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We explore the analytic structure of the three-channel S matrix by generalizing uniformization and
making a single-valued map for the three-channel S matrix. First, by means of the inverse Jacobi’s elliptic
function we construct a transformation from eight Riemann sheets of the center-of-mass energy complex
plane onto a torus, on which the three-channel S matrix is represented single-valued. Second, we show that
the Mittag-Leffler expansion, a pole expansion, of the three-channel scattering amplitude includes not only
topologically trivial but also nontrivial contributions and is given by the Weierstrass zeta function. Finally,
taking a simple nonrelativistic effective field theory with contact interaction for the S ¼ −2, I ¼ 0,
JP ¼ 0þ, ΛΛ − NΞ − ΣΣ coupled-channel scattering, we demonstrate that as a function of the
uniformization variable the scattering amplitude is, in fact, given by the Mittag-Leffler expansion and
is dominated by contributions from neighboring poles.
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The spectrum of excited states and their structure are the
central issues in the study of interacting quantum systems
such as nuclear, hadron, atomic, and molecular systems.
Those excited states show up as resonances embedded in
the continuum spectrum. Extraction of resonance informa-
tion from the continuum spectrum is one of the key
subjects.
In hadron physics, many candidates of exotic hadrons

have recently been found near the threshold of new
hadronic channels [1,2]. However, most of the existing
analyses of the spectra for these signals are unsatisfactory.
For instance some assume the Breit-Wigner formula near
the threshold, which cannot be justified, and/or an arbitrary
background, while some others depend on particular
models.
Very recently, a new method, the uniformized Mittag-

Leffler expansion, has been proposed in Ref. [3] for
extracting resonance information from the continuum
spectrum. The method is theoretically well-grounded,
model-independent, simple, and useful. The idea of the
method is to find a variable in terms of which the S matrix is

single-valued (uniformization [4,5]) and to express the
S matrix as a sum of pole terms (Mittag-Leffler expansion
[6,7]). Therefore, it is crucial to find an appropriate
uniformization variable that matches the analytic structure
of the S matrix.
For the single-channel S matrix, the center-of-mass

momentum serves a role as the uniformization variable,
and the Mittag-Leffler expansion has already been studied
in Refs. [8,9].
For the two-channel S matrix, a uniformization variable

was introduced in Refs. [5,10] and the uniformized Mittag-
Leffler expansion has been examined in the past few
years [3,11,12].
Clearly, an extension of the method to three-channel

reactions is an important step for the analysis of multi-
channel scattering. Up to now, there have only existed some
works in which an approximated local uniformization has
been employed for the analysis of three-channel scattering
[13–15]. It has been pointed out that the three-channel
S matrix can be topologically mapped on a torus [5,16].
However, as far as we know, an explicit formula of the
uniformization variable for the three-channel S matrix is yet
to be known.
The purpose of this Letter is threefold. The first is to

generalize uniformization. For the first time, we explicitly
construct a uniformization variable for the three-channel
Smatrix. The second is to obtain an explicit expressionof the
Mittag-Leffler expansion for the three-channel scattering
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amplitude taking account of both topologically trivial
and nontrivial contributions. The third is to demonstrate
the validity of the obtained results in a simple three-
channel model.
Throughout this Letter, we assume that the singularities

of the three-channel S matrix are poles and the three right-
hand cuts starting from each threshold. We do not consider
left-hand cuts or other singularities that cannot be removed
by the present uniformization.
First, we generalize uniformization to the three-channel

S matrix. As a function of
ffiffiffi
s

p
, the Riemann surface for

a three-channel S matrix is an eight-sheeted complex
plane with three branch points at

ffiffiffi
s

p ¼ ε1, ε2, and ε3
(ε1 < ε2 < ε3), where εi ¼ Mi þM0

i is the threshold
energy, Mi and M0

i are the masses of particles in the ith
channel. We also define “momentum,” qi ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
s − ε2i

p
and

Δij by Δij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε2j − ε2i

q
for later use. The center-of-

mass momentum, ki, is given by
ffiffiffi
s

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

i þ k2i
p

þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M02

i þ k2i
p

. qi coincides with ki up to a factor of 2,
qi ¼ 2ki, only when Mi ¼ M0

i.
The uniformization of the three-channel S matrix is

carried out in two steps. We uniformize channels 1 and 2 in
the first step and channel 3 in the second step.
The first step is the same as the uniformization of the

two-channel S matrix for channels 1 and 2 [5,10]. We
define z12 by

z12 ¼
q1 þ q2
Δ12

: ð1Þ

Inversely, q1 and q2 are given as single-valued functions
of z12 by

q1 ¼
Δ12

2

�
z12 þ

1

z12

�
; q2 ¼

Δ12

2

�
z12 −

1

z12

�
: ð2Þ

q3 is given by

q3 ¼
Δ12

2
z12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1 −

γ2

z212

��
1 −

1

γ2z212

�s
; ð3Þ

where γ ¼ ½ðΔ13 þ Δ23Þ=Δ12�. q3 is a double-valued
function of z12 with four branch points, z12 ¼
½ð�Δ13 � Δ23Þ=Δ12� ¼ �γ;�ð1=γÞ.
Thus, in the first step, the eight Riemann sheets of the

complex
ffiffiffi
s

p
plane are mapped onto two Riemann sheets of

the complex z12 plane with four branch points as shown
in Fig. 1.
The second step is to uniformize channel 3. It is known

that two Riemann sheets with four branch points are
homeomorphic to a torus [4,17]. The map from the former
with the coordinate v to the latter with the coordinate u is
given by an elliptic integral. In particular, when v ¼ �1

and �1=k (k ≠ 0, �1) are the four branch points, the
transformation is given by

u ¼ sn−1ðv; kÞ; ð4Þ

where sn−1ðv; kÞ is the inverse Jacobi’s elliptic function
[17,18]

sn−1ðv; kÞ ¼
Z

v

0

ds

ð1 − s2Þ1=2ð1 − k2s2Þ1=2 ; ð5Þ

where also the Riemann sheet on which v is located has
to be specified. Inversely, v is given as a single-valued
function of u by

v ¼ snðu; kÞ: ð6Þ

Jacobi’s elliptic function is doubly periodic:

snðuþ 2ω1; kÞ ¼ snðuþ 2ω2; kÞ ¼ snðu; kÞ; ð7Þ

where

2ω1 ¼ 4KðkÞ ¼ 4

Z
1

0

dsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − s2Þð1 − k2s2Þ

p ;

2ω2 ¼ 2iK0ðkÞ ¼ 2i
Z

1

0

dtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − t2Þð1 − ð1 − k2Þt2Þ

p : ð8Þ

Therefore, the image of the map, Eq. (4), is a torus with two
periods: 2ω1 ¼ 4KðkÞ and 2ω2 ¼ 2iK0ðkÞ.
Combining the first and second steps by taking

k ¼ 1=γ2, v ¼ γ=z12, and u ¼ 4Kð1=γ2Þz, we define the
three-channel uniformization variable z as

FIG. 1. Two-sheeted complex z12 plane for the three-channel
S matrix. Eight Riemann sheets of the complex

ffiffiffi
s

p
plane are

specified by a set of complex channel momenta, e.g., ½ttb�þ
means Imq1 > 0, Imq2 > 0, Imq3 < 0, and Im

ffiffiffi
s

p
> 0. Tþþ

1 ,
Tþþ
2 , and Tþþ

3 are physical thresholds of channels 1, 2, and 3,
respectively. Tþþ

3 together with its unphysical counterparts, Tþ−
3 ,

T−þ
3 , and T−−

3 form the set of branch points.
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z ¼ 1

4Kð1=γ2Þ sn
−1ðγ=z12; 1=γ2Þ; ð9Þ

where z12 is given by Eq. (1). Inversely, z12 is given as a
single-valued function of z by

z12 ¼
γ

snð4Kð1=γ2Þz; 1=γ2Þ : ð10Þ

q1, q2, and q3 are given as single-valued functions of z by

q1 ¼
Δ12

2

�
γ

snð4Kð1=γ2Þz; 1=γ2Þ þ
snð4Kð1=γ2Þz; 1=γ2Þ

γ

�
;

q2 ¼
Δ12

2

�
γ

snð4Kð1=γ2Þz; 1=γ2Þ −
snð4Kð1=γ2Þz; 1=γ2Þ

γ

�
;

q3 ¼
Δ12

2

γsn0ð4Kð1=γ2Þz; 1=γ2Þ
snð4Kð1=γ2Þz; 1=γ2Þ ; ð11Þ

where sn0ðu; kÞ ¼ ðd=duÞsnðu; kÞ. By combining the first
and second steps, the eight Riemann sheets of the complexffiffiffi
s

p
plane are mapped onto a torus with periods 1 and iτ,

where τ ¼ ½4K0ð1=γ2Þ=2Kð1=γ2Þ�, as shown in Fig. 2 [19].
Next, we investigate the Mittag-Leffler expansion of the

three-channel scattering amplitude, A, which is related to
the S matrix, S, as Aij ¼ ½ðSij − δijÞ=2i

ffiffiffiffiffiffiffiffi
kikj

p �.
The Mittag-Leffler expansion of a meromorphic function

on a complex plane, F ðzÞ, is given by (see, e.g., [6,7])

F ðzÞ ¼
X
i

ri
z − zi

þ subtraction terms

¼ zn
X
i

ri
ðz − ziÞzni

þ
Xn−1
k¼0

F ðkÞð0Þ
k!

zk; ð12Þ

where fzig and frig are positions and residues of the poles
of F ðzÞ. When the sum,

P
i½ri=ðz − ziÞ�, is divergent, we

have to subtract terms of order zk (k ¼ 0;…; n − 1) until
the n times subtracted sum, zn

P
i½ri=ðz − ziÞzni �, is con-

vergent. This is exactly the same as in the dispersion
theory [7].

As a function of the uniformization variable, z, the
three-channel scattering amplitude, AðzÞ, is defined on a
torus and hence is an elliptic function, a doubly perio-
dic meromorphic function. Therefore, the Mittag-Leffler
expansion becomes

AðzÞ ¼
X
i

�
ri

z − zi
þ
X

m;n
0 ri
z − zi −Ωm;n

�

þ subtraction terms: ð13Þ
P

i is a sum in the fundamental period rectangle, fzig and
frig are the positions and residues of the poles of AðzÞ in
the fundamental period rectangle,

P0
m;n denotes a sum

over all integers m and n, excluding m ¼ n ¼ 0.
Ωm;n ¼ 2mω0

1 þ 2nω0
2. (2ω0

1 ¼ 1 and 2ω0
2 ¼ iτ for our

definition of z, but what follows holds for arbitrary periods,
ω0
1 and ω0

2.) The residues, frig, satisfy the conditionP
i ri ¼ 0 [4,17,18]. In the parenthesis of Eq. (13), the

first and second terms are called topologically trivial and
nontrivial contributions, respectively.P0

m;n½ri=ðz − zi −Ωm;nÞ� is linearly divergent and AðzÞ
is given in the form of Eq. (12) with n ¼ 2, unless the sum
in the fundamental period rectangle causes further diver-
gences. We can rewrite it as

AðzÞ ¼
X
i

riζðz − ziÞ þ C0 þ C1z; ð14Þ

where ζðzÞ is the Weierstrass zeta function [17,18]
defined by

ζðzÞ ¼ 1

z
þ
X

m;n
0
�

1

z −Ωm;n
þ 1

Ωm;n
þ z
Ω2

m;n

�

¼ 1

z
þ
X

m;n
0 z2

ðz − Ωm;nÞΩ2
m;n

: ð15Þ

TheWeierstrass zeta function is odd, ζð−zÞ ¼ −ζðzÞ, and is
quasiperiodic, ζðzþ 2ω1Þ ¼ ζðzÞ þ 2η1 and ζðzþ 2ω2Þ ¼
ζðzÞ þ 2η2, for constants η1 and η2. C0 is determined
from the asymptotic condition that the scattering ampli-
tude should vanish as s → ∞, i.e., Að0Þ ¼ 0, as
C0 ¼ −

P
i riζð−ziÞ ¼

P
i riζðziÞ, where ζð−zÞ ¼ ζðzÞ is

used. C1 is determined from the periodicity of AðzÞ, i.e.,
Aðzþ 2ω1Þ ¼ Aðzþ 2ω2Þ ¼ AðzÞ as C1 ¼ 0, whereP

i ri ¼ 0, ζðzþ 2ω1Þ ¼ ζðzÞ þ 2η1 and ζðzþ 2ω2Þ ¼
ζðzÞ þ 2η2 are used. Therefore, we finally obtain

AðzÞ ¼
X
i

ri½ζðz − ziÞ þ ζðziÞ�; ð16Þ

where ri½ζðz − ziÞ þ ζðziÞ� is identified as the contri-
bution of the ith pole to the three-channel scattering
amplitude, AðzÞ.FIG. 2. Torus representation of the three-channel S matrix.
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Generalized uniformization, Eq. (9), together with
Eq. (1), its inverse, Eq. (11), and the Mittag-Leffler
expansion, Eq. (16), are the main results of the formal
part of this Letter.
If zi is a pole of AðzÞ with a residue ri, so is −z�i with a

residue −r�i because of the unitarity of the S matrix,
Sð−q�1;−q�2;−q�3Þ ¼ S�ðq1; q2; q3Þ or Sð−z�Þ ¼ S�ðzÞ.
Therefore, poles appear either as pairs symmetrically with
respect to the imaginary z axis with complex residues
related to each other, or independently on the axis, Rez ¼ 0

or 0.5, with purely imaginary residues.
Now, we examine the above results in a simple model

of the S ¼ −2, I ¼ 0, JP ¼ 0þ, ΛΛ − NΞ − ΣΣ coupled-
channel scattering, in which possible existence of the H
particle [20] has extensively been studied both theoretically
and experimentally. Hereafter, channels ΛΛ, NΞ, and ΣΣ
are referred to as 1, 2, and 3, respectively. We generalize a
nonrelativistic effective field theory for nucleon scattering
[21] to the coupled three-channel scattering. The leading-
order effective Lagrangian in the flavor-singlet 1S0 channel
is given by

L ¼ B†
�
i∂t þ M̂ þ ∇2

2M̂

�
B −

1

2
½BB�†Ĉ½BB�; ð17Þ

where B ¼ ðN ΛΣΞÞT and ½BB� ¼ ðΛΛNΞΣΣÞT . The
interaction is assumed to be only in the flavor-singlet
channel as

Ĉ ¼ C

0
BBB@

1
8

1
4

−
ffiffi
3

p
8

1
4

1
2

−
ffiffi
3

p
4

−
ffiffi
3

p
8

−
ffiffi
3

p
4

3
8

1
CCCA; ð18Þ

where C is a coupling of dimension ðmassÞ−2.
The 3 × 3 scattering amplitude, Â, is given by

iÂ ¼ −iĈð1̂ − Ĝ ĈÞ−1; ð19Þ

which is rescaled from the previous definition as
ð4π= ffiffiffiffiffiffiffiffiffiffiffiffi

MiMj
p ÞAij → Aij. Ĝ is the diagonal 3 × 3 Green

function, Gij ¼ δijGi, Gi ¼ ½ð−iμikiÞ=2π�, and μi ¼
½MiM0

i=ðMi þM0
iÞ� is the reduced mass in the channel, i.

Because the model is nonrelativistic,
ffiffiffi
s

p ¼ εi þ ðk2i =2μiÞ,
and ki ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiðμi=εiÞ
p

qi þOðq3i Þ. The difference of ki andffiffiffiffiffiffiffiffiffiffiffiffiffiffiðμi=εiÞ
p

qi can be incorporated but is nonessential in the
following discussion, which is ignored just for simplicity.
MassesMN ,MΛ,MΣ, andMΞ are taken to be averagemasses
of charged baryons in review of particle physics [22]. In this
model the number of poles is four, which is due to the
extremely simple structure of the interaction. This model is
used in order to demonstrate validity of our formalism but not
to describe realistic physics.
Real and imaginary parts of the ΛΛ → ΛΛ elastic

scattering amplitude, A11, are shown in Fig. 3 for four
different cases, (a)–(d), with different coupling, C, where
we present the amplitudes of direct model calculation,
reconstructed via the uniformized Mittag-Leffler expansion
with all four poles, 1þ 2þ 3þ 4, the contributions from

FIG. 3. Real and imaginary parts of the ΛΛ → ΛΛ elastic scattering amplitude,A11, for cases (a)–(d). Lines represent the amplitude of
direct model calculation (blue, solid), reconstructed uniformized Mittag-Leffler expansion with all four poles 1þ 2þ 3þ 4 (red,
dashed), contributions from pole 1 (pink, dot-dot-dashed), pole 2 (green, dotted), and their sum 1þ 2 (orange, dot-dashed), respectively.
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pole 1, 2, and their sum, 1þ 2, respectively. Pole positions
and residues of A11 are given in Table I.
Sharp structures are observed below the ΛΛ threshold

(bound state) in case (a), at the ΛΛ threshold (virtual
state) in case (b), between the ΛΛ and NΞ threshold
(resonance) in case (c), and at the NΞ threshold (“threshold
cusp”) in case (d). The amplitudes of direct model
calculation and Mittag-Leffler expansion with all four
poles, 1þ 2þ 3þ 4, perfectly coincide, which confirms
our result, Eq. (16). The contribution from pole 1, which is
nearest to the physical domain, gives the sharp structures
of the amplitudes of direct model calculation. The sum of
contributions from poles 1 and 2 reproduces the amplitudes
of direct model calculation in almost the entire physical
domain. This is due to the extremely simple nature of the
model, i.e., the number of poles is four and only two of
them are close to the physical domain, which will not be the
case in a more realistic situation.
Figure 4 is the contour plot of jA11j2 on the torus, a map

of the three-channel S matrix, for cases (a)–(d). It can be
observed that as the coupling, C, increases, pole 1 moves
along the imaginary axis transitioning from a bound-state
pole on the [ttt] sheet in case (a) to a virtual-state pole on
the [btt] sheet in case (b), then it becomes a resonance pole
on the [btt] sheet in case (c), and finally a pole on the [tbt]
sheet, which causes a “threshold cusp” in case (d). Pole 2
moves along the imaginary axis on the [btt] sheet until it
merges with pole 1. Then, it moves symmetrically to pole 1
with respect to the imaginary axis. Poles 3 and 4 hardly
move. From Fig. 4 together with Fig. 3, one can clearly
observe that the effects of the poles show up as sharp
structures on the scattering amplitude around the nearest
physical energy region. We would like to mention here that
the use of the uniformization variable makes it extremely
easy and transparent to locate the positions of poles. When

one traces poles on multisheeted complex
ffiffiffi
s

p
plane one has

to move around different sheets.
The above demonstration shows that as a function of the

uniformization variable the three-channel scattering ampli-
tude is indeed given by the Mittag-Leffler expansion,
Eq. (16), and can intuitively be understood from the

TABLE I. Pole positions and residues of the ΛΛ → ΛΛ elastic scattering amplitude, A11, for cases (a)–(d). The first and second rows
are the pole positions, zi, and residues, ri, respectively, on the torus. The third row is the complex center-of-mass energy of the pole,

ffiffiffiffi
si

p
,

in units of [GeV] and the complex Riemann sheet. The threshold energies, ε1, ε2, and ε3, are 2.231, 2.257, and 2.381 GeV, respectively.

C (GeV−2) Pole 1 Pole 2 Pole 3 Pole 4

(a) 40.00
−0.267i −0.496i 0.5þ 0.043i 0.5 − 0.702i
0.172i −0.154i −0.015i −0.004i

2.221 [ttt] 2.200 [btt] −1.802i [ttb] 13.477i [tbt]

(b) 45.60
−0.371i −0.398i 0.5þ 0.048i 0.5 − 0.700i
1.750i −1.727i −0.018i −0.005i

2.231 [btt] 2.229 [btt] −1.252i [ttb] 11.722i [tbt]

(c) 60.00
0.177 − 0.392i −0.177 − 0.392i 0.5þ 0.060i 0.5 − 0.697i
−0.215þ 0.018i 0.215þ 0.018i −0.027i −0.009i

2.253 − 0.005i [btt] 2.253þ 0.005i [btt] 0.907 [ttb] 8.657i [tbt]

(d) 80.00
0.271 − 0.402i −0.271 − 0.402i 0.5þ 0.073i 0.5 − 0.691i
−0.249þ 0.028i 0.249þ 0.028i −0.038i −0.017i

2.259þ 0.002i [tbt] 2.259 − 0.002i [tbt] 1.510 [ttb] 6.124i [tbt]

FIG. 4. Contour plot of jA11j2 on the torus for cases (a)–(d).
The red line corresponds to the physical domain. Labels ΛΛ, NΞ,
and ΣΣ represent the corresponding thresholds, and ∞ corres-
ponds to infinity point on the physical sheet.
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behavior of the poles. Also seen from the above demon-
stration is that a resonance pole smoothly transitions to a
pole, which causes a “threshold cusp,” by the change of the
interaction strength. There is no essential difference
between these two poles [12].
Having shown that our proposed method is valid, we are

now planning to analyze actual experimental data, e.g.,
[23–25], by our method. We hope that we will report the
results of the analysis in the near future.
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