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In this Letter, employing the generalized off-shell free energy, we treat black hole solutions as defects in
the thermodynamic parameter space. The results show that the positive and negative winding numbers
corresponding to the defects indicate the local thermodynamical stable and unstable black hole solutions,
respectively. The topological number defined as the sum of the winding numbers for all the black hole
branches at an arbitrary given temperature is found to be a universal number independent of the black hole
parameters. Moreover, this topological number only depends on the thermodynamic asymptotic behaviors
of the black hole temperature at small and large black hole limits. Different black hole systems are
characterized by three classes via this topological number. This number could help us in better
understanding the black hole thermodynamics and, further, shed new light on the fundamental nature
of quantum gravity.
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Introduction.—Black holes predicted by general rela-
tivity play a central role in modern physics. Observa-
tions of binary black hole mergers by the LIGO/Virgo
Collaboration [1] and reconstruction of event-horizon-scale
images of M87* by the Event Horizon Telescope [2] have
opened new windows to study the strong gravitational
nature of black holes. Alternatively, seeking underlying
characteristic properties of black holes is also quite
valuable, since they can yield features that can be tested
by further astronomical observations.
One such approach is topology: by ignoring detailed

structure, generic properties of a system can be discerned.
This approach has been extensively employed to study
many physical phenomena such as magnetic monopoles,
the quantum Hall effect, and superconductivity. A key
concept is that of defects, which are generally thought to be
related to zero points of a field at x⃗ ¼ z⃗,

ϕðx⃗Þjx⃗¼z⃗ ¼ 0; ð1Þ

in a space, and which can reveal certain properties of field
configurations. In different dimensions, a defect can be a
point charge, a string, or even a domain wall. The most
simple topological quantity associated with the zero point
of a field is its winding number. When equipped with it, we
can determine the nature of a system possessing defects.
Of particular recent interest has been a special vector

constructed in the coordinate space of a black hole
spacetime [3,4] by making use of null geodesics. The light
ring of a black hole is located exactly at the zero point of

this vector field. After calculating the winding number
corresponding to this zero point, a four-dimensional sta-
tionary nonextremal spinning black hole in asymptotically
flat spacetime with a topologically spherical Killing hori-
zon was shown to allow at least one standard light ring
outside the horizon for each sense of rotation [4]. This
treatment was generalized to other cases, where the critical
points and timelike circular orbit were well studied [5–11].
In general relativity, a black hole solution satisfies the

Einstein field equations, which we reformulate as

Eμν ≡Gμν −
8πG
c4

Tμν ¼ 0: ð2Þ

We propose, analogous to Eq. (1), that a physical black hole
solution is a zero point of the tensor field Eμν, at which all
its components vanish. Although the Einstein field equa-
tions also admit other defectlike solutions, such as cosmic
strings and branes, we here only focus on black holes. As a
result, we can endow a black hole solution with a
topological charge as well. Adopting this topological
argument, we can then study the local and global particular
properties of a black hole. Different black hole solutions are
also expected to be divided into different classes.
Realization in thermodynamics.—As a starting point to rea-

lize the idea that a black hole solution possesses a topological
charge, we begin with black hole thermodynamics.
In 1977, Gibbons and Hawking [12] proposed that the

partition function of a canonical ensemble for black holes
can be evaluated with its Euclidean action in the form of the
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gravitational path integral. In the “zero-loop” approxima-
tion, it reads

Z ¼ e−βF ¼
Z

D½g�e−I
ℏ ∼ e−

I
ℏ; ð3Þ

where F and I are the free energy and Euclidean action of
the black hole. The period β of the Euclidean time is the
inverse of the black hole temperature. Following this
approach, it was found that negative heat capacity and
imaginary energy fluctuations were produced. Soon after-
ward, these shortcomings were solved by York [13] by
imagining that the black hole is placed inside a cavity.
Fixing the temperature T of the cavity surface, the results
show that the heavy-mass black hole branch with mass
M >

ffiffiffi
3

p
=8πT is thermodynamically stable, and thus the

corresponding partition function is well-defined.
In order to describe a black hole with an arbitrary mass,

York defined a generalized free energy following the
standard definition of the free energy with the mass and
temperature being two independent variables [13]. This
naturally extends one more dimension for the thermody-
namic parameter space of the black hole. Furthermore, the
generalized free energy reduces to the standard one when
the relation between the black hole mass and temperature is
satisfied [14].
Inspired by this, we would like to introduce the gener-

alized free energy

F ¼ E −
S
τ

ð4Þ
for a black hole system with energy E and entropy S. The
parameter τ is an extra variable having the dimension of
time, and can be thought as the inverse temperature of the
cavity enclosing the black hole. Here, we let the time
parameter τ vary freely instead of the mass [13]. In general
this generalized free energy is off-shell except at

τ ¼ T−1; ð5Þ
at which the black hole solution satisfies the Einstein field
equations [Eq. (2)]. Recently, a similar generalized free
energy [Eq. (4)] has been used to study the dynamic
evolution of black hole phase transitions [15–18].
We now describe the explicit construction for the vector

ϕ in Eq. (1) via a thermodynamic approach. We define

ϕ ¼
�
∂F
∂rh

;− cotΘ cscΘ
�
; ð6Þ

where, inspired by the axis limit [4], we introduce a
parameter 0 ≤ Θ ≤ π for convenience. At Θ ¼ 0, π, the
component ϕΘ diverges and thus the direction of the vector
is outward.
More importantly, the zero points of ϕ correspond to the

conditions Θ ¼ π=2 and τ ¼ T−1. This confirms that
the black hole solution exactly meets the zero point of

the vector ϕ. Therefore, from the viewpoint of topology, we
can endow each black hole solution with a topological
charge by using ϕ.
Following Duan’s ϕ-mapping topological current theory

[19,20], we can introduce the topological current as

jμ ¼ 1

2π
ϵμνρϵab∂νna∂ρnb; μ; ν; ρ ¼ 0; 1; 2; ð7Þ

where ∂ν ¼ ð∂=∂xνÞ and xν ¼ ðτ; rh;ΘÞ. The unit vector is
defined as na ¼ ðϕa=kϕkÞ (a ¼ 1, 2) with ϕ1 ¼ ϕrh and
ϕ2 ¼ ϕΘ. Here, the parameter τ can be considered as a time
parameter of the topological defect. Moreover, it is easy to
check that this topological current is conserved, i.e.,
∂μjμ¼0. By making use of the Jacobi tensor ϵabJμðϕ=xÞ ¼
ϵμνρ∂νϕ

a
∂ρϕ

b and the two-dimensional Laplacian Green
function Δϕa ln kϕk ¼ 2πδ2ðϕÞ, the topological current can
be reexpressed as [5]

jμ ¼ δ2ðϕÞJμ
�
ϕ

x

�
: ð8Þ

Obviously, jμ is nonzero only at ϕaðxiÞ ¼ 0, and we denote
its ith solution as x⃗ ¼ z⃗i. The density of the topological
current is then [21]

j0 ¼
XN
i¼1

βiηiδ
2ðx⃗ − z⃗iÞ: ð9Þ

The positive Hopf index βi counts the number of the
loops that ϕa makes in the vector ϕ space when xμ goes
around the zero point zi, and the Brouwer degree ηi ¼
signðJ0ðϕ=xÞziÞ ¼ �1. Given a parameter region Σ, the
corresponding topological number can be obtained

W ¼
Z
Σ
j0d2x ¼

XN
i¼1

βiηi ¼
XN
i¼1

wi; ð10Þ

where wi is the winding number for the ith zero point of ϕ
contained in Σ. If two given loops ∂Σ and ∂Σ0 enclose the
same zero point of ϕ, they possess the same winding
number. Alternatively, if there is no zero point in the
enclosed region, we will have W ¼ 0. If Σ is the neighbor-
hood of a zero point of ϕ, it will yield local topological
properties, whereas if Σ is the entire parameter space, the
global topological W number will be revealed.
In the above approach, the isolated zero points require

the Jacobian J0ðϕ=xÞ ≠ 0. If this condition is violated, the
defect bifurcates [22].
Local and global topological properties.—Following

Eq. (3), one can obtain the free energy by calculating
the first-order Euclidean Einstein action

I ¼ −
1

16π

Z ffiffiffi
g

p
Rd4xþ 1

8π

I ffiffiffi
γ

p
Kd3x − I subtract; ð11Þ

where K is the trace of the extrinsic curvature, γij is the
induced metric on the boundary, and I subtract is the
subtraction term.
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For the Schwarzschild black hole, one easily has E ¼
∂βI ¼ M and S ¼ ðβ∂βI − IÞ ¼ 4πM2 [12]. Accordingly,
the black hole thermodynamic relations can be deduced
straightforwardly. For the Schwarzschild black hole, we
obtain the generalized free energy F ¼ ðrh=2Þ − ðπr2h=τÞ,
where rh ¼ 2M. Then the components of the constructed
vector ϕ can be calculated

ϕrh ¼ 1

2
−
2πrh
τ

; ð12Þ

ϕΘ ¼ − cotΘ cscΘ: ð13Þ

We show the unit vector field n on a portion of the Θ-rh
plane in Fig. 1(a) for the Schwarzschild black hole with
τ ¼ 4πr0 with r0 an arbitrary length scale set by the size of
a cavity surrounding the black hole.
From the figure, the zero point is located at rh=r0 ¼ 1

and Θ ¼ π=2. Since the winding number w is independent
of these loops enclosing the zero point, we can calculate it

for an arbitrary loop; for example see C1 given in Fig. 1(a).
Performing the calculation, we obtain the winding number
w ¼ −1. If we choose an alternate orientation convention
by adding a minus sign in ϕrh in Eq. (6), we obtain w ¼ 1
instead. However, the winding numbers of other types of
black holes will likewise be changed.
Considering the gravitational action together with the

electromagnetic field, it is easy to find E ¼ ðr2h þQ2Þ=2rh
and S ¼ πr2h for the Reissner-Nordström (RN) black hole.
Thus, the generalized free energy is

F ¼ r2h þQ2

2rh
−
πr2h
τ

: ð14Þ

Here, τ can be thought as the inverse temperature of the
cavity. Thus rh is independent of τ, and can vary freely,
ignoring the lower bound. Employing it, we plot the unit
vector field n in Fig. 1(b) for arbitrarily chosen typical
values τ=r0 ¼ 34.48 and Q=r0 ¼ 1.
We find two zero points, ZP2 and ZP3, at rh=r0 ¼ 1.46

and 2.15, respectively. A detailed calculation shows that
their respective winding numbers are w ¼ 1 and −1. We
also obtain the heat capacities CQ=r20 ¼ 18.01 and −64.81
at constant charge Q=r0 ¼ 1 for the respective positive and
negative zero points. Noting that each zero point of the unit
vector has a winding number 1 or −1, from this we
conjecture that winding number is related to local thermo-
dynamic stability, with positive and negative values corre-
sponding to stable and unstable black hole solutions.
Turning to global properties of the topology, if we

choose the region Σ as the whole parameter space or the
loop ∂Σ as the boundary of the parameter space, i.e.,
ð0 < Θ < πÞ ∪ ð0 < rh < ∞Þ, we can obtain the topologi-
cal number W for a black hole solution. This global pro-
perty can be used to classify different black hole solutions.
Since we here take the axis limit, where the direction of the
vector ϕ is up at Θ ¼ π and down at Θ ¼ 0, the value of the
topological number W actually depends on the direction of
the vector at rh ¼ 0 and ∞. This suggests that black hole
solutions sharing the same behavior at rh ¼ 0 and ∞
possess the same topological number, and thus are topo-
logically equivalent.
By solving the equation ϕrh ¼ 0, we can obtain a curve

in the rh-τ plane. The results are

τ ¼ 4πrh ð15Þ

and

τ ¼ 4πr3h
r2h −Q2

ð16Þ

for the Schwarzschild and RN black holes, respectively. To
show zero points of the component ϕrh , we plot these
two curves in Fig. 2. For large τ (e.g., τ ¼ τ2) there are

FIG. 1. The red arrows represent the unit vector field n on a
portion of the rh-Θ plane. The zero points (ZPs) marked with black
dots are at ðrh=r0; ΘÞ ¼ ð1; ðπ=2ÞÞ, (1.46, ðπ=2Þ), and (2.15,
ðπ=2Þ), for ZP1, ZP2, and ZP3, respectively. The blue contours
Ci are closed loops enclosing the zero points. (a) The unit vector
field for the Schwarzschild black hole with τ=r0 ¼ 4π. (b) The unit
vector field for theRNblackholewith τ=r0 ¼ 34.48 andQ=r0 ¼ 1.
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respectively one and two intersection points for the
Schwarzschild and RN black holes. The intersection points
exactly satisfy the condition Eq. (5), and therefore denote
the on-shell black hole solutions with temperature T ¼ τ−1.
In contrast to the Schwarzschild black hole, for τ < τc, the
two intersection points for the RN black hole coincide and
then disappear. Based on the local property of a zero point,
we have the topological number W ¼ −1 for the
Schwarzschild black hole, while W ¼ 1 − 1 ¼ 0 for the
RN black hole with the charge Q=r0 ¼ 1. In particular, at
the point τc ¼ 6

ffiffiffi
3

p
πQ, it is easy to get ðd2τ=dr2hÞ ¼

6
ffiffiffi
3

p
π=Q > 0 for the RN black hole. This suggests that

τc is a generation point, which can also be observed
in Fig. 2.
To investigate whether or not W depends on the charge,

we examine the behavior of the curve τðrhÞ in Eq. (16) at
the limit rh → rE ¼ Q (corresponding to extremal RN
black hole with smallest horizon) and ∞. Obviously, for
a nonvanishing charge Q, the vanishing or diverging
behavior of τ as rh → rE=∞ does not change, and so W
remains the same for different values of Q. For the
Schwarzschild black hole with Q ¼ 0, the behavior of
τðrhÞ for small rh differs from the charged case, and so the
topological numbersW for the two black hole solutions are
different.
Another interesting black hole solution is the charged

Reissner-Nordström anti–de Sitter (RN-AdS) black hole,
which exhibits a small-large black hole phase transition
[23]. In the extended phase space, the cosmological
constant is treated as the pressure P of the system [24].
The free energy is

F ¼ 8πPr4h þ 3r2h þ 3Q2

6rh
−
πr2h
τ

: ð17Þ

Taking the pressure Pr20 ¼ 0.0022 to be smaller than its
critical value, we exhibit zero points of ϕrh in the rh-τ plane
in Fig. 3 with Q=r0 ¼ 1. Quite different from the
Schwarzschild and RN black holes shown in Fig. 2, we
observe that there are three black hole branches for
τa < τ < τb, one small black hole branch for τ < τa, and
one large black hole branch for τ > τb. Computing the
winding number for these black hole branches, we find that
the small and large black hole branches have w ¼ 1, while
the intermediate black hole branch has w ¼ −1. Therefore,
at this pressure the RN-AdS black hole always has
W ¼ 1 − 1þ 1 ¼ 1, which is independent of τ. Since
the pressure P is positive for the RN-AdS black hole, it
does not affect the asymptotic behavior of τ at small and
large rh. As a result, the topological number W is always
unity for the RN-AdS black hole. Furthermore, our result
that thermodynamically stable small and large black holes
have w ¼ 1 and unstable intermediate black holes have
w ¼ −1 supports our conjecture that a positive or negative
winding number is indicative of thermodynamic stability or
instability.
Note that for these values of Pr20 and Q=r0, one

generation point and one annihilation point can be found
at τ=r0 ¼ τa=r0 ¼ 25.84 and τ=r0 ¼ τb=r0 ¼ 27.62,

FIG. 2. Zero points of the vector ϕ shown in the rh-τ plane. The
blue dashed and red solid lines are for the Schwarzschild black
hole (Sch BH) and RN black hole (RN BH) with Q=r0 ¼ 1. The
black dot with τc ¼ 6

ffiffiffi
3

p
πQ denotes the generation point for the

RN black hole. At τ ¼ τ1, there is one Schwarzschild black hole,
and at τ ¼ τ2, there is one Schwarzschild black hole and two RN
black holes.

FIG. 3. Zero points of ϕrh shown in the rh-τ plane for the RN-
AdS black hole with Pr20 ¼ 0.0022 and Q=r0 ¼ 1. The black
solid, blue dashed, and red solid lines are for the small black hole
(SBH), intermediate black hole (IBH), and large black hole
(LBH), respectively. Black and blue dots are the annihilation and
generation points. Different color regions have different numbers
of the black hole branches. However, their W number is constant
and equals 1.

TABLE I. The topological numberW, numbers of annihilation,
and generation points for the Schwarzschild, RN, and RN-AdS
black holes.

Sch BH RN BH RN-AdS BH

W −1 0 1
Generation point 0 1 1 or 0
Annihilation point 0 0 1 or 0
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respectively. If the pressure is larger than its critical value,
rh=r0 will be a monotonically increasing function of τ=r0,
and thus no bifurcation phenomenon will be observed.
However, the topological number W still stays the same.
In the Supplemental Material [25], we show that

d-dimensional RN-AdS black holes also have topological
number W ¼ 1, consistent with the d ¼ 4 case [25].
Conclusions.—Summarizing our results in Table I, we

have constructed a universal topological number W by
treating the black hole solution as a defect from the
viewpoint of thermodynamics. Different black hole solu-
tions are characterized by different topological numbers
and belong to different topological classes.
Locally, each zero point of the vector field defined in

Eq. (6) with the generalized free energy exactly corre-
sponds to one on-shell black hole solution. Thus, each
black hole solution is endowed with one winding number.
Our study shows that the thermodynamic stability of the
black hole is indicated from the value of the winding
number. A positive or negative winding number corre-
sponds to thermodynamically stable or unstable black hole
solutions. Of particular interest are the annihilation and
generation points, which may be quite important for the
time evolution of a black hole placed in a cavity.
When considering the full parameter space, the topo-

logical number W provides us with a global topological
property of a black hole solution. We have shown that the
Schwarzschild black hole, RN black hole, and RN-AdS
black hole have, respectively, W ¼ −1, 0, and 1, indepen-
dent of the black hole parameters. Since the topological
number W is the sum of the winding numbers for the zero
points of the vector, and it is only dependent on the
behavior of the curve τðrhÞ at small and large rh limits,
we conjectured that the topological number W can take
three values: −1, 0, and 1. This suggests that other black
hole solutions shall be divided into three characteristic
topological classes, a conjecture in need of further
confirmation.
We close by considering whether geometric modifica-

tions to black holes, such as those induced by scalar hair,
affect the topological number W. In contrast to global
charges (primary hair), black holes possessing new non-
trivial fields (secondary or pseudo hair) have long been of
interest in string theory [29–31] and have attracted much
recent attention in both general relativity and modified
gravity theories [27,28,32–37]. For the Einstein-Maxwell
scalar model [27,28], we show in the Supplemental
Material [25] that the topological number W ¼ 0 for these
scalarized black holes, the same as that of the RN black
holes, and in support of the expectation that secondary
(scalar) hair does not change W despite the fact that it
modifies the free energy of a black hole [25]. In more
general string-theoretic settings (for example axion fields
with Lorentz Chern-Simons coupling to gravity [29]), the
generalized free energy will be modified. Investigation of

the topological charge for these more general black holes
with hair is an interesting project for further study.
In conclusion, our topological approach classifies each

black hole solution into certain classes sharing the similar
thermodynamic properties. It provides a considerable
material for the topology of black hole thermodynamics.
We expect to uncover the deeper nature of other black hole
solutions via the topological approach.
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