].
A factorization of chaotic modes into an average part and

a fluctuating part is used for the explanation of single-mode
lasing [68], however, under the strong assumption of
small fluctuations. For the analysis of single- versus
multi-mode lasing the spatial overlap of two modes within
the cavity, C ¼ R jψ1ðrÞjjψ2ðrÞjdr, is important [37], with
R jψ1;2ðrÞj2dr ¼ 1. For long-lived modes of the stadium
billiard the mean value is C ≈ 0.77 [37]. From the above
universal fluctuations and assuming independence from
the average we find universally C ¼ π=4 ≈ 0.785 for two
chaotic modes with nearby lifetimes in any chaotic cavity.
This is consistent with the findings in Ref. [37] and is
numerically well confirmed in the present cavity. Thus the
demonstrated factorization has a strong impact on the
experimentally relevant question of single-mode lasing.
Average of modes and ray dynamics.—In the following

we demonstrate that the average structure of chaotic modes
with similar lifetime strongly depends on the lifetime and is
described by appropriate conditionally invariant measures
of ray dynamics, supporting property (i) of the conjecture.
So far averages have been computed for long-lived modes
[32,36,38,39]. In Fig. 4 we show the strong dependence on
ImðkRÞ for the average intensity in position space, phase
space, and in the far field. The averages are each over 200
nearby modes in ImðkRÞ normalized within the cavity.
They show very fine details compared to the individual
modes in Fig. 1(b).
In Fig. 4(b) we show the corresponding incident Husimi

functions. Their structure changes completely with ImðkRÞ.
One observes fractal structures in both the stable and the
unstable direction of the ray dynamics. The average far-
field intensity is presented in Fig. 4(c). It shows strong
directionality in agreement with Ref. [30].
These averagedmodes arewell explained by conditionally

invariant measures based on ray dynamics and smoothed on
the scale of a wave length, giving spatial densities ϱðrÞ and
densities ϱðs; pÞ in the boundary phase space. The wave-ray
comparison supports property (i) of the conjecture, see upper
half (wave) and lower half (ray) in Figs. 4(a) and 4(b). We
find perfect agreement at the natural decay rate γnat and the
inverse natural decay rate γinv, while for all other decay rates
we use the approximate, but very good, description by
product measures, as described in the following.
The natural conditionally invariant measure [40] with

natural decay rate γnat is determined from time evolution of a
smooth initial density in phase space using ray dynamics and
intensity changes at each reflection according to Fresnel’s
laws. This approach has been established for microcavities
by Soo-Young Lee et al. [24] and is confirmed for many
chaotic cavities [24,29,30,32,33,36,38,39]. We stress that
this measure describes those long-lived modes only, which
are close to the natural decay rate γnat. Note that at γnat the

(a)

(b)

FIG. 2. (a) Factorization of intensity jψðrÞj2 (left) in position
space for long-lived mode from Fig. 1(b) into average hjψðrÞj2i
(middle) of 200 modes nearest to ImðkRÞ ¼ −0.0053 (γnat) and
fluctuations ηðrÞ (right). (b) Factorization of incident Husimi
function Hðs; pÞ for same mode. In all figures the average
intensity (in position space within the cavity) is scaled to one
and intensities greater than the maximal value of the color bar are
shown with darkest color.

(a) (b)

FIG. 3. (a) Distribution of intensities I in position space inside
cavity (red) and boundary phase space (blue) for the three modes
of Fig. 1(b) (light to dark for decreasing lifetime) each with mean
intensity one. (b) Same as (a) for fluctuations η compared to a
universal exponential distribution PðηÞ ¼ expð−ηÞ (black).
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phase-space distribution is smooth along the unstable direc-
tion, see Fig. 4(b), left.
A second natural measure is determined from the inverse

dynamics, i.e., applying the inverse of Fresnel’s law at each
reflection [48,69,70]. The corresponding natural decay rate
of the inverse dynamics, γinv, corresponds to short-lived
modes, which again are perfectly described, see Fig. 4,
right. Note that at γinv the phase-space distribution is
smooth along the stable direction.
For all other decay rates we use the product measures

introduced for quantum maps [48]. They are based on the
observation that locally in phase space the averaged modes
have an (approximate) product structure along stable and
unstable direction of ray dynamics. The product measures
interpolate between the natural and the inverse natural
measure (depending on a parameter ξ ∈ R) and provide
conditionally invariant measures for all decay rates, see
Ref. [48] for their construction. These product measures
show very good, but not perfect, agreement with the
averaged modes, see the three intermediate examples in
Fig. 4. Thus we have found wave-ray correspondence for
the multifractal structures of the average of chaotic modes
down to unprecedented fine details.
Modes with longest lifetime.—Experimentally, the most

relevant modes for lasing are those with longest lifetime,
i.e., closest to the real axis. Their spectral density decreases

with smaller wavelength [70,71]. In order to have enough
modes for averaging, it is therefore numerically convenient
to use larger wavelengths, see spectrum in Fig. 5(a). The
average incident Husimi function near ImðkRÞ ¼ −0.004
has structure along the unstable direction, see Fig. 5(b),
upper half, and thus clearly differs from the one at γnat,
which is smooth along the unstable direction, see Fig. 4(b),
left. This structure is qualitatively well described by the
corresponding conditionally invariant product measure,

(a)

(b)

(c)

FIG. 4. Average of modes compared to ray dynamics. (a) Upper half (wave): average intensity of 200 modes each nearest to indicated
ImðkRÞ, with first and last corresponding to decay rates γnat and γinv. Lower half (ray): corresponding smoothed spatial density ϱðrÞ from
the conditionally invariant product measure for ξ ¼ 0, 0.232, 0.432, 0.722, 1 (left to right). (b) Same as (a) for average incident Husimi
function. Unstable and stable direction shown for exemplary point in phase space. (c) Average normalized far-field intensity (thin, blue)
compared to ray calculation (thick, red).

(a) (b) (c)

FIG. 5. (a) Upper part of spectrum including 898 long-lived
modes with ImðkRÞ > −0.0053 (horizontal line, γnat) for
ReðkRÞ ∈ ½1000; 1010�. (b) Upper half (wave): average incident
Husimi function for 100 modes nearest to ImðkRÞ ¼ −0.004.
Lower half (ray): corresponding smoothed density ϱðs; pÞ based
on the product measure for ξ ¼ −0.06. (c) As Fig. 3(b) for mode
nearest to ImðkRÞ ¼ −0.004 marked in (a).
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see Fig. 5(b), lower half. We analyze the relative fluctuations
and find a universal exponential distribution over almost 3
orders of magnitude, see Fig. 5(c). Thus factorization into
ray-dynamical average and universal fluctuations is essential
for understanding the structure of these modes.
As an aside we mention that for the considered cavity

shape there are whispering gallerylike modes for ReðkRÞ ≈
1000 and below, which are related to partial barriers. For
larger ReðkRÞ ≈ 3000 this ray-dynamical property does no
longer affect the modes, as expected from universal scaling
properties [72,73].
Scarring.—The scarring of eigenfunctions in closed

chaotic quantum billiards refers to an enhancement along
short unstable periodic orbits [74,75]. For chaotic modes in
dielectric cavities and in corresponding quantum maps with
escape, enhanced scarring of modes has been reported
[23,26,27,41–47]. We observe at very small wavelengths
that, in fact, the vast majority of modes show enhanced
intensities along segments of rays. This is visible in
Fig. 1(b) for examples with medium and short lifetime
as well as in the gallery of modes [54] for modes with
longest lifetime. It is best seen when the mode is shown
with a resolution on the scale of the wavelength, see the first
magnifications in Fig. 1(b) and also see Fig. S7 [54], which
shows the mode in the middle of Fig. 1(b) with a tenfold
finer resolution.
We explain this type of scarring in scattering systems

based on multifractality and universal fluctuations and
emphasize that it conceptually differs from periodic-orbit
scarring. It has a combined ray and wave origin: Whenever
the multifractal average structure (ray origin) shows strong
intensity enhancements in phase space, then the additional
universal fluctuations (wave origin) give rise to some phase-
space points with extremely high intensities. For the
examples in Fig. 3(a) there are even intensities that are
more than a factor of 100 larger than the mean intensity. In
position space this gives rise to enhancement of the mode
along the corresponding ray in the forward and backward
direction, sometimes persisting for one or two reflections.
Thus we call this phenomenon ray-segment scarring. The
most likely directions are determined by the high intensities
of the multifractal averaged structure in phase space. The
specific direction of the ray segment varies from mode to
mode, as the phase-space points with extreme intensities
vary due to the universal fluctuations, see, e.g., Fig. S3 [54].
The strongest intensity variation in the averaged modes

occurs according to Fig. 4(b) for medium and short lifetime
and according to Fig. 5(b) for modes with longest lifetime.
Correspondingly, the most prominent scarring occurs in
these cases, see gallery of modes [54].
For increasingly smaller wavelengths the averaged

modes show finer multifractal structures with increasing
intensity maxima. Thus we expect that ray-segment scar-
ring becomes even more prominent and is visible for longer
segments of a ray in the semiclassical limit.

Outlook.—A semiclassical theory that derives the perfect
conditionally invariant measures for modes of all lifetimes
remains a future challenge. A first step in this direction is
based on a local random vector model applicable to the
randomized baker map with partial escape [76]. Further
support for the conjecture is expected in chaotic scattering
systems with full escape, like the three-disk system.
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