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Maximally entangled states are a key resource in many quantum communication and computation tasks,
and their certification is a crucial element to guarantee the desired functionality. We introduce collective
strategies for the efficient, local verification of ensembles of Bell pairs that make use of an initial
information and noise transfer to few copies prior to their measurement. In this way the number of
entangled pairs that need to be measured and hence destroyed is significantly reduced as compared to
previous, even optimal, approaches that operate on individual copies. Moreover, the remaining states are
directly certified. We show that our tools can be extended to other problems and larger classes of
multipartite states.
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Introduction.—With the emergence of quantum technol-
ogies, the certification and verification of quantum devices
and states have become necessary requirements for viable
quantum communication and computation tasks, such as,
e.g., quantum teleportation [1], quantum key distribution
[2,3], and distributed or blind quantum computation [4–6].
In particular, certification of maximally entangled states
by local operations is a crucial ingredient for a feasible
implementation of bottom-up [7–10] and entanglement-
based [11–14] quantum networks, where entanglement is a
key resource to enable, e.g., long-distance communication,
various security applications, or connecting distributed
quantum processors. However, local measurements destroy
entanglement, making the verification of entangled states
costly.
Different approaches for certifying quantum states exist

[15,16]. Some of them, as state tomography [17], are,
however, very inefficient as all elements of the density
matrix need to be determined by means of destructive
measurements. A protocol called quantum state verification
was introduced in [18], allowing for efficient verification
of quantum states with local measurements and constant
overhead with regard to optimal global strategies. Several
extensions [19–23] have been proposed, and were imple-
mented experimentally [24]. These approaches rely in
general on suitable sequential pass-or-fail measurements
applied on individual states. However, the improved control
of quantum systems also makes feasible more advanced,
collective strategies that operate jointly on multiple copies.
Here, we show that such a collective but local strategy

can significantly improve the efficiency of previous, even
global and optimal, strategies based on sequential mea-
surements of single copies. Our approach operates on
multiple copies of entangled states, where only a few of
these states are designated for certifying the whole ensem-
ble. This is achieved by accumulating the noise of the

whole ensemble into a reduced set of states by collective
local operations, so that by measuring and consuming only
these states one can detect the noise with enhanced
probability while certifying the remaining states without
destroying them. This significantly reduces the amount of
entanglement that is destroyed due to the certification
process. We adapt techniques from entanglement purifica-
tion [25,26] in order to transfer noise from states in the
ensemble into a few target states that are then measured.
Crucially, the nonmeasured states remain untouched and
hence entangled, and can still be used as a resource for
various nonlocal quantum tasks. Although we focus on
maximally entangled Bell states throughout this Letter, we
remark that our techniques can be extended to different
quantum states, including, e.g., maximally entangled qudit
states or multipartite Greenberger-Horne-Zeilinger (GHZ)
states.
Problem statement.—Consider an ensemble of n copies

of some bipartite entangled state ρAB shared by two parties
A and B, ideally prepared in the maximally entangled state
jΨ00ihΨ00j, where jΨijiAB¼1⊗σjxσizðj00iABþj11iABÞ=

ffiffiffi
2

p
are the four Bell states. There is the promise [18] that the
states are all either perfect, i.e., ρΨ00

¼ jΨ00ihΨ00j, or they
have some noise corresponding to a mixed state ρ with
unknown fidelity F ¼ hΨ00jρjΨ00i ≤ 1 − ϵ. Some verifi-
cation device is able to perform local operations on the
parts of the states at A and B with the task of discerning
which is the case, up to some failure probability δfail. In this
process, part of the ensemble is destroyed in order to
examine whether F ¼ 1. If that is the case, the conclusion is
extended to the whole ensemble. Otherwise, all states are
discarded. We show how our collective approach outper-
forms previous optimal strategies based on individual
measurements [18–23].
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The counter gate and d-level systems.—Our protocol
relies on a d-level auxiliary bipartite entangled state used to
encode information of the whole ensemble. In particular,
we denote the d-dimensional maximally entangled
states as jΦd

mniAB ¼ P
d−1
k¼0 e

i2πkm=djkiAjk⊖niB=
ffiffiffi
d

p
, where

k⊖n≡ ðk − nÞmod d, and the index n (m) is called the
amplitude (phase) index. The auxiliary state is used to
accumulate and measure the noise of an ensemble of
multiple noisy states. This is achieved by means of the
so-called “counter gate” [25,26] that transfers information
from the ensemble of qubit states into the amplitude index
of the auxiliary. This amplitude index can be read by locally
measuring the state in the computational basis. The counter
gate is defined as a bilateral controlled-X gate, acting from
a qubit pair as source, to a qudit pair as target. Notice that
the gate can be implemented locally. If the target system is
in a maximally entangled state with phase index zero, its
action is given by

bCXAB
1→2jmniA1B1

jΦd
0jiA2B2

¼jmniA1B1
jΦd

0;j⊖m⊕niA2B2
; ð1Þ

where bCXAB
1→2 ¼ CXA1→A2

⊗ CXB1→B2
, and CX1→2 is

the hybrid controlled-X gate [27] CX1→2 ¼ j0ih0j ⊗
1d þ j1ih1j ⊗ Xd. For convenience, we denote as type-1,
type-2, and type-3 error states, the states corresponding to
j01i, j10i, and jΨ10i, respectively. The action of the counter
gate, Eq. (1), with a type-1 (type-2) error state acting as
control, leads to an amplitude index value of the auxiliary
state increased (decreased) by 1, whereas it is left invariant
if the control is a type-3 error state. Importantly, this
invariance property also applies in cases in which the
control system is in the jΨ00i state.
Proof of concept.—We provide a basic example based on

simplified assumptions in order to illustrate the details of
our procedure, the so-called “general error number gate
protocol.” One can, however, relax these assumptions to
tackle a completely general situation (see below).
Consider an ensemble of n copies with the pro-

mise that all the states are either perfect Bell states
jΨ00ihΨ00j, or rank-2 states with only type-1 errors, i.e.,
ρ ¼ FjΨ00ihΨ00j þ ð1 − FÞj01ih01j. This corresponds (up
to local unitaries) to a situation where independent decay
channels act on a maximally entangled state jΨ10ihΨ10j.
Physically this relates to the decay of electronic excitations
in atomic or ensemble-based quantum memories, but also
to photon loss of photon-number states.
The protocol comprises the following steps (see Fig. 1).

First, we apply the counter gate, Eq. (1), from each state
in the ensemble to an auxiliary pure state jΦd

00ihΦd
00j with

d ¼ nþ 1. We show below that the auxiliary state can be
constructed directly from the (noisy) ensemble copies. We
denote these local operations together as the error number
gate (ENG). The ENG changes the amplitude index of
the auxiliary state depending on the actual form of the
ensemble. (i) Pure ensemble: the ensemble is given by n

copies of the jΨ00ihΨ00j state, and the application of
the ENG leaves the auxiliary state invariant. (ii) Noisy
ensemble: the ensemble is given by ρ⊗n, and it can
hence contain type-1 error states. Whenever the counter
gate is applied with a single type-1 error state, the
amplitude index of the auxiliary state is increased by 1.
After the application of the ENG, the ensemble and auxi-
liary states get correlated, i.e., ENG: ρ⊗n ⊗ jΦd

00ihΦd
00j →P

n
j¼0ðnjÞFn−jð1 − FÞjΓj ⊗ jΦd

0jihΦd
0jj, where Γj is a

density operator corresponding to all permutations of
fjΨ00i⊗ðn−jÞj01i⊗jg. By measuring the auxiliary state,
we learn the value of j, each found with probability
pðjÞ ¼ ðnjÞFn−jð1 − FÞj, that depends on the state fidelity
F. In this case, the value of j indeed corresponds to the
actual number of errors in the ensemble.
Whenever a value j ≠ 0 is found, we can assert with

certainty that we are in case (ii) and the ensemble is noisy
with F < 1. On the other hand, if we obtain j ¼ 0 we
conclude, with some success probability, that the states of
the ensemble are perfect Bell pairs F ¼ 1 [case (i)]. In
particular, the failure probability, i.e., measuring j ¼ 0

while the initial state was ρ⊗n, is δf ¼ Fn. In this case we
failed to identify the noisy ensemble, and would draw a
wrong conclusion. For a fixed failure probability, one can
determine the minimum number of ensemble states n (and
therefore the minimum dimension of the auxiliary state)
necessary to identify the case (i). Notice that the dimension
d of the auxiliary state increases linearly with n, leading
to an amount of entanglement (ebits) that only scales
logarithmically with n, Oðlog nÞ. As we show below, this
corresponds to the number of states from the initial
ensemble that needs to be measured and destroyed.
A further improvement is possible. Since we are only

interested in detecting whether j ≠ 0, directly measuring
the whole auxiliary state might not be the most efficient
strategy. By performing a two-outcome measurement on
each part of the auxiliary state, of the form fP1; 1 − P1g,
where P1 ¼

Pd=2−1
i¼0 j2iih2ij (note the sum up to d=2 − 1),

one can determine the parity of j. Same (different) out-
comes in A and B correspond to an even (odd) j value. We

FIG. 1. Schematic representation of the protocol. The ENG is
applied from the ensemble states to concentrate the noise into an
auxiliary qudit state (which can be constructed by embedding
ensemble copies). Finally, the d-level system is locally measured
to detect the noise while the rest of copies are left untouched.
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denote this protocol as the “ENG subspaces protocol.”
Whenever j odd is obtained, we know with certainty that
j ≠ 0, and the ensemble is noisy [case (ii)]. In this case,
one can recover the entanglement by performing an
uncorrelating operation between the auxiliary state and
the ensemble, such that we leave the auxiliary system in the
jΦd=2

0;j=2ihΦd=2
0;j=2j state (see Sec. A in Supplemental Material

(SM) [28] for details). The case (ii) is identified by
consuming only 1 ebit. On the other hand, if j even is
found, the ensemble is considered to be perfect [case (i)]
up to some failure probability δ1, which is now given by the
probability of measuring that j is even, while the ensemble
is still noisy, δ1 ¼

Pn=2
j¼0ð n2jÞFn−2jð1− FÞ2j. One can reduce

δ1 by iteratively performing additional two-outcome mea-
surements of the same form, learning—and consuming—1
ebit of information from the auxiliary state. The mth
measurement can be written as fPm; 1 − Pmg, where now

Pm ¼
Xd2m−1
i¼0

Xm−1

j¼0

j2mi ⊕ jih2mi ⊕ jj; ð2Þ

revealing whether the value of j is multiple of 2m (or 0).
The failure probability, i.e., the probability of the ensemble
being noisy and the outcomes of all k measurements
coinciding for A and B is

δm ¼
Xn2−m
k¼0

�
n

2mk

�
Fn−2mkð1 − FÞ2mk: ð3Þ

For some fixed δt one can obtain the number (m) of
measurements—number of ebits—required as a function of
the ensemble fidelity F.
Observe that if an asymptotically large ensemble n → ∞

is available, the required auxiliary entanglement needed for
fixed δt becomes constant and independent of the fidelity
of the initial states. In particular, the failure probability in
the asymptotic case is δm ¼ 2−m. The entanglement of the
remaining subspaces is not spent or destroyed.
General case and results.—We show here that all the

assumptions canbe relaxed anda completelygeneral scenario
can be tackled, exhibiting a performance enhancement with
respect to previous approaches.We consider arbitrary ensem-
bles, where importantly, the auxiliary state can be directly
constructed from several copies of the ensemble.
We have the promise that all the ensemble states are

either perfect Bell states or Werner states [32] of the form

ρ ¼ qjΦd
00ihΦd

00j þ
1 − q
d2

1d2 ; ð4Þ

with d ¼ 2, where the fidelity is given by F ¼ ð1þ 3qÞ=4.
This situation is completely general since any state can be
brought to this form by applying random local operations

[33], without changing the fidelity. The protocol comprises
the same steps as before, assuming for the moment (see
below) that a maximally entangled state is available as
auxiliary. However, one has to consider that now there are
different kinds of errors, i.e., type-1 that increase, type-2 that
decrease, and type-3 that leave invariant the amplitude bit j
of the auxiliary state under the action of the ENG operation.
A single copy of a Werner state can be interpreted as mix-
ture of type-1,2,3 error states with probability p1;2;3 ¼
ð1 − FÞ=3, and a Bell state with p0 ¼ F. Therefore, when
applying the ENG from an ensemble of n copies, the value
of the auxiliary amplitude index becomes j ¼ Δ12 mod d,
where Δ12 ¼ #type-1 − #type-2. The probability of
obtaining a certain j is given by

PrðjÞ ¼
Xn

i;k;l¼0

iþkþl¼n
k⊖l¼j

n!
i!k!l!

ðp0 þ p3Þipk
1p

l
2 : ð5Þ

In each term of the sum, the number of type-1 (type-2) errors
is given by k (l), and the number of states that are either
jΨ00i or type-3 error state by i.
Note that the difference of errors can take 2nþ 1

different values Δ12 ∈ f−n;…; ng, and one would need
an auxiliary state of d ¼ 2nþ 1 to distinguish between
all of them. However, for our purpose we just need to
determine when Δ12 ¼ 0, and therefore an auxiliary
state of d ¼ nþ 1 is sufficient, as Δ12 ¼ 0 ⇔ Δ12

mod ðnþ 1Þ ¼ 0. The failure probability reads now
δ ¼ Prðj¼0Þ.
We also consider here the subspaces ENG protocol.

After measuringm subspaces, and following the same steps
as before, one obtains information about the 2m multiplicity
of the auxiliary amplitude index. In this case, the proba-
bility of failing in determining the noiseless scenario after
measuring m different subspaces is

δm ¼
Xbn2−mc
k¼0

Prð2mkÞ: ð6Þ

Importantly, in the asymptotic limit we recover the constant
behavior, i.e., the number of copies for a fixed failure

Algorithm 1. General ENG protocol overview.

Input: Ensemble of n identical quantum states, either jΨ00i or
Werner-type states, Eq. (4), with F < 1.
1. Construct an auxiliary state of d ¼ nþ 1 by embedding
⌈ log2ðnþ 1Þ⌉ ensemble states.
2. Apply the ENG between the states of the ensemble and the
auxiliary state.
3. Locally measure the auxiliary amplitude index j.

Output: Information of noise of the ensemble. If j ≠ 0, the noisy
case is identified with P ¼ 1. If j ¼ 0, the ensemble is certified
with P ¼ 1 − δ.
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probability is insensitive to the fidelity of the initial states,
such that δm ¼ 2−m.
So far we have assumed, for illustrative purposes, that a

maximally entangled auxiliary state is available. This assu-
mption is, however, not necessary, since the d-level auxi-
liary state can be always obtained by directly embedding—
noisy—copies of the initial ensemble. Since the protocol
is based on accumulating noise into the auxiliary state, by
embedding several copies of the ensemble the performance
is indeed enhanced, because noise already accumulates via
embedding, before any other operation is applied. We de-
fine the embedding for perfect Bell states as jΦ2k

00iAB ¼
jΨ00i⊗k

AB ¼ P
i1;…;ik jik…i1iAjik…i1iB=

ffiffiffiffiffi
2k

p
. This process

with m copies of noisy Bell states ρ with fidelity F leads
to a noisy d-level state of d ¼ 2m. The resulting state can be
always depolarized into an isotropic form [34] of the form
Eq. (4), with d ¼ 2m and q ¼ ðd2Fm − 1Þ=ðd2 − 1Þ. If one
directly measures the amplitude bit (j) of this state, before
applying the ENG operation, the probability of measuring
j ¼ 0 is given by δ ¼ ð1þ dFmÞ=ð1þ dÞ. The perfor-
mance already approaches the optimal possible strategy
based on measurements (see Sec. B in SM [28] for details).
The number of copies needed in this global optimal stra-
tegy based on single-copy measurements scales as k ¼
ln δ= lnF [18,35].

One can, however, enhance the protocol performance—
overcoming previous optimal single-copy strategies—by
applying the ENG operation from the ensemble states into
the auxiliary one. This process collects the noise of the
ensemble into the auxiliary and, together with the noise
already accumulated by the embedding, increases the
probability of detecting the noise. As before, in case noise
is detected, we discard all the ensemble, whereas if the
noiseless case is identified, the ensemble is kept and
certified, and only the auxiliary states are consumed.
In order to construct an auxiliary state of dimension

d ¼ nþ 1, which allows us to accumulate information
about the noise of n ensemble states, one just needs to
embed m ¼ log2ðnþ 1Þ. Therefore, only m copies are
eventually consumed, since the dimension of the auxiliary
scales exponentially with the number of embedded states,
leading to an exponential improvement in the scaling and
allowing us to overcome previous optimal bounds.
Figure 2 shows several results comparing the perfor-

mance of our protocol with respect to the optimal
approaches based on individual measurements, under
different situations. One can see an exponential-type
improvement in all the cases. In particular, if an arbitrarily
large ensemble is available, the subspaces ENG strategy
exhibits a constant behavior independent of the fidelity of
the initial states. See Sec. C in SM [28] for further analysis.
Generalizations.—We have considered the verification

of Bell states. However, the applicability of our approach
goes beyond such states. In particular, these techniques can
be applied to verify any set of states for which there exists a
subspace that is invariant under the counter operations
[Eq. (1)] (or equivalent).
Some instances of states that can be verified include

maximally entangled qudit states, or more general multi-
partite states. For the former case, the generalization
is straightforward. Applying a generalized qudit-qudit
controlled-X [36], GCXjmijni ¼ jmijn ⊕ mi, in a bilat-
eral way between a bipartite qudit and a maximally
entangled system of dimension D [37], the effect is
bGCXjmdndijΦD

0ji¼ jmdndijΦD
0;j⊖n⊕mi, where j⊖n⊕n¼

ðj−nþmÞmodD, similar than in the qubit case. Note that
the dimension of the auxiliary should be adapted to the fact
that errors can now increase or decrease the auxiliary
amplitude bit by more than 1.
In a similar way, these techniques can be adapted to

verify multipartite states. The invariant subspace of the
generalized counter gate mCX [26] is spanned by j00…0i
and j11…1i, while the amplitude vector of the auxiliary
d-level system is modified depending on the error state.
Therefore, a verification procedure for the Greenberger-
Horne-Zeilinger state ðj00 � � � 0i þ j11 � � � 1iÞ= ffiffiffi

2
p

can be
designed by extending the protocol for Bell states, since
after applying the extended ENG the probability of
obtaining a zero-valued amplitude index approaches zero
when the number of copies in the ensemble increases.

(a) (b)

FIG. 2. Performance of the collective general ENG and the
subspaces ENG protocols in comparison to optimal single-copy
approach [18]. In (a) the number of consumed copies for rank-2
states for a fixed failure probability δfail ¼ 0.1. In (b) the failure
probability when 9 copies are consumed for each strategy.

Algorithm 2. Subspaces ENG protocol overview.

Input: Ensemble of n identical quantum states, either jΨ00i or
Eq. (4).
1. Proceed as in Algorithm 1 steps 1-2.
2. Parties A and B measure the subspace corresponding to the
first Bell pair of the auxiliary.
3. If different outcome is found in A and B, stop.
4. Measure the next subspace until different outcome is found
or enough Pfail is achieved.

Output: 2k multiplicity of the value of j after k rounds. The noisy
case is identified with certainty if measurement outcomes differ
at any point; otherwise the ensemble is certified with
P ¼ 1 − δ.
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However, to make the procedure fully general extra
operations are required to detect phase errors; see Sec. D
in SM [28] for details. Extension to more general graph
states, following [38,39], might also be possible.
Conclusions.—We have proposed collective techniques

that allow us to verify maximally entangled quantum states
with enhanced performance as compared to previous (even
optimal) strategies that operate on individual states. This is
accomplished by transferring and accumulating (via a so-
called ENG operation) the noise of some ensemble of states
into a higher-dimensional auxiliary state. This auxiliary
state can be constructed using a logarithmically reduced
number of ensemble copies, which are the only ones
eventually consumed. Because of the embedding process
and the ENG operation, noise is enlarged into the auxiliary
state, making its detection more efficient. In addition, we
propose a strategy based on measuring only certain sub-
spaces of the auxiliary state, such that in the asymptotic
limit of a large enough ensemble, a constant number of
consumed copies is enough for verifying the states inde-
pendently of the fidelity or form of the states. The tools we
introduce and make use of here are not only interesting
in the context of certification of quantum states, but they
can be particularly useful in other scenarios such as,
e.g., fidelity estimation (see Sec. E in SM [28]) or fidelity
witnessing (see follow-up work [29]). For the rank-2
example originating from decay noise, we can actually
use our strategy not only to verify the ensemble, but to
accurately estimate the fidelity by using only a logarithmic
amount of extra entanglement, exponentially outperform-
ing single-copy strategies.
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and W. K. Wootters, Phys. Rev. Lett. 70, 1895 (1993).

[2] A. K. Ekert, Phys. Rev. Lett. 67, 661 (1991).
[3] C. H. Bennett and G. Brassard, Theor. Comput. Sci. 560, 7

(2014).
[4] J. I. Cirac, A. K. Ekert, S. F. Huelga, and C. Macchiavello,

Phys. Rev. A 59, 4249 (1999).
[5] M. Hayashi and T. Morimae, Phys. Rev. Lett. 115, 220502

(2015).
[6] A. Gheorghiu, T. Kapourniotis, and E. Kashefi, Theory

Comput. Syst. 63, 715 (2019).
[7] H. J. Kimble, Nature (London) 453, 1023 (2008).
[8] S. Wehner, D. Elkouss, and R. Hanson, Science 362,

eaam9288 (2018).
[9] W. Kozlowski and S. Wehner, Proceedings of the

Sixth Annual ACM International Conference on Nano-
scale Computing and Communication, NANOCOM 2019

(Association for Computing Machinery, New York,
2019), 10.1145/3345312.3345497.

[10] K. Azuma, S. Bäuml, T. Coopmans, D. Elkouss, and B. Li,
AVS Quantum Sci. 3, 014101 (2021).

[11] A. Pirker, J. Wallnöfer, and W. Dür, New J. Phys. 20,
053054 (2018).

[12] A. Pirker and W. Dür, New J. Phys. 21, 033003 (2019).
[13] C. Meignant, D. Markham, and F. Grosshans, Phys. Rev. A

100, 052333 (2019).
[14] L. Gyongyosi and S. Imre, Sci. Rep. 9, 2219 (2019).
[15] J. Eisert, D. Hangleiter, N. Walk, I. Roth, D. Markham, R.

Parekh, U. Chabaud, and E. Kashefi, Nat. Rev. Phys. 2, 382
(2020).

[16] X.-D. Yu, J. Shang, and O. Gühne, Adv. Quantum Technol.
5, 2100126 (2022).

[17] M. Cramer, M. B. Plenio, S. T. Flammia, R. Somma, D.
Gross, S. D. Bartlett, O. Landon-Cardinal, D. Poulin, and
Y.-K. Liu, Nat. Commun. 1, 149 (2010).

[18] S. Pallister, N. Linden, and A. Montanaro, Phys. Rev. Lett.
120, 170502 (2018).

[19] Z. Li, Y.-G. Han, and H. Zhu, Phys. Rev. A 100, 032316
(2019).

[20] K. Wang and M. Hayashi, Phys. Rev. A 100, 032315
(2019).

[21] C. Bădescu, R. O’Donnell, and J. Wright, in Proceedings of
the 51st Annual ACM SIGACT Symposium on Theory
of Computing (ACM, New York, 2019), 10.1145/
3313276.3316344.

[22] H. Zhu and M. Hayashi, Phys. Rev. A 99, 052346
(2019).

[23] J. Morris, V. Saggio, A. Gočanin, and B. Dakić, Adv.
Quantum Technol. 5, 2100118 (2022).

[24] W.-H. Zhang, C. Zhang, Z. Chen, X.-X. Peng, X.-Y. Xu,
P. Yin, S. Yu, X.-J. Ye, Y.-J. Han, J.-S. Xu, G. Chen,
C.-F. Li, and G.-C. Guo, Phys. Rev. Lett. 125, 030506
(2020).
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