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Starting from the kinetic theory description of massive spin-1
2
particles in the presence of a magnetic field,

equations for relativistic dissipative nonresistive magnetohydrodynamics are obtained in the small
polarization limit. We use a relaxation-time approximation for the collision kernel in the relativistic
Boltzmann equation and calculate nonequilibriumcorrections to the phase-space distribution functionof spin-
polarizable particles. We demonstrate that our framework naturally leads to emergence of the well-known
Einstein–deHaas andBarnett effects.Weobtainmultiple transport coefficients and show, for the first time, that
the coupling between spin and magnetic field appear at gradient order in the hydrodynamic equation.
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Introduction.—In noncentral heavy-ion collisions, a fire-
ball with large global angular momentum [1] is created that
experiences a very strong magnetic field [2] at early times
due to fast-moving charged spectators. While the angular
momentum in the fireball survives for a longer time due to
the conservation of total angular momentum, the magnetic
field tends to decay rapidly due to fast receding spectators.
However, the medium can sustain it for a longer time
provided it has large electrical conductivity. Nevertheless,
these extreme physical conditions may generate a spin
polarization and magnetization of the hot and dense matter,
very similar to magnetomechanical effects of Einstein–de
Haas [3] and Barnett [4]. Consequently, it was predicted
that signatures of such phenomena in relativistic heavy-ion
collision may be found in spin polarization of observed
particles [5–9]. Recently, much effort has been devoted
to studies of spin polarization of particles produced in
high-energy nuclear collisions, both from the experimental
[10–15] and theoretical perspective [16–35].
It has been well established that the fireball formed in

high-energy heavy-ion collisions behaves like a fluid [36].
In order to develop a hydrodynamic framework, which
allows for space-time evolution of polarization effects,
one needs to consider the conservation of total angular
momentum [37–39], along with the usual energy-
momentum and net particle current conservation. This
has led to the formulation of relativistic spin hydrody-
namics [34,40–63]. Similarly, in order to study the evolu-
tion of the strong magnetic field produced in high-energy
heavy-ion collisions, the theory of relativistic magnetohy-
drodynamics was also formulated [64–76]. However, these
two effects on polarization observables are not entirely

separable and therefore a unified framework of “spin
magnetohydrodynamics” needs to be developed [77].
Considering the phenomena of Einstein–de Haas and

Barnett effects, it is expected that coupling between spin
polarization and magnetization occurs in the presence of
rotation and/or electromagnetic field. Therefore, one needs
a formulation of spin magnetohydrodynamics to incorpo-
rate the effect of this coupling. In our previous work on the
formulation of dissipative spin-hydrodynamics [41,42], we
showed that the spin tensor acquires contributions from
various thermodynamic gradients or forces. Thus, as a
consequence, the spin polarization too receives contribu-
tion due to these forces [78,79]. It is therefore imperative
that we generalize our formulation to also include the
strong magnetic field produced in the initial stages of
relativistic heavy-ion collisions.
In the present Letter, we develop such a framework for a

single species of massive spin-1
2
particles that is electrically

charged with finite chemical potential. We obtain the
hydrodynamic equations of motion for this system, which
can exhibit spin polarization and magnetization, and
demonstrate that these equations are consistent with macro-
scopic conservation laws within kinetic theory framework.
We consider the relativistic Boltzmann equation for such a
system in the presence of magnetic field and obtain
equations for relativistic dissipative nonresistive magneto-
hydrodynamics in the limit of small polarization. We obtain
multiple transport coefficients and show that dissipative
currents contain coupling between spin and magnetic field
at first order in gradients.
We use the convention gμν ¼ diagðþ1;−1;−1;−1Þ and

ϵ0123 ¼ −ϵ0123 ¼ 1 for the metric tensor and totally
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antisymmetric Levi-Civita symbol, respectively. Throughout
the text, we use natural units where c ¼ ℏ ¼ kB ¼ 1.
Equations of motion.—In the absence of external source

of particles, the net particle four-current remains conserved.
The particle four-current is given by

Nμ ¼ nuμ þ nμ; ð1Þ
where n is the equilibrium net particle number density, uμ is
the fluid four-velocity defined in the Landau frame, and nμ

is the dissipative particle number diffusion. The conserva-
tion of particle current implies

∂μNμ ¼ 0: ð2Þ
The stress-energy tensor of the system of the fluid and
electromagnetic field can be expressed as [67]

Tμν ¼ Tμν
f þ Tμν

int þ Tμν
em: ð3Þ

Here Tμν
f denotes contribution from fluid, Tμν

em denotes
contribution from field, and Tμν

int denotes interaction
between fluid and field.
These three components of the stress-energy tensors can

be further expressed as [67,80]

Tμν
f ¼ ϵuμuν − ðPþ ΠÞΔμν þ πμν; ð4Þ

Tμν
int ¼ −Πμuν − Fμ

αMνα; ð5Þ

Tμν
em ¼ −FμαFν

α þ
1

4
gμνFαβFαβ; ð6Þ

where in Eq. (4) ϵ and P are the equilibrium energy density
and pressure, Π and πμν are the bulk and shear viscous
pressures, and Δμν ¼ gμν − uμuν is the projection operator
orthogonal to uμ. The form of stress-energy tensor in
Eq. (4) is written in the Landau frame: Tμν

f uν ¼ ϵuμ.
The additional quantities appearing in Eqs. (5) and (6),
i.e., Πμ, Fμν, andMμν are an auxiliary four-vector, Maxwell
field strength tensor, and electromagnetic magnetization
tensor, respectively. The auxiliary four-vector Πμ, required

for the overall consistency, has the form Πμ ¼ 2uνF
½μ
α Mν�α

and satisfies Π½μuν� ¼ −F½μ
α Mν�α [80], where X½μν� ≡ ðXμν −

XνμÞ=2 denotes antisymmetrization. Note that, because of
the latter condition, Tμν

int is symmetric in μ and ν.
In the current Letter, we are interested in the formulation

of nonresistive magnetohydrodynamics with spin. The first
term on the right-hand side of Eq. (5) can be shown to
vanish in the limit of infinite conductivity [67]. In this case,
we have

Tμν
int ¼ −Fμ

αMνα; ð7Þ
where the antisymmetric part of the right-hand side
vanishes in the nonresistive case [67]. In this case, the
field strength tensor is given by Fμν ¼ ϵμναβuαBβ, where Bμ

is the magnetic field four-vector. In our metric convention,

the field strength tensor and magnetization tensors are
related to each other as [81] Hμν ¼ Fμν þMμν [82,83],
where Hμν is the induction tensor. Taking the divergence of
Eq. (6), one can easily show that

∂νT
μν
em ¼ Fμ

αJα; ð8Þ
where we used Maxwell’s equation, which in the case of
magnetizable medium is given by

∂μHμν ¼ Jν: ð9Þ
Here Jμ is the charge four-current that generates the
electromagnetic field.
It is important to note that Jμ can have two origins—the

charged currents within the fluid system and a current
acting as the generator of a background external electro-
magnetic field, i.e., Jμ ¼ Jμf þ Jμext [68,69]. Note that, for
charged fluid, we have Jμf ¼ qNμ, where q is the electric
charge of the particles. Consequently, the field strength
tensor Fμν is composed of a field due to the charged
currents within the fluid and a background external field,
Fμν ¼ Fμν

f þ Fμν
ext. In the case with nonzero Fμν

ext, the Tμν

expressed in Eq. (3) is not conserved because the energy-
momentum contribution of the current Jμext, which produces
the external field, is not considered. In this case, the
divergence of the energy-momentum tensor is equal to a
force that we will be calling the “external force,”

∂νTμν ¼ −fμext; ð10Þ
where fμext ¼ Fμ

αJαext. Using Eqs. (3), (6), (7), and (10), the
expression for divergence of Tμν

f is found to be

∂νT
μν
f ¼ Fμ

αJαf þ
1

2
ð∂μFναÞMνα: ð11Þ

Later, we will prove this relation can be obtained exactly
using the relativistic Boltzmann equation.
Next, we consider angular momentum conservation. The

total angular momentum is the sum of the orbital and spin
angular momentum. We write this as

Jλ;μν ¼ Lλ;μμ þ Sλ;μν; ð12Þ
where Lλ;μν is the orbital part and Sλ;μν is the spin part of the
total angular momentum, respectively. In the presence of
external torque, the total angular momentum is not con-
served and its divergence leads to

∂λJλ;μν ¼ −τμνext: ð13Þ
Here we consider the field to be devoid of pure torque and
τμνext in the above equation is due to the moment of the
external force, i.e.,

τμνext ¼ xμfνext − xνfμext: ð14Þ
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The orbital part of the total angular momentum is defined as

Lλ;μν ¼ xμTλν − xνTλμ: ð15Þ
The divergence of the above equation leads to

∂λLλ;μν ¼ −xμfνext þ xνfμext ¼ −τμνext: ð16Þ
Therefore, from Eqs. (12), (13), and (16), we conclude that
the spin part of the total angularmomentum is conserved, i.e.,

∂λSλ;μν ¼ 0: ð17Þ
This seems reasonable because, in the present Letter, we do
not consider the field to carry pure torque that could have
affected the conservation of the spin part of the total angular
momentum. Subsequently, our hydrodynamic evolution
equations comprise Eqs. (2), (11), and (17). Next, we show
that these equations can also be obtained from kinetic theory.
Kinetic theory.—The phase-space distribution function

of particles with intrinsic angular momentum is given by
fðx; p; sÞ, where x≡ xμ is the space-time four vector,
p≡ pμ is the four-momentum of the particles, and s≡ sμν

is the classical analog of particle spin, which we define as
the internal angular momentum of the particles [37]. The
Boltzmann equation governing the evolution of the dis-
tribution function can be written as [84–87]�

pα ∂

∂xα
þmF α ∂

∂pα þmSαβ ∂

∂sαβ

�
f ¼ C½f�; ð18Þ

and similarly for antiparticles with f → f̄. In the above
equation, the particle four-momentum has the components
pμ ¼ ðEp;pÞ with Ep ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

p
and m denoting par-

ticle energy and mass, respectively, and C½f� is the collision
kernel. Here, F α ¼ dpα=dτ (τ being proper time along the
world line) is the force experienced by a particle moving
under the influence of an electromagnetic field, which can
lead to change in the four-momentum of the particles, and
Sαβ ¼ dsαβ=dτ is a pure torque term, which can lead to
change in the internal angular momentum of the particles.
Using the Frenkel condition, one can derive the force and

torque term in the Boltzmann equation as [84–88]

F α ¼ q
m
Fαβpβ þ

1

2
ð∂αFβγÞmβγ; ð19Þ

Sαβ ¼ 2Fγ½αmβ�
γ −

2

m2

�
χ −

q
m

�
Fϕγsϕ½αpβ�pγ: ð20Þ

The first termon the right-hand side of Eq. (19) represents the
Lorentz force and the second term is known as theMathisson
force. Here the magnetic dipole moment of particles mαβ is
proportional to the internal angular momentum, i.e.,
mαβ ¼ χsαβ, with χ resembling the gyromagnetic ratio
[84,89]. The expression in Eq. (20) is for the pure torque
term arising from interaction of the particle magnetic
moment and the electromagnetic field. It is important to

note that this torque term, obtained for composite particles,
affects only the internal angular momentum of the particles.
However, its origin from Wigner-function formalism is not
understood, as opposed to the force term [89]. Therefore, in
the present Letter, we do not consider the pure torque term
and leave its analysis for future work.
Next, we ascertain that appropriate moments of the

Boltzmann equation (18) leads to the hydrodynamic equa-
tions, i.e., Eqs. (2), (11), and (17). In terms of the distribution
function, the particle current, energy-momentum tensor, and
spin current of the fluid can be written as [42]

Nμ ¼
Z

dPdSpμðf − f̄Þ; ð21Þ

Tμν
f ¼

Z
dPdSpμpνðf þ f̄Þ; ð22Þ

Sλ;μν ¼
Z

dPdSpλsμνðf þ f̄Þ; ð23Þ

wheredP≡ gd3p=½Epð2πÞ3� anddS≡m=ðπsÞd4sδðs · sþ
s2Þδðp · sÞ with the length of the spin vector defined by the
eigenvalue of the Casimir operator s2 ¼ 1

2
ð1þ 1

2
Þ ¼

ð3=4Þ. In terms of the distribution function, one can also
define the magnetization tensor as [84,85]

Mμν ¼ m
Z

dPdSmμνðf − f̄Þ; ð24Þ

whose equilibrium expression is obtained in Ref. [87].
Assuming that the microscopic interactions do not violate

fundamental conservation laws, we have vanishing zeroth
and first moment of the collision kernel, i.e.,

R
dPdSC½f� ¼R

dPdSpμ C½f� ¼ 0. We also impose a matching condition
for the spin current such that the “spin moment” of the
collisionkernel vanishes, i.e.,

R
dPdS sμνC½f� ¼ 0 [42]. This

condition ensures that the collisions preserve internal angular
momentum of the particles. Using the definitions of the fluid
currents in terms of the distribution function, Eqs. (21)–(23),
and properties of the collision kernel as described above, we
find that the zeroth, first, and spin moment of the Boltzmann
equation (18), in absence of the torque term, leads to Eqs. (2),
(11), and (17), respectively. This is an important result of the
present Letter, which sets up the basis for the formulation of
spin magnetohydrodynamics from kinetic theory.
Dissipative hydrodynamics.—In order to derive constit-

utive relations for dissipative quantities, we consider the
Boltzmann equation, without the pure torque term, in
relaxation-time approximation [90],�

pα ∂

∂xα
þmF α ∂

∂pα

�
f ¼ −ðu · pÞ f − feq

τeq
; ð25Þ

where u · p≡ uμpμ, feq is the equilibrium distribution
function, and τeq is the relaxation time, which in the present
Letter is assumedtobe independentofparticlemomentumand
energy. Note that the collision kernel in the relaxation-time
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approximation, i.e., right-hand side of the above equation, has
vanishing zeroth and first moment with the Landau frame
definition of the fluid velocity. Vanishing of the spin moment
is guaranteed if we impose the matching condition [42]

uλδSλ;μν ≡ uλðSλ;μν − Sλ;μνeq Þ ¼ 0; ð26Þ

where δSλ;μν is the nonequilibrium correction to the spin
current. With the above condition, along with the Landau
frame and matching conditions, the zeroth, first, and spin
moment of Eq. (25) lead to the hydrodynamic equations (2),
(11), and (17), respectively.
In the present Letter, we consider equilibrium distribu-

tion to be described by Fermi-Dirac statistics,

feq ¼
1

1þ exp ½βðu · pÞ − ξ − 1
2
ω∶s� ; ð27Þ

where β≡ 1=T is the inverse temperature, ξ≡ μ=T is the
ratio of chemical potential and temperature, and
ω∶s≡ ωμνsμν. Here, ωμν is a Lagrange multiplier corre-
sponding to angular momentum conservation [40] and is
related to the spin polarization observable via the Pauli-
Lubanski four-vector [37,91]. For antiparticles, one can
obtain the equilibrium distribution f̄eq from the above
equation with the replacement ξ → −ξ. In the current
formulation, we work in the small polarization limit.
Hence, keeping terms up to linear order in ωμν, one can
write the equilibrium distribution function as

feq ¼ f0 þ
1

2
ðω∶sÞf0f̃0; ð28Þ

where f0 ≡ f1þ exp ½βðu · pÞ − ξ�g−1 and f̃0 ≡ 1 − f0.
Using f ¼ feq and f̄ ¼ f̄eq in Eq. (24), we find that the

equilibrium expression for the magnetization tensor is linear
in ωμν and takes the formMμν

eq ¼ a1ωμν þ a2u½μuγων�γ [87].
In order to make connection with the Barnett effect, we note
that, in global equilibrium,ωμν corresponds to rotation of the
fluid [9,22,37,40,51,54,91–93]. Therefore, from the expres-
sion ofMμν

eq, we conclude that rotation of the fluid produces
magnetization, which is precisely the physics of the Barnett
effect [4,66]. This expression also implies the converse, i.e.,
the Einstein–de Haas effect.
The expressions for dissipative quantities that we need to

obtain are nμ defined in Eq. (1), Π and πμν defined in
Eq. (4), and δSλ;μν defined in Eq. (26). In terms of the
nonequilibrium corrections to the distribution function,
δf ¼ f − feq and δf̄ ¼ f̄ − f̄eq, these dissipative quantities
can be expressed as

nμ ¼ Δμ
α

Z
dPdSpαðδf − δf̄Þ; ð29Þ

Π ¼ −
1

3
Δαβ

Z
dPdSpαpβðδf þ δf̄Þ; ð30Þ

πμν ¼ Δμν
αβ

Z
dPdSpαpβðδf þ δf̄Þ; ð31Þ

δSλ;μν ¼
Z

dPdSpλsμνðδf þ δf̄Þ; ð32Þ

where Δμν
αβ ≡ 1

2
ðΔμ

αΔν
β þ Δμ

βΔν
αÞ − 1

3
ΔμνΔαβ is a traceless

symmetric projection operator that is orthogonal to both uμ

and Δμν. To obtain the relativistic Navier-Stokes expres-
sions for the above dissipative quantities, we need to
evaluate δf and δf̄ up to first order in hydrodynamic
gradients. To that end, we employ the Boltzmann equation
in the relaxation-time approximation (25).
Using the matching condition, Eq. (26), we obtain the

evolution equation for the spin polarization tensor,

_ωμν ¼ D½μν�
Π θ þD½μν�γ

a _uγ þD½μν�γ
n ð∇γξÞ þD½μν�ρκ

B ð∇ρBκÞ
þD½μν�ρκ

π σρκ þD½μν�ρκ
Ω Ωρκ þD½μν�ϕρκ

Σ ð∇ϕωρκÞ; ð33Þ
where _X≡uα∂αX,∇μ≡Δμα

∂α, σμν≡Δμν
αβð∂αuβÞ, andΩμν ≡

ð∂μuν − ∂νuμÞ=2 is the fluid vorticity tensor. In the above
equation, dependence on hydrodynamic gradients is made
explicit and the tensor coefficients D contain equilibrium
quantities. The explicit forms of these coefficients are
provided in Ref. [87]. We see that the above equation
contains information about the connection between evolution
of the spin polarization tensorωμν and fluid vorticityΩμν via
the term having coefficientDμνρκ

Ω . It is important to note that
the coefficient Dμνρκ

Ω vanishes in the absence of an electro-
magnetic field,which leads us to conclude that the conversion
of spin polarization to thermal vorticity proceedsvia coupling
with the electromagnetic field. While vorticity terms have
previously been obtained in the constitutive equations in the
absence of electromagnetic field [94–96], we obtain here, for
the first time, such coupling terms. Another important feature
of Eq. (33) is that the coupling between magnetic field and
spin polarization occur at gradient order.
The nonequilibrium correction to the phase-space dis-

tribution function, up to first order in space-time gradients,
is obtained from Eq. (25) as

δf1 ¼ −
τR

ðu · pÞ
�
pα

∂α þ
mχ

2
ð∂αFβγÞsβγ∂ðpÞα

�
feq

þ τR
ðu · pÞ qF

αβpβ∂
ðpÞ
α

�
τR

ðu · pÞ
�
pρ

∂ρ

þmχ

2
ð∂ρFϕκÞsϕκ∂ðpÞρ

�
feq

�
; ð34Þ

where ∂ðpÞα ≡ ð∂=∂pαÞ is the partial derivative with respect
to particle momenta. To obtain first-order nonequilibrium
correction for antiparticles δf̄1, one has to replace f → f̄,
ξ → −ξ, and q → −q in the above equation. Substituting
the first-order nonequilibrium corrections δf1 and δf̄1 in
Eqs. (29)–(32), we obtain the constitutive relations for the
dissipative quantities as
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nμ ¼ τeq½βhμinΠθ þ βhμiαna _uα þ βhμiαnn ð∇αξÞ þ βhμiαβnF ð∇αBβÞ
þ βhμiαβnπ σαβ þ βhμiαβnΩ Ωαβ þ βhμiαβγnΣ ð∇αωβγÞ�; ð35Þ

Π ¼ τeq½βΠΠθ þ βαΠa _uα þ βαΠnð∇αξÞ þ βαβΠFð∇αBβÞ
þ βαβΠπσαβ þ βαβΠΩΩαβ þ βαβγΠΣ ð∇αωβγÞ�; ð36Þ

πμν ¼ τeq½βhμνiπΠ θ þ βhμνiαπa _uα þ βhμνiαπn ð∇αξÞ þ βhμνiαβπF ð∇αBβÞ
þ βhμνiαβππ σαβ þ βhμνiαβπΩ Ωαβ þ βhμνiαβγπΣ ð∇αωβγÞ�; ð37Þ

δSλ;μν ¼ τeq½Bλ;½μν�
Π θ þ Bλ;½μν�α

a _uα þ Bλ;½μν�α
n ð∇αξÞ

þ Bλ;½μν�αβ
F ð∇αBβÞ þ Bλ;½μν�αβ

π σαβ þ Bλ;½μν�αβ
Ω Ωαβ

þ Bλ;½μν�αβγ
Σ ð∇αωβγÞ�; ð38Þ

where Xhμi ≡ Δμ
αXα represents projection of a vector

orthogonal to fluid four-velocity and Xhμνi ≡ Δμν
αβX

αβ

denotes traceless symmetric projection of a two-rank
tensor. The above equations represent the first result of
relativistic formulation of spin magnetohydrodynamics. We
find that all dissipative quantities are affected by several
hydrodynamic gradients and contain coupling between spin
and magnetic field. The detailed expressions for the tensor
transport coefficients, appearing in the above equation, are
provided in Ref. [87]. Very interestingly, we observe that,
apart from usual hydrodynamic gradients, Eqs. (35)–(38)
also contain gradients of magnetic field.
In order to identify which first-order gradient terms

appearing in Eqs. (35)–(38) are dissipative, it is important
to compute entropy production in the system. We consider
the entropy four-current from the Boltzmann H theorem,

Hμ ¼ −
Z

dPdSpμ½ðf ln f þ f̃ ln f̃Þ þ ðf̄ ln f̄ þ ˜̄f ln ˜̄fÞ�:

ð39Þ
Demanding that the divergence of the above entropy
current is positive definite, i.e., ∂μHμ ≥ 0, we obtain [87]

Π ¼ −ζθ; nμ ¼ κμαð∇αξÞ; πμν ¼ ημναβσαβ; ð40Þ
δSμ;αβ ¼ Σμαβλγρð∇λωγρÞ: ð41Þ

From the above analysis, we conclude that only those first-
order gradient terms that appear in Eqs. (40) and (41) are
dissipative in nature. Comparing Eqs. (35)–(38) and

Eqs. (40) and (41), we obtain ζ¼−τeqβΠΠ, κμα¼τeqβ
hμiα
nn ,

ημναβ ¼ τeqβ
hμνiαβ
ππ , andΣλμναβγ ¼ τeqB

λ;½μν�αβγ
Σ . It is important

to note that these dissipative transport coefficients contain
coupling between magnetic field and the spin polarization/
magnetization tensor [87].
Summary and outlook.—We presented the first formu-

lation of relativistic spin magnetohydrodynamics within the
kinetic theory framework for spin-1

2
particles. We derived

equations for relativistic dissipative nonresistive magneto-
hydrodynamics in the limit of small polarization. We used a
relaxation-time approximation for the collision kernel in the
relativistic Boltzmann equation and calculated nonequili-
brium corrections to the phase-space distribution function of
spin-polarizable particles. We demonstrated that multiple
transport coefficients, dissipative as well as nondissipative,
are present for such a system.We showed that our framework
naturally leads to the emergence of thewell-knownEinstein–
de Haas and Barnett effects. Further, our results also show
that the coupling between the magnetic field and spin
polarization appears at gradient order.
Looking forward, it will be interesting to consider a

generalization of the above framework to include resistive
effects to the flow of charge current. Given that several
gradients are present in all dissipative currents, the present
first-order theory may prove to be causal and stable, even
though it is formulated in the Landau frame. Therefore, it is
important to perform a stability analysis [97–99] of
Eqs. (35)–(38). Nonetheless, the present framework can
also be extended to include second-order gradients in order
to formulate second-order spin magnetohydrodynamics.
We leave these problems for future work.
Finally, we would like to outline another important

implication of our formulation in the context of relativistic
heavy-ion collisions. Global polarization of Λ-hyperon is
generally attributed to large angular momentum generated
in noncentral collisions. On the other hand, it has been
observed that, at low-energy collisions, there is a noticeable
difference of Λ and anti-Λ polarization [10], which cannot
be explained by global angular momentum alone. It was
conjectured that the coupling between magnetic field and
intrinsic magnetic moment of emitted particles may induce
a larger polarization for anti-Λ compared to Λ
[10,100]. Therefore, a simulation based on our unified
framework of spin magnetohydrodynamics has the poten-
tial to explain this difference of Λ and anti-Λ polarization,
which we leave for future work.
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