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In a recent work [A. Deger et al., Phys. Rev. Lett. 129, 160601 (2022).] we have shown that kinetic
constraints can completely arrest many-body chaos in the dynamics of a classical, deterministic,
translationally invariant spin system with the strength of the constraint driving a dynamical phase
transition. Using extensive numerical simulations and scaling analyses we demonstrate here that this
constraint-induced phase transition lies in the directed percolation universality class in both one and two
spatial dimensions.
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Kinetic constraints have long emerged as a prominent
avenue towards impeding ergodicity [1–7], complementary
to and fundamentally different from that of quenched
randomness and originally introduced in the context of
the dynamics of glass forming systems at low temperatures.
The underlying mechanism of dynamical slowing down is
the decrease of the effective connectivity in configuration
space by forbidding processes based on local constraints
[8]. This is to be contrasted to the mechanisms of glassy
relaxation in disordered systems, involving topographic
features of the potential energy landscape. In many-body
quantum systems it has been established in the last few
years that constraints can lead to slow relaxation and also
stabilize a many-body localized phase, not only at low
temperatures but also at infinite temperatures [8–11].
This motivates the following question: what is the fate of

classical many-body chaos in the presence of constrained
dynamics? A signature of chaos is that infinitesimally small
perturbations grow exponentially, dramatically changing
the state at later times. In extended many-body systems and
for spatially localized perturbations, this effect spreads
ballistically in space, eventually resulting in global changes
in the state [12]. We have recently showed that constraints in
the dynamics can, if strong enough, fully arrest this spread-
ing, confining the effect of a perturbation to a small region
and thus suppressing chaos [13]. The nature of the transition
between these chaotic and frozen phases, in particular its
universality class, has however remained an open question.
Via numerical simulations and scaling analyses, we

provide a sharp answer to this question: the phase transition
belongs to the directed percolation (DP) universality class
[14–17]. This constitutes the central result of this work, and
is remarkable because the models we consider are trans-
lation invariant, with deterministic dynamical rules, quite
differently from conventional percolation models. To the

best of our knowledge, the appearance of DP universality in
such a clean, deterministic setting has not been reported
before.
The DP problem is an anisotropic variant of the standard

percolation problem such that the percolating cluster can
grow only in a given direction [18]. Equivalently, it can be
understood as a cluster growth process on a graph with
bonds directed along the given direction. This naturally
endows the problem with a dynamical interpretation with
time as one of the directions of the graph along which the
bonds are directed. In order to map our problem onto a DP
problem, we note that at late times, in the nonchaotic phase
the spins freeze while in the chaotic phase they remain
dynamically active. Based on this observation, we map the
dynamically active and frozen spins to occupied and empty
sites on the space-time lattice for the DP problem.
We consider constrained dynamics of a periodically

driven classical Heisenberg spin system in spatial dimen-
sions d ¼ 1 and d ¼ 2. Driving ensures that this model
has no conserved quantities, including total energy. The
Hamiltonian within a period T is given by

HðtÞ ¼
�P

hi;ji S
z
iS

z
j þ h

P
i S

z
i ; t ∈ ½0; T=2Þ

g
P

i S
x
i ; t ∈ ½T=2; TÞ ; ð1Þ

where hi; ji denotes a pair of nearest-neighbor sites. The
equations for the stroboscopic dynamics of the spins in the
presence of kinetic constraints are then

S⃗iðtþ TÞ ¼ Rx½γx;iðtÞ� · Rz½γz;iðtÞ� · S⃗iðtÞ; ð2Þ

where RxðzÞ½γxðzÞ;i� denotes rotation matrices about the xðzÞ
axis by an angle γxðzÞ;i. These angles are given by
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γz;iðtÞ ¼ ΘiðtÞ
� X
j∈hi;ji

SzjðtÞ þ h

�
T=2;

γx;iðtÞ ¼ ΘiðtÞgT=2; ð3Þ

where ΘiðtÞ encodes the kinetic constraint via a Heaviside
step function

ΘiðtÞ ¼ Θ½cos θc − min
jjj∈hi;ji

SzjðtÞ�: ð4Þ

This constraint means that the spin at site i rotates under the
dynamics only if at least one of its neighboring spins lies
outside the spherical sector subtended by a polar angle θc.
We will call such a spin active. As a result, a spin is frozen
and does not evolve dynamically if all its neighbors lie
inside the spherical sector. The constraint (4) is inspired by
the Fredrickson-Andersen model of constrained Ising spin
glasses [1,2]. The physics is that dynamics is locally
forbidden in a region if it is surrounded by immobile
high-density regions, modeled by up-spins and allowed if
there are some mobile low-density regions, modeled by
down-spins, in the neighborhood. We generalize this via
Eq. (4) to the case of Heisenberg spins. The angle θc
therefore parametrizes the strength of the constraint and, as
we will show, tunes the system across a dynamical phase
transition at θc;crit between an active phase at θc < θc;crit
and a frozen phase at θc > θc;crit. To distinguish between
these and to map the problem to DP, which is usually
discussed in terms of binary variables, we define an
indicator function σiðtÞ, which we call the activity. It takes
a value 1 if the spin at site i is active at time t and 0
otherwise; in other words, σiðtÞ ¼ ΘiðtÞ. In terms of this,
we define the density of active sites at time t as

ρðtÞ ¼ N−1
X
i

σiðtÞ; ð5Þ

where N is the total number of spins.
Numerically simulating the dynamics starting from an

all-active initial state, we find that in the active phase,
θc < θc;crit, there is always a finite density of active sites at
arbitrarily long times, as illustrated in Fig. 1(left). This
implies that the long-time state is evolving dynamically and
fluctuating. On the other hand, in the frozen phase,
θc > θc;crit, the system goes into a state at late times
wherein the σi stops fluctuating with t. In other words,
the state described in terms of σi gets absorbed into a
frozen one. The constraint-induced dynamical phase tran-
sition is therefore an absorbing phase transition. We find
that, in the frozen phase, but near the critical point, the
typical absorbing state is one where σi ¼ 0 for all sites
[Fig. 1 (right)]. Once the system reaches such a state, since
Θi ¼ 0 for all i in Eqs. (2) and (3), the dynamics is
completely frozen.

We also find other absorbing states where there exist
temporally persistent, spatially finite, and dynamically
stable configurations surrounded by inactive spins—
reminiscent of breathers. These evolve regularly without
spreading and persist forever. However, due to the extreme
diluteness of such active sites, they are statistically irrel-
evant for the scaling behavior near the critical point [19].
We can therefore posit that ρðtÞ in the limit of t → ∞ is a
valid order parameter, with the active and frozen phases
characterized by ρ∞ ≡ ρðt → ∞Þ → finite and vanishing
values respectively.
Finally, for the dynamics of σiðtÞ to be a bonafide DP

problem, we need to argue that the active sites necessarily
form a contiguous cluster in the space-time graph connect-
ing all active sites at time t to the initially active sites at
t ¼ 0. In other words, that the dynamics cannot spawn
active clusters in a background of frozen sites. This is
straightforwardly argued for based on the locality of the
constraints: a spin can change state over a period if and only
if at least one of its neighbors is active. Therefore if a spin is
inactive, σiðtÞ ¼ 0 it may only become active σiðtþ TÞ ¼
1 if either of σi�1ðtÞ ¼ 1. This implies that any active spin
σiðtÞ ¼ 1 has one of its parents active, σi�1ðt − TÞ ¼ 1, and
so on up to the initial time t ¼ 0. This implies that the
active sites form a contiguous cluster in the space-time
graph. Therefore, the active phase of the constrained
dynamics corresponds to the percolating phase as the
cluster of active sites percolates all the way to infinite
time whereas the frozen phase corresponds to the non-
percolating phase as the cluster of active sites dies out.
From the above discussion, we conclude that the con-

straint-induced dynamical phase transition can be described

FIG. 1. Instances of active clusters for constrained spin dy-
namics in the active phase (left), at criticality (middle), and in the
frozen phase (right) in the space-time graph in 1þ 1D (top) and
2þ 1D (bottom). In all cases we start from an all-sites-active
configuration. In the active phase, there is always a finite density
of active sites at arbitrarily long times whereas in the frozen phase
the system goes into an absorbing state where all spins are frozen.
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as a continuous, absorbing phase transition with a one-
component order parameter, short-ranged dynamical rules
and no symmetries except translation invariance. It there-
fore satisfies three out of the four conjectured requirements
by Janssen and Grassberger [20,21] for the transition to be
in the DP universality class. The one requirement that our
model does not satisfy is the presence of a unique absorbing
state (any configuration of the spins inside the cones is
an absorbing state). Nevertheless the DP universality is
known to be extremely robust against such viola-
tions of the aforementioned requirements [22–27]. In the
following, using extensive numerical simulations and
scaling analyses we firmly establish that our constraint-
induced transition does indeed lie in the DP universality
class.
Before delving into the results, let us briefly recapitulate

the scaling forms and the critical exponents for the DP
universality class. Since the DP transition is a continuous
phase transition, the order parameter goes to zero contin-
uously with an exponent β from the active side as

ρ∞ ∼ Δβ Δ≡ θc;crit − θc: ð6Þ

In addition to a correlation length, ξx, diverging as
ξx ∼ jΔj−νx , we also have a correlation time, ξt, which
diverges with a different exponent ξt ∼ jΔj−νt . This also
defines the dynamical exponent z ¼ νt=νx which relates the
rescaling of space and time under rescaling of the parameter
Δ that tunes the phase transition. The DP transition is thus
described in terms of the three independent critical expo-
nents ðβ; νx; νtÞ, which are strictly defined in the steady
state. Since the true steady state is not accessible in
numerical calculations, we obtain these exponents from
dynamical scaling as follows. With an initial condition
where all sites are active, scale invariance at the critical
point suggests ρðt; θc;critÞ decaying as a power law for an
infinite system, ρðt; θc;critÞ ∼ t−α. Usual considerations of
critical scaling imply that corrections away from this limit

are captured via universal scaling functions of t=ξt ∼ tjΔjνt
and of t=Lz,

ρðtÞ ∼ t−αfðtjΔjνt ; tL−zÞ: ð7Þ

where L is the linear size of the system and N ¼ Ld with d
with the spatial dimension.
For very large systems such that tL−z ≪ 1, asymptoti-

cally in the active phase such that t ≫ ξt, ρðtÞ saturates to a
constant and hence we expect the scaling function f in
Eq. (7) to be such that the time dependence in ρðtÞ drops
out in this limit. This implies fðy1; y2 ≪ 1Þ ∼ yα1 for y1 ≫
1 and hence ρðt → ∞Þ ∼ Δανt in the active phase.
Comparing this to Eq. (6), we find the relation between
the exponents α ¼ β=νt. Therefore, by performing a scaling
analysis on the data for ρðtÞ, one can extract the exponents
α, νt, and z and hence the three fundamental exponents β,
νx, and νt. Table I summarizes the known values of these
exponents.
Let us now turn to our results for the constrained spin

dynamics described via Eq. (1) through Eq. (4) for both
d ¼ 1 and d ¼ 2. We evolve our system using the full
dynamics for fS⃗iðtÞg, then calculate fσiðtÞg and then ρðtÞ.
For the former, we consider a chain and for the latter, a
square lattice. The results for the 1þ 1D case are shown in
Fig. 2 whereas those for the 2þ 1D case in Fig. 3. Our
initial conditions are chosen randomly except for ensuring
that all spins are active at t ¼ 0. This is done by initializing
randomly the polar and azimuthal angles of the spins,
arccosðSzi Þ and arctanðSxi =Syi Þ, from uniform distributions

TABLE I. Summary of the DP universality class critical
exponents for d ¼ 1 and d ¼ 2 taken from Ref. [16].

d=exponents β νx νt α z

d ¼ 1 0.276 1.097 1.734 0.159 1.581
d ¼ 2 0.584 0.734 1.295 0.451 1.76

FIG. 2. Critical scaling in the 1þ 1D case. Left: The density of active sites ρ as a function of t for different values of θc. At the critical
point, ρ decays with t following a power law with an exponent α ¼ 0.159 consistent with DP in 1þ 1D (black dashed line). Middle:
Scaling ρ in the left panel with tα and plotting it against tjθc − θc;critjνt with θc;crit ≈ 0.5234π shows perfect scaling collapse for the DP
universality exponents of α ¼ 0.159 and νt ¼ 1.734. Right: Finite-size scaling at the critical point by plotting ρtα against tL−z with the
DP universality exponent, z ¼ 1.581, again shows excellent collapse. The inset shows the unscaled data. Results for g ¼ 0.4, h ¼ 0.1,
and T ¼ 2π.
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∈ ðθc; π� and ∈ ½0; 2πÞ, respectively. In what follows, we
set T ¼ 2π, h ¼ 0.1, and g ¼ 0.4without loss of generality.
In the left panels we show ρðtÞ, defined in Eq. (5), as a

function of t for different values of θc straddling θc;crit for
the largest sizes in our simulations; L ¼ 4096 for d ¼ 1
and L ¼ 200 for d ¼ 2. For θc < θc;crit, the data on
logarithmic axes curves upwards from a power law indicat-
ing its tendency to saturate to a finite value at t → ∞,
signifying the active or percolating phase. On the other
hand, for θc > θc;crit, the deviation of ρðtÞ from the power-
law curves downwards indicating a rapid decay of
ρðt → ∞Þ → 0, a signature of the frozen or nonpercolating
phase. We therefore estimate the critical point from the ρðtÞ
data as the θc value which has the minimal curvature. At the
so-estimated, θc ¼ θc;crit, the data show a perfect power law
indicated by the straight line with almost no curvature on
logarithmic axes. The black dashed lines show the expected
power laws from the DP universality exponents (see
Table I). They are in excellent agreement with the data,
which in turn confirm that the α exponent is the same as that
of DP universality.
The sizes we considered ensure tL−z ≪ 1 and hence the

L dependence in the scaling function (7) can be ignored.
We confirm this by ensuring the data in Figs. 2 (left) and 3
(left) are converged with L. In this limit ρðtÞtα is a universal
function of tjθc − θc;critjνt . Upon rescaling ρðtÞ with tα and
plotting it against tjθc − θc;critjνt with α and νt from Table I
and θc;crit extracted as above, we find that the data for all θc
collapse onto two universal curves, one for each phase.
This is shown in the middle panels in Figs. 2 and 3 for
d ¼ 1 and d ¼ 2, respectively, which confirms that the νt
exponent is also the same as that of DP universality.
Finally, we consider the finite-size scaling at the critical

point to extract the dynamical exponent z. At criticality,
Δ ¼ 0, and hence the scaling function (7) implies that
ρðtÞtα is a universal function of tL−z. In the right panels of

Figs. 2 and 3, we plot ρðtÞtα as a function of tL−z at θc ¼
θc;crit with z from Table I and find that the curves for several
L collapse on top each other. This confirms that the
dynamical exponent z is also the same as that of DP
universality.
The analyses presented in the three panels together in

Fig. 2 for d ¼ 1 and Fig. 3 for d ¼ 2 thus show that the
three exponents α, νt. and z, and hence by extension the
three independent exponents β, νx, and νt for our con-
straint-induced dynamical phase transition are the same as
those for the DP universality class. We therefore conclude
that the transition lies in the same universality class—this
constitutes the central result of this work.
Note that the dynamics in our model are completely

translation invariant and deterministic. In the past absorb-
ing transitions in deterministic systems were found to have
nonuniversal model-dependent critical exponents [28],
which makes the appearance of DP universality in our
case remarkable. To intuitively understand this result, we
introduce a stochastic cellular automaton (CA). This is to
be viewed as a coarse-grained version of the spin system,
having broadly the same features and constraints in its
dynamics. This CA involves a Boolean variable per site, τi,
representing whether the spin at i is inside (0) or outside
(1) the cone. The dynamical rule is then that τjðtþ 1Þ ¼
τjðtÞ if both parents τj�1ðtÞ ¼ 0 or τjðtþ 1Þ is 1 or 0 with
probabilities 1 − p and p if either or both τj�1ðtÞ ¼ 1.
Numerically, we find this CA to display a transition in the
DP class [19]. Note that this occurs even though our
simplified CAmodel replaces the continuous spin degree of
freedom with a two-state variable and the deterministic by
stochastic dynamics, and in so doing completely misses
spatiotemporal correlations in (or, history dependence of)
the dynamics.
Our work should also be connected to and contrasted

with transitions belonging to the DP universality found in
certain cellular automatons in a different setting [29,30].
Apart from the fundamental difference from our work that
the dynamics in these models was stochastic, the mapping
to DP was based on two copies of the system and the active
or inactive sites were defined based on whether the Ising
variables were different or the same in the two copies. In
this sense it was a damage spreading process [31–33],
while in our work the mapping requires only one copy of
the system and the growing DP cluster corresponds to a
growing cluster of dynamically active.
To summarize, we have established that the constraint-

induced dynamical phase transition in clean, deterministic
systems from a chaotic phase to one where the dynamics is
arrested [13] can be mapped onto a DP problem and the
transition lies in the conventional DP universality class. A
question of interest for future work is under what conditions
such transitions may fall out of this universality class. A
natural setting to look for such cases would be systems
with long-ranged power-law interactions and constraints.

FIG. 3. Critical scaling in the 2þ 1D case. Analogous figure to
Fig. 2 but for d ¼ 2. In the left panel, the dashed black line
corresponds to t−α with α ¼ 0.451. The middle panel shows the
collapse of ρtα onto a universal function of tjθc − θc;critjνt with
θc;crit ≈ 0.7084π and νt ¼ 1.295, consistent with DP universality.
Right panel shows finite-size scaling collapse at θc;crit of ρtα as
function of tL−z with z ¼ 1.76, the DP universality value. Results
for g ¼ 0.4, h ¼ 0.1, and T ¼ 2π.
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In particular, one may write a model where the constraints,
such as those in Eq. (4) are long-ranged—then an active site
at i can activate another at iþ r with a probability with a
strength which falls off as a power law with r. Whether
such a model has a transition or not, and if it does, does it
share features with the DP transition in long-ranged
spreading processes [34–36] is a question of interest.
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