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Genuine multipartite entanglement represents the strongest type of entanglement, which is an essential
resource for quantum information processing. Standard methods to detect genuine multipartite entangle-
ment, e.g., entanglement witnesses, state tomography, or quantum state verification, require full knowledge
of the Hilbert space dimension and precise calibration of measurement devices, which are usually difficult
to acquire in an experiment. The most radical way to overcome these problems is to detect entanglement
solely based on the Bell-like correlations of measurement outcomes collected in the experiment, namely,
device independently. However, it is difficult to certify genuine entanglement of practical multipartite states
in this way, and even more difficult to quantify it, due to the difficulty in identifying optimal multipartite
Bell inequalities and protocols tolerant to state impurity. In this Letter, we explore a general and robust
device-independent method that can be applied to various realistic multipartite quantum states in arbitrary
finite dimension, while merely relying on bipartite Bell inequalities. Our method allows us both to certify
the presence of genuine multipartite entanglement and to quantify it. Several important classes of entangled
states are tested with this method, leading to the detection of genuinely entangled states. We also certify
genuine multipartite entanglement in weakly entangled Greenberger-Horne-Zeilinger states, showing that
the method applies equally well to less standard states.
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Introduction.—Genuinemultipartite entanglement (GME)
is a topic of intense research because of its importance in
quantum computation and condensed matter physics.
Currently available techniques have realized Schrödinger
cat states of up to 20 qubits [1,2]. A natural question arising
in such experiments is how to certify the presence of GME.
Usual solutions consist ofmeasuring awitness [3–5] ofGME,
doing a full state tomography and analyzing the reconstructed
density matrix [6–8], or executing quantum state verification
on the premise of accessing some partial prior knowledge
about the state [9–12]. These approaches require sufficient
knowledge of the internal physics of themeasurement devices
and the dimension for the Hilbert space of each system [13].
Unfortunately, it is usually difficult to access an exact
quantum description of measurement devices; moreover,
the actual measurement settings may deviate from the
expected ones slightly and result in an incorrect conclusion
[14]. Furthermore, a physical system typically has access to
more levels and degrees of freedom than one uses to describe
its state. In fact, using an inappropriate description of the

system at hand can have devastating consequences when
using it for quantum applications, as demonstrated in recent
hacking experiments [15,16].
In order to circumvent this problem, researchers opened a

new realmofquantumscience, namely “device-independent”
science [17–26], in which no assumptions are made about
the states under observation, the experimental measurement
devices, or even the dimensionality of the Hilbert spaces
where such elements are defined. In this approach, the only
way to study a system is to perform local measurements on
well-separated subsystems and analyze the statistical results.
Many theoretical and experimental efforts have been devoted
to device-independent certification (DIC) of bipartite
entangled states based on Bell tests [27–30]. But it is still
a formidable challenge to extend this method to general
multipartite scenarios. The difficulty mainly results from the
lack of multipartite Bell inequalities tailored to arbitrary
quantum states. Furthermore, for the known inequalities the
complexity (number of different measurements to perform)
typically increases exponentially with the number of parties,
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making them impractical. To date, DIC has been intensively
investigated for a few simple types of multipartite entangled
states [31–34], and several specific genuinely entangled
states [35–38] have been investigated. Similarly, self-testing,
an approach allowing one to identify the quantum state device
independently was only pursued for a few states [39–44].
Recently, a dissociated DIC (DDIC) method to detect GME
was proposed, whereby the detection of GME is reduced into
a set of bipartite problems, for each of which a bipartite Bell
inequality is tested [45]. Formultiqubit states it is sufficient to
use the tilted Clauser-Horne-Shimony-Holt (CHSH) family
of Bell tests [46], while in general one can rely on the results
of [41], which allow one to self-test arbitrary pure bipartite
states in finite dimension. This scheme applies to all
multipartite pure states in arbitrary finite dimension and
tolerates nonmaximal violation; however, the level of admis-
sible noise is limited.
In this Letter, we build on the technique of [45] and

generalize the DDIC method to improve its robustness to
noise. We investigate different covering sets of the DDIC
method and find that the full covering is more tolerant to
noise. We further show the biseparable bound for the full
covering is both optimal and tight. The overhead of the
scheme does not scale exponentially with the system size,
which makes it suitable in practice. Using the polarization
of single photons, we test several essential entangled states
experimentally, including Greenberger-Horne-Zeilinger
(GHZ) states, partially entangled states, and cluster states.
The limited detection efficiency in our experiment leads

to the occurrence of no-click events. Simply rejecting these
events (postselection) opens the infamousdetection loophole,
and forbids the device-independent analysis of the postse-
lected measurement data. This problem is overcome here by
introducing aminimal assumption on the internal functioning
of themeasurement devices, the so-calledweak fair-sampling
assumption [47], which is well justified in our setup.
Device independent certification of GME.—The main

target of this Letter is to distinguish genuinely entangled
states from biseparable ones, which can be expressed as

ρBS ¼
X

g1;g2

Pg1jg2
X

λ

PðλÞρg1ðλÞ ⊗ ρg2ðλÞ; ð1Þ

where the groups g1 ∪ g2 ¼ f1;…; Ng form a bipartition
of the N parties, the first sum runs over all such splittings,
ρg1 and ρg2 are arbitrary quantum states of the parties
belonging to the respective group, and λ is a variable
distributed accordingly to PðλÞ. By definition, genuinely
multipartite entangled states (GME states) cannot be
written in this form, and involve a contribution that does
not split as a tensor product for any bipartition. To illustrate
this phenomenon, Fig. 1(a) shows a graph representation of
the decomposition for N ¼ 4. The state is GME if and only
if the lowest possible value of PABCD in the decomposition
is larger than zero. We now only consider decompositions
where PABCD is minimal.

A GME state can be device-independently certified as
we will now show; the three steps of our protocol are
summarized in the Supplemental Material (SM) [48]. To
start, we chose a covering E—a set of pairs of parties
(edges) defining a graph connecting all parties. Then, we
aim to reveal bipartite Bell nonlocality for each edge
e ¼ fi; jg ∈ E. To achieve this, the remaining parties in
R ⊂ f1;…; Ngne are first measured in order to leave the
parties e in a pure entangled state [53]. For each branch,
defined by the combination of measurement outcomes on
R, we test some bipartite Bell inequality between the parties
in e with fixed local bound βL and quantum bound
βQ > βL. The Bell score βe associated to the edge e is
then defined as the average of the Bell scores obtained
over all branches. In the ideal case, all the Bell tests can
be chosen such that βe ¼ βQ. Finally, the observation of a
large enough average score β̄E ¼ ð1=jEjÞPe∈E βe over all
pairs e ∈ E allows one to infer that the underlying state is
GME [45].
Indeed, if the measured state can be decomposed in the

form of Eq. (1) (with PABCD ¼ 0 in the example), each term
ρg1 ⊗ ρg2 in the decomposition “cuts” at least one edge
e ∈ E. More precisely, there is at least one pair e ¼ fi; jg
with the two parties belonging to different groups i ∈ g1
and j ∈ g2. For this term the Bell score βe cannot exceed
the local bound βL < βQ. As this happens for each term, the
biseparable bound is necessarily lower than the quantum
maximum β̄EBS < βQ, and observing a value β̄E exceeding
β̄EBS proves GME. Moreover, the fact that this inequality is
strict implies that the test admits some robustness to noise.
However, the precise value of this biseparable bound
depends on the chosen covering E.
To see this, consider two extreme cases of coverings: the

minimal covering Emini with jEminij ¼ N − 1 edges (min-
imally connected graph) and the full covering Efull with
jEfullj ¼ NðN − 1Þ=2 edges (fully connected graph). In the
case of minimal covering, one can always find a bipartition
that only cuts one edge; see Fig. 1(b). Therefore, for Emini

(a) (b)

(c)

FIG. 1. Graph representation of multipartite states. (a) Graphical
representation of a general decomposition of a four-partite state
into a mixture of a GME state and biseparable states in the
respective bipartition. Here, each vertex corresponds to a party,
and connected parties belonging to the same group. (b) A linear
minimum covering (blue boxes) of a four-partite state, only one
link (pink filled) is cut by the bipartition ρABCjD. (c) A full
covering of a four-partite state, half of the edges are cut by the
bipartition ρABCjD.
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the biseparable bound on the average Bell score is given by
β̄mini
BS ¼f½ðjEminij−1ÞβQþβL�=ðjEminijÞg¼βQ− ½ðβQ−βLÞ=

ðN−1Þ�. In the case of a full covering any bipartition cuts at
least N − 1 edges; see Fig. 1(c). Normalizing by the
number of pairs the biseparable bound for a full covering
reads β̄fullBS ¼ (f½jEfullj−ðN−1Þ�βQþðN−1ÞβLg=jEfullj)¼
βQ−2½ðβQ−βLÞ=N�. It can be easily seen that β̄fullBS is
lower than β̄mini

BS , which is a natural since measuring more
edges reveals more information about the structure of the
state, helping to certify GME. Hence, the full covering
is more tolerant to noise. In SM [48] we show that the
biseparable bound for the full covering is optimal, as one
naturally expects, i.e., there is no covering E for which a
lower average violation β̄E ≤ β̄fullBS certifies GME.
Note that these required violations β̄fullBS and β̄mini

BS are
strictly larger than the local bound βL, as one would expect.
Indeed, biseparable states can be mixtures of states that are
separable according to different partitions, and can there-
fore produce some Bell violation for each pair of parties.
In SM [48], we construct a class of biseparable states that
saturate the bounds β̄fullBS and β̄mini

BS and thus demonstrate they
are tight.
Whereas the full covering comes with a higher noise

tolerance it also makes the protocol less practical. Indeed,
the number of pairs in the covering become quadratic in N
instead of linear. Clearly, the minimal and full covering are
the two limiting cases. Interestingly, we show in SM [48]

that a ring covering Ering also saturates the optimal

biseparable bound β̄ringBS ¼ β̄fullBS , while only involving a
linear number of edges jEringj ¼ N. The number of parties
that have to be measured in order to prepare an entangled
state between some pair e appearing in the covering also
scales with the system size in general. For practical
purposes it is helpful if entangled states can be prepared
by operating on a small number of parties for all pairs
added to the covering. This can be done generically for
interesting states, such as generalized, weighted graph
states with bounded degree.
It is worth noting, however, that all states’ preparations

need not be evaluated in practice in order to conclude about
GME: since every such preparation across a biseparation
must satisfy the local bound, finding one violation is
enough to conclude about GME. In other words, a
statistically significant violation of our witness over one
edge e can be concluded after a number of samplings that is
fixed, i.e., that does not scale with N.
DDIC method as a measure of GME.—For any multi-

partite quantum state ρ, let

ρ ¼ PGMEρGME þ PBSρBS ð2Þ

with ρBS biseparable as the decomposition that maximizes
the biseparable weight PBS ¼ 1 − PGME. For such state the
DDIC score cannot exceed β̄E ≤ PGMEβQ þ PBSβ̄

E
BS by

linearity. Thus, the observation of a value for β̄E sets a
lower bound,

PGME ≥
β̄E − β̄EBS
βQ − β̄EBS

; ð3Þ

on the weight of the GME component in any decompo-
sition of ρ in Eq. (2) (equivalently, an upper bound on PBS).
It is easy to see that the minimal weight PGME over all
decomposition of a state ρ is a GME measure [54]: it is
by definition nonzero for all GME states and zero for
biseparable ones, it is convex, and it cannot increase under
local operation with classical communication. Thus, the
DDIC method allows us not only to certify GME, but also
to quantify it, via Eq. (3). This quantification is both device-
independent and scalable with the number of parties N.
Experimental results.—Our basic ingredient to prepare

multipartite entangled states is a sandwichlike EPR source
generating polarization-entangled photon pairs as shown
in Fig. 2 [55]. Four-photon entangled states are prepared
by entangling photons from two such EPR sources, i.e.,
by using postselection to project the initial state into
the desired entangled state with a certain probability. In
the experiment, we use two kinds of optical elements (the
PBS and PDBS shown in Fig. 2) to realize different
projectors and generate different families of four-photon
or three-photon entangled states, including GHZ, cluster,

FIG. 2. Experimental setup. A frequency-doubled mode-locked
Ti:sapphire laser (390 nm, 140 fs, and 80 MHz) is split averagely
into two beams and used to pump two sandwichlike EPR sources
(see SM [48] for details). Two photons (each from a source) are
overlapped on the central polarization beam splitter (PBS)/
polarization-dependent beam splitter (PDBS) to generate differ-
ent class of four-photon entangled state. To generate biseparable
state, a HWP and a PBS is inserted in photon D. The Bell
correlation is measured through four sets of polarization analyzer
setup (PAS). Each PAS consists of elements rotating the polari-
zation of incident photons in a controlled way, followed by a PBS
and two single photon detectors (SPD). Symbols are HWP, half-
wave plate; IF, interference filter; MRP, motorized rotation plate.
The PAS satisfies the weak-fair sampling assumption as dis-
cussed in SM [48].

PHYSICAL REVIEW LETTERS 129, 190503 (2022)

190503-3



and weighted graph states. For each family of states, we test
the GME with the DDIC method described above.
Four-photon GHZ state.—The GHZ states ð1= ffiffiffi

2
p Þ×

ðj0i⊗N þ j1i⊗NÞ are useful for many applications [56,57].
A four-photon GHZ state is represented as a tetrahedron in
graph-state representation [58], consisting of four vertices
(parties) and six edges (pairs). By projecting two parties
into the Pauli X basis, the remaining two parties are
prepared in the maximally entangled two-qubit states in
all branches XþXþ, XþX−, X−Xþ, X−X− (where �
represents the result of each X measurement).
Interestingly, the states in the four branches are related
by the action of a Pauli Z on one of the qubits, and hence
can maximally violate the CHSH inequality with the same
settings (upon classical relabeling). The CHSH value of
each pair βe ðe ¼ AB;BC;CD;AC; AD;BDÞ is defined
as the averaged violation of CHSH inequality over these
branches. In the experiment, the four-photon GHZ state
jΨiGHZ ¼ ð1= ffiffiffi

2
p ÞðjHHHHiABCD þ jVVVViABCDÞ is pre-

pared with the fidelity ∼0.97, where H (V) denotes the
horizontal (vertical) polarization of the photon. The CHSH
values of all the six pairs are measured and shown in
Fig. 3(a). To certify GME, the mean CHSH values over the
pairs in the minimum and full coverings are calculated to be
β̄E ¼ 2.671� 0.012 and 2.662� 0.009, respectively, rep-
resented as dotted red or blue lines across the columns. It
can be seen that the measured average CHSH values are
well above the biseparable bound for the minimum and
full coverings, computed to be 2.552 and 2.414. From
the full covering we find that the prepared state has
PGME ≥ 0.598� 0.024, after the filtering defined by
postselection.
Biseparable state.—To see how to distinguish a bisepar-

able state with our DDIC method, we prepare a four-photon

state jΨisep¼ 1
2
ðjHHHiABCþjVVViABCÞ⊗ðjHiDþjViDÞ.

The DIC implementation is analogous to the four-photon
GHZ state; the measured results of all the six pairs are
shown in Fig. 3(b). One sees that if a pair involves the
isolated photon D, the measured CHSH value βXDðX ¼
A;B;CÞ is below 2. The mean CHSH values for the
minimum and full coverings are calculated to be 2.263�
0.020 and 2.067� 0.014, respectively, below the corre-
sponding biseparable bounds. On the other hand, for the
three-photon GHZ state prepared on parties ABC we find
that PGME ≥ 0.785� 0.035. This shows that the state has
entanglement depth 3 [59].
Cluster state.—The cluster states, e.g., jΨicluster ¼

1
2
ðj0000iABCD þ j0011iABCD þ j1100iABCD − j1111iABCDÞ,
have been recognized as the basic building blocks for one-
way quantum computation [60]. Cluster states are graph
states with a lattice graph (with low degree); thus, a
maximally entangled two-qubit state on an edge e ∈ G
(graph-state representation) can be prepared by only meas-
uring the few neighboring parties. In the case of linear
cluster states this requires one to measure only one or two
parties. Hence, for the minimal covering at most four parties
have to be measured in each run of the experiment, which is
a great asset for scaling up N given that each measurement
adds some noise to the state. In our four-photon experiment,
this can be seenwhenmeasuring the pairAB (orCD), where
only photon C (or B) need to be measured, and the last
photon just acts as a trigger. The produced state is close
to the linear cluster state jΨicluster with fidelity ∼0.95. The
averaged CHSH values for the six pairs are shown in
Fig. 3(c). The mean CHSH values for the minimum and
full coverings are 2.653� 0.010 and 2.620� 0.007, respec-
tively, which violate the biseparable bounds. The GME
weight of cluster state is found to bePGME ≥ 0.497� 0.017.

AB BC CD AC AD BD
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(e) Three-partite tilted-GHZ state(d) Three-partite tilted-GHZ state(b) Four-partite biseparable state (c) Four-partite cluster state(a) Four-partite GHZ state
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0.90
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0.96
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FIG. 3. DDIC results of several classes of entangled states. In (a)–(d), pictorial representations of four families of multipartite
entangled states are diagrammed respectively for four-partite GHZ state, four-partite separable state, four-partite cluster state, and three-
partite tilted GHZ states with different tilting angles. Each party is labeled as the circles, the thin solid edges give the graph-state
representation of the state, while the thick colored edges give the pairs of parties for the DDIC method. The thick edges in yellow
constitute a minimum covering in which all parties are connected, and the full covering consists of all edges. The histogram below each
diagram represents the measured Bell value of each edge in minimum or full coverings. The brown and black dotted (solid) lines
represent the mean Bell values (biseparable bounds) over the pairs in minimum or full coverings, respectively. The upper and lower
shadow areas represent the quantum bound and local bound of the bipartite inequality.
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Generalized GHZ state.—To illustrate the generality of
the DDIC method we now apply it to several weakly
entangled three-qubit states. In the experiment, we first
prepare a tilted GHZ state jΨðθÞiGHZ ¼ cos θj0i⊗3 þ
sin θj1i⊗3 with θ ¼ 30°, the state fidelity is 96.4%. For this
state, it is impossible to produce maximally entangled
bipartite states on all branches. Instead with a Pauli X
measurement on one of the qubits we prepare partially
entangled states cosðθÞj00i � sinðθÞj11i. Thus, we choose
the tilted CHSH inequality Iθ [46] as the bipartite Bell
inequality, which can be maximally violated by the state.
Note that according to the Schmidt decomposition, it is
enough to consider the tilted CHSH family of Bell inequal-
ities for any entangled bipartite qubit state. We use the
normalized Bell expression Ī30° for which we have βQ ¼ 1

and βL ¼ 0.911, and the biseparable bounds for minimum
and full coverings are 0.956 and 0.941, respectively. The
measured mean Bell values [Fig. 3(d)] are calculated to be
0.982� 0.006 and 0.975� 0.006 of minimum and full
coverings, respectively, which clearly violate the biseparable
bounds. Quantitatively, we find thatPGME ≥ 0.582� 0.082.
In the SM [48], we further illustrate the robustness to
imperfections of the DDIC method by adding noise onto
this state.
Finally, we prepare a more tilted GHZ state with θ ¼ 15°

and fidelity 98.7%. Numerical search shows the angle of
the tilted inequality that is most robust to white noise is
about 28°. The quantum and local bounds for Ī28° are
βQ ¼ 1 and βL ¼ 0.929, respectively. The measured mean
Bell value for the full covering is 0.962� 0.007, which is
above the biseparable bound of β̄fullBS ¼ 0.953, thus certify-
ing GME of the state [Fig. 3(e)]. Note that the considered
tilted GHZ state with θ ≤ 15° cannot violate the standard
Svetlichny inequality [61,62]. Demonstration of GME with
a tripartite inequality would require a dedicated Svetlichny-
type inequality [63]. Here, we are able to demonstrate GME
by simply choosing adequate bipartite Bell inequality,
demonstrating the flexibility of our method.
Discussion.—The DDIC method provides a way for

reliable GME certification in a wide range of states. It
also enables the quantification of genuine multipartite
entanglement via the weight of the minimal GME compo-
nent, and moreover is both device-independent and intrinsi-
cally resistant to realistic noise. This allows us to
demonstrate and quantify GME experimentally in a variety
of multipartite states, including in a genuinely but weakly
entangled state. The DDIC method infers properties of
multipartite states by leveraging bipartite Bell tests in an
optimal way. When applied to generalized and weighted
graph states with bounded degree, this allows the method to
involve at most a constant number of parties in each run of
the experiment.
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