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In the framework of quantum thermodynamics preparing a quantum system in a general state requires
the consumption of two distinct resources, namely, work and energetic coherence. It has been shown that
the work cost of preparing a quantum state is determined by its free energy. Considering a similar setting,
here we determine the coherence cost of preparing a general state when there are no restrictions on work
consumption. More precisely, the coherence cost is defined as the minimum rate of consumption of systems
in a pure coherent state, that is needed to prepare copies of the desired system. We show that the coherence
cost of any system is determined by its quantum Fisher information about the time parameter, hence
introducing a new operational interpretation of this central quantity of quantum metrology. Our resource-
theoretic approach also reveals a previously unnoticed connection between two fundamental properties of
quantum Fisher information.
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The information-theoretic approach to quantum thermo-
dynamics and, more specifically, the resource-theoretic
approach [1] has proven to be extremely fruitful. This,
for instance, has lead to the discovery of new aspects of
quantum coherence in thermodynamics (see, e.g., Refs. [2–
9]). In this approach one studies the interconvertibility of
systems under a limited set of operations, which presum-
ably can be implemented with negligible thermodynamic
costs. A popular choice is the set of thermal operations, i.e.,
those that can be implemented by coupling the system to a
thermal bath via energy-conserving unitaries [10,11].
From a thermodynamics point of view, preparing a

general quantum state requires consumption of both work
and energetic coherence, i.e., coherence between states
with different energies, which can also be understood as
asymmetry with respect to time translations [3,12–14]. In
the resource-theoretic framework of quantum thermody-
namics, it has been shown that the work cost of preparing
many independent and identically distributed (IID) copies
of any quantum system is determined by its free energy
[11]. On the other hand, characterizing the coherence cost
of preparing quantum systems has remained an open
question [9,15].
In this Letter, we settle this question and show that the

coherence cost of preparing a quantum system in a general
state is determined by the quantum Fisher information
(QFI) [16–19] of the system about the time parameter (see
Theorem 2). More precisely, to prepare copies of the
desired system in the IID regime, the minimum rate of
consumption of systems in a fixed pure coherent state is
determined by the ratio of QFI’s of the desired system to the
input pure system (see Fig. 1). Interestingly, a similar result

does not hold for the reverse process, called coherence
distillation: for generic mixed input states the rate of
conversion to pure coherent states is zero [6].
Hence, our result reveals a novel operational interpre-

tation of QFI, which is the central quantity of quantum
metrology [20,21]. Remarkably, our resource-theoretic
approach also clarifies a close connection between two
different fundamental properties of QFI, namely QFI as a
convex roof of variance and QFI as the variance of
purification of state. While QFI has been extensively
studied in quantum metrology, to our knowledge this
connection has not been appreciated before.
To focus on coherence as a resource independent of

work, one can supplement thermal operations with a battery
or work reservoir that can provide an unlimited amount of
work (in other words, one can make work a free resource).
It has been shown (see, e.g., [6,22,23]) that in this way one
can implement all and only time-translationally invariant
(TI) operations [23–26], i.e., completely positive trace-
preserving maps satisfying the covariance condition,

e−iHouttETIðσÞeiHoutt ¼ ETIðe−iHintσeiHintÞ; ð1Þ

for all density operators σ and all times t. Here, Hin and
Hout are, respectively, the input and output Hamiltonians.
TI operations cannot generate (energetic) coherence: to
prepare systems containing coherence via TI operations,
one needs an input that contains coherence. On the other
hand, preparing incoherent states, i.e., those that commute
with the system Hamiltonian, does not require consuming
coherence. In summary, to understand coherence as a
resource independent of work, we study state conversions
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under TI operations. It is worth noting that going beyond
these operations makes coherence a free resource: using
any non-TI operation it is possible to generate energetic
coherence from incoherent states, albeit this may require
correlation between the input of the operation and an
auxiliary system [6].
TI operations and the notion of coherence cost also arise

in the study of quantum clocks. While coherent states and
non-TI operations should be defined relative to a back-
ground reference clock, Eq. (1) means that TI operations
can be defined and implemented without access to such
clocks [6,24,25]. Suppose one does not have access to the
reference clock, but is given quantum clocks that are
synchronized with it. What is the minimum rate of
consumption of quantum clocks in pure states, that is
needed to prepare copies of a desired system (see Fig. 1)?
Again, we find that the answer is given by the QFI of the
system about the time parameter.
Pure states in the IID regime.—We study systems with

finite-dimensional Hilbert spaces. Each system is speci-
fied by its Hamiltonian H and density operator ρ. We
assume the systems under consideration have periodic
dynamics with a fixed but arbitrary period τ such that
τ ¼ infft > 0∶e−iHtρeiHt ¼ ρg. Under TI operations, a
system with period τ can only be converted to systems
with period τ=k, for an integer k. In the following, we
consider n copies of a system with HamiltonianH and state
ρ, which means their joint state is ρ⊗n and their total
Hamiltonian is

P
n−1
j¼0 I

⊗j ⊗ H ⊗ I⊗ðn−j−1Þ.
Consider many copies of a system with HamiltonianH1,

pure state ψ1, and period τ. Is it possible to convert these
systems to many copies of another system with the same
period τ, in pure state ψ2 and Hamiltonian H2, using TI

operations? Since exact conversions are often impossible
and physically intractable, as usual we allow a vanishing
error quantified, e.g., in terms of the trace distance
Dðρ; σÞ ¼ kρ − σk1=2 (or, equivalently, one minus fidelity
[27–29]). In the following, VHðψÞ¼hψ jH2jψi−hψ jHjψi2
denotes the energy variance of pure state ψ with respect to
Hamiltonian H. In Supplemental Material (SM) [30], we
prove our first main result:
Theorem 1: Consider a pair of systems with pure

states ψ1 and ψ2 and Hamiltonians H1 and H2, with equal
periods. Using TI operations the state conversion

jψ1i⊗n!TI ≈ϵn jψ2i⊗⌈Rn⌉ as n → ∞; ϵn → 0;

with vanishing error ϵn in trace distance is possible
if rate R ≤ VH1

ðψ1Þ=VH2
ðψ2Þ and is impossible if

R > VH1
ðψ1Þ=VH2

ðψ2Þ.
Hence, in the IID regime oscillators in pure states with

the same frequencies are equivalent resources, in the sense
that by adding or absorbing sufficient amount of energy
their coherence content, or equivalently, their information
content about time, can be converted from one form to
another. Note that the maximal achievable rate from system
1 to 2, namely VH1

ðψ1Þ=VH2
ðψ2Þ, is the inverse of the

maximal rate from system 2 to 1. In this sense the process is
reversible. Consequently, in this regime the usefulness of a
clock can be quantified by a single number, namely its
energy variance. In other words, we can pick a standard
clock bit (coherence bit) or cbit with period τ and quantify
the amount of resource of a general state relative to this
standard. A convenient choice is a two-level system
with Hamiltonian Hcbit ¼ πσz=τ and state jΘicbit ¼
ðj0i þ j1iÞ= ffiffiffi

2
p

, with the energy variance π2=τ2.
Theorem 1 strengthens and generalizes a previously

known result [25,31,32] in multiple ways. The common
intuition behind all these results, first discussed in [31,32],
is based on the central limit theorem, which implies that
the total energy distribution of many copies of a state
converges to a Gaussian distribution, and hence is char-
acterized by its variance and mean, which are both
additive. Then, as the mean energy can be changed
arbitrarily by TI operations, the conversion rate is deter-
mined by the ratio of variances.
One aspect of this theorem that makes it stronger than the

previous result is the requirement of convergence in the
trace distance, whose significance arises from Helstrom’s
theorem [16,28,29]. According to this theorem states with
vanishing trace distance are indistinguishable and therefore
equivalent resources. To establish such convergence, in
addition to the standard results in the resource theory of
asymmetry [23,25,26,33], we also apply local limit theo-
rems in probability theory [34–37], which imply that in the
IID regime the energy distribution converges to a translated
Poisson distribution. Another new aspect of the above
result is the rigorous upper bound on the achievable rate R.

FIG. 1. Preparing a quantum system in a general state requires
consumption of both work and coherence. Here, we study the
coherence cost of preparing state, when there are no limitations
on work consumption. Equivalently, we characterize the mini-
mum rate of consumption of quantum clocks that is needed to
prepare a general state, when one does not have access to the
standard reference clock.
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Since variance is additive for uncorrelated systems and is
nonincreasing in exact state conversions under TI oper-
ations, it is straightforward to show that the rate R >
VH1

ðψ1Þ=VH2
ðψ2Þ is not achievable in exact state con-

versions [25]. However, this argument fails in the presence
of error ϵn: for a pair of output states with trace distance ϵn,
the energy variances can differ by order ϵn⌈Rn⌉2kHk2.
Hence, the variance per copy can differ by order
ϵn⌈Rn⌉kHk2, which does not necessarily vanish, even if
ϵn → 0 in the limit n → ∞. We overcome this complication
and show that for R > VH1

ðψ1Þ=VH2
ðψ2Þ, error cannot

vanish as n → ∞ [see Eq. (4) below for the general result].
Theorem 1 only applies to pure states. In the rest of this

Letter, we consider a variant of this scenario where the
outputs are mixed. But, first we discuss the interpretation of
the energy variance in this theorem.
Quantum Fisher information (QFI).—Consider the

family of states fe−iHtρeiHtgt corresponding to the time-
evolved versions of a system in the initial state ρ and
HamiltonianH. The QFI relative to the time parameter t for
this family of state is

FHðρÞ ¼ 2
X
j;k

ðpj − pkÞ2
pj þ pk

jhϕjjHjϕkij2; ð2Þ

where ρ ¼ P
j pjjϕjihϕjj is the spectral decomposition of

ρ. Equivalently, QFI can be expressed as the second
derivative of the fidelity of states ρ and e−iHtρeiHt with
respect to the parameter t [38]. According to the standard
interpretation of this quantity in quantum estimation,
FHðρÞ determines how well one can estimate the unknown
parameter t, by measuring n ≫ 1 copies of state e−iHtρeiHt:
the mean squared error hδt2i for any unbiased estimator
satisfies the Cramér-Rao bound hδt2i ≥ ½nFHðρÞ�−1, which
is attainable in the asymptotic regime [16–18,39]. QFI has
found extensive applications beyond quantum metrology
(see, e.g., Refs. [13,40–50]). In particular, it has been
studied as an example of measures of asymmetry and
(unspeakable) coherence [33,51–53] (skew information
[23,54–56] and the relative entropy of asymmetry
[57,58] are two other well-known examples). However,
prior to this Letter, the operational interpretation of QFI as
the coherence cost, which distinguishes this measure of
coherence from the others, was not known.
QFI has various nice properties, including the following.

(i) Faithfulness: it is zero if, and only if, state is incohe-
rent. (ii) Monotonicity: it is nonincreasing under any TI
operation ETI, i.e., FH½ETIðρÞ� ≤ FHðρÞ. In particular,
it remains invariant under energy-conserving unitaries.
(iii) Additivity: for a composite noninteracting system with
the total Hamiltonian Htot ¼ H1 ⊗ I2 þ I1 ⊗ H2, QFI is
additive for uncorrelated states, i.e., FHtot

ðρ1 ⊗ ρ2Þ ¼
FH1

ðρ1Þ þ FH2
ðρ2Þ. (iv) Convexity: for any p ∈ ½0; 1�

and states ρ and σ, FHðpρþ ð1 − pÞσÞ ≤ pFHðρÞþ
ð1 − pÞFHðσÞ.

For pure states, QFI reduces to the energy variance,
namely FHðψÞ ¼ 4VHðψÞ. Therefore, Theorem 1 means
that in the IID regime, the maximal rate of conversion
between pure states is determined by the ratio of their
QFI’s. This interpretation suggests that to generalize the
result to mixed states, the role of variance should be
replaced by QFI. As we show below, this conjecture is
partially correct, namely when the output states are mixed
but the inputs are still pure. On the other hand, [6] shows
that this conjecture fails for generic mixed input states. It is
also worth noting that the state conversion described in
Theorem 1 requires coherent interactions between the input
and output: unless ψ2 is an energy eigenstate, it is not
possible to achieve a positive rate R > 0 with a vanishing
error, using measure-and-prepare (i.e., entanglement-
breaking) TI operations [6]. This again suggests that the
operational interpretation of QFI in the context of param-
eter estimation cannot fully explain the special role of
variance in Theorem 1.
Coherence cost.—Consider a system with state ρ and

Hamiltonian H with period τ. We define the coherence cost
CTI
c ðρÞ of this system as the minimal rate at which cbits

with period τ (i.e., two-level systems with state jΘicbit ¼
ðj0i þ j1iÞ= ffiffiffi

2
p

and Hamiltonian Hcbit ¼ πσz=τ) have to be
consumed for preparing copies of this system in the IID
regime, i.e.,

CTI
c ðρÞ ¼ inf R∶ Θ⊗⌈Rn⌉

cbit !TI ≈ϵn ρ⊗n as n→∞; ϵn → 0;

where the vanishing error ϵn is quantified in the trace
distance. This quantity can be thought of as the counterpart
of the entanglement cost in entanglement theory [59]. (Note
that a different notion of coherence cost for speakable
coherence is previously studied in [15,60].) Our second
main result is
Theorem 2 (Operational interpretation of QFI): The

coherence cost of a system with HamiltonianH, state ρ, and
period τ is proportional to its QFI about the time parameter.
That is

CTI
c ðρÞ ¼

FHðρÞ
Fcbit

¼
�

τ

2π

�
2

× FHðρÞ: ð3Þ

The lower bound CTI
c ðρÞ ≥ FHðρÞ=Fcbit is a special case

of a more general result, which is of independent interest:
Consider a pair of systems with states ρ1 and ρ2 and
Hamiltonians H1 and H2. If there exists a sequence of TI
operations converting copies of system 1 to 2 with rate
Rðρ1 → ρ2Þ and with a vanishing error in the trace distance
(in the sense defined above), then

Rðρ1 → ρ2Þ ≤
FH1

ðρ1Þ
FH2

ðρ2Þ
: ð4Þ

Although this might be expected from the monotonicity
and additivity of QFI, as we discussed in the case of
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variance, in the presence of a nonzero vanishing error these
properties do not necessarily imply Eq. (4). In SM [30], we
prove this bound using the connection between QFI and
Bures distance. At the end of this Letter we sketch the proof
of the other side of Theorem 2. But, first we discuss how
QFI appears in the single-copy regime.
QFI in the single-copy regime.—A natural way to

quantify the coherence content of a mixed state ρ is to
find the minimum QFI of a purification of ρ. More
precisely, consider an auxiliary system A with
Hamiltonian HA and let jΦρiSA be a pure joint state of
SA, with the reduced state TrAðjΦρihΦρjSAÞ ¼ ρ. What is
the minimum possible energy variance, or, equivalently the
QFI of such pure states with respect to the total
Hamiltonian of systems S and A?
Theorem 3: QFI of system S with state ρ and

Hamiltonian HS, is four times the minimum energy
variance of all purifications of ρ with auxiliary systems
not interacting with S, i.e.,

FHS
ðρÞ ¼ min

Φρ;HA

FHtot
ðΦρÞ ¼ 4 × min

Φρ;HA

VHtot
ðΦρÞ; ð5Þ

where Htot ¼ HS ⊗ IA þ IS ⊗ HA, and the minimization
is over all pure states jΦρiSA satisfying TrAðjΦρihΦρjSAÞ ¼
ρ, and all Hamiltonians HA of system A.
This is closely related to the result of [61,62] in the

context of metrology (see SM [30] for further discussion).
SM presents two different proofs of Theorem 3; one is
based on the Uhlmann’s theorem [28,29] and the con-
nection between fidelity and QFI (which is similar to
the argument of [61]) whereas the second proof is via
direct minimization. The latter approach implies that
for purification jΦρiSA ¼ P

j
ffiffiffiffiffipj

p jϕjiSjϕjiA of state ρ ¼P
j pjjϕjihϕjj the minimum in Eq. (5) is achieved for

Hamiltonian

HA ¼ −2
X
j;k

ffiffiffiffiffiffiffiffiffiffipjpk
p
pj þ pk

jϕjihϕkjHSjϕjihϕkj: ð6Þ

For this Hamiltonian FHS
ðρÞ ¼ 4½VHS

ðρÞ − VHA
ðρÞ� and

the QFI of A is nonzero, provided that the QFI of S is
nonzero and ρ is full rank. This has a remarkable impli-
cation: even though A carries a nonzero QFI, by discarding
this subsystem one does not loose QFI.
Does this theorem determine the coherence cost of ρ?

From Theorem 1 one may expect that purification Φρ can
be obtained by consuming cbits at rate ðτ=2πÞ2FHtot

ðΦρÞ,
which in turn would imply ρ can be obtained with this
coherence cost. And the above theorem implies that
FHtot

ðΦρÞ can be as low as FHS
ðρÞ. However, there is an

issue with this argument: Theorem 1 applies to periodic
systems, whereas in general, the dynamics of Φρ under
Hamiltonian Htot is not periodic. Imposing the requirement
of periodicity, in general increases the minimum variance

of purification. For instance, suppose for the same puri-
fication Φρ instead of Hamiltonian in Eq. (6) one chooses
HA ¼ −H�

S, that is the complex conjugate of −HS in the
basis fjϕjig. Then, the period of the joint system will be
generally τ. But, now the energy variance is equal to
2WHS

ðρÞ ≥ FHS
ðρÞ, where WHS

ðρÞ ¼ −Trð½ ffiffiffi
ρ

p
; HS�2Þ=2

is another quantifier of coherence and asymmetry, named
skew information [23,54–56].
To overcome this issue, we use a different approach for

preparing ρ: we consider ensemble of pure states with
density operator ρ. Interestingly, there exists an optimal
ensemble whose average QFI is equal to the QFI of ρ.
Theorem 4: QFI is four times the convex roof of

variance, i.e.,

FHðρÞ ¼ min
fqk;ηkg

X
k

qkFHðηkÞ ¼ 4 × min
fqk;ηkg

X
k

qkVHðηkÞ;

ð7Þ

where the minimization is over ensembles of pure states
fqk; ηkg satisfying

P
k qkjηkihηkj ¼ ρ. Furthermore,

assuming the dynamics of ρ under H is periodic, the
optimal ensemble can be chosen such that each ηk is either
an eigenstate of Hamiltonian H or its period under H is an
integer fraction of the period of ρ under H.
In analogy with the entanglement theory, the right-hand

side of Eq. (7) can be called coherence of formation [63].
The first part of this theorem was originally conjectured by
Toth and Petz [64] and was later proven by Yu [65]. Since
then this result has found various applications in quantum
metrology (see, e.g., Ref. [66]). Note that the convexity of
FH implies that if

P
k qkjηkihηkj ¼ ρ then FHðρÞ ≤P

k qkFHðηkÞ. Achievability of this bound was proved
in [65].
Our resource-theoretic approach reveals a direct con-

nection between this property of QFI and its property
studied in Theorem 3, which results in a simple proof of
Theorem 4: Let jΦρiSA and HA be, respectively, an optimal
purification of ρ, and the corresponding Hamiltonian
of the auxiliary system A satisfying Eq. (5). Let fjEkig
be an eigenbasis of Hamiltonian HA. By measuring A in
this basis, one obtains the average joint state σSA ¼P

k qkjηkihηkjS ⊗ jEkihEkjA, where qk is the probability
of observing jEki and jηkiS ¼ hEkjΦiSA= ffiffiffiffiffi

qk
p

is the corres-
ponding state of S. Then,

FHS
ðρÞ ≤ FHtot

ðσSAÞ ≤ FHtot
ðΦρÞ: ð8Þ

Here, both bounds follow from the monotonicity of QFI
under TI operations. State ρ of system S can be obtained
from σSA by discarding system A, and σSA is obtained from
Φρ, by measuring A in the energy eigenbasis; both opera-
tions are clearly TI. Then, the fact that FHtot

ðΦρÞ ¼ FHS
ðρÞ,

implies that both bounds hold as equality. Finally, since
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energy eigenstates fjEkig have zero QFI and are orthogo-
nal, QFI of σSA is equal to the expected QFI of the ensemble
fqk; jηkig, i.e.,

P
k qkFHS

ðηkÞ ¼ FHtot
ðσSAÞ ¼ FHS

ðρÞ.
Thus, Eq. (7) holds with jηki ¼ ðPj Ukj

ffiffiffiffiffipj
p jϕjiÞ= ffiffiffiffiffi

qk
p

,
and probability qk¼hEkjρjEki¼

P
jpjjUkjj2, whereUkj¼

hEkjϕji are the matrix elements of the unitary that
diagonalizes HA in Eq. (6) in the eigenbasis of ρ. In
summary, the fact that QFI is the minimum variance of
purifications (Theorem 3) implies that QFI is also the
convex roof of variance (Theorem 4). The second part of
Theorem 4 is shown in SM [30].
Sketch of proof of Theorem 2.—By combining

Theorems 1 and 4 with the standard typicality arguments
(e.g., in [15,67]), we show that the coherence cost of any
state is determined by its QFI. Let ðqk; jηkiÞ∶k ∈ S be the
optimal ensemble satisfying Eq. (7). As we saw in the
above proof, S is a finite set. Then, ρ⊗m ¼ P

k qkjηkihηkj,
where k ¼ k1 � � � km, qk ¼ qk1 � � � qkm and jηki ¼
jηk1i � � � jηkmi. For any k ∈ S let nlðkÞ be the number of
occurrence of state jηli in jηki. Then, for δ > 0 define
typical strings as those for which the relative frequency of
any l ∈ S is between ql − δ and ql þ δ, i.e.,
fk ¼ k1 � � � kmj ∀ l ∈ S∶ jðnlðkÞ=mÞ − qlj ≤ δg. Then,

ρ⊗m ¼
X

k∈typical
qkjηkihηkj þ

X
k∉typical

qkjηkihηkj: ð9Þ

Now we define a sequence of TI operations that prepare
ρ⊗m with a vanishing error: sample string k with proba-
bility qk. If k is not a typical string, prepare a fixed
incoherent state, which does not consume any cbits. By the
law of large numbers, as m → ∞ the probability of such
events goes to zero and therefore the corresponding error
vanishes. For typical k, up to a permutation, jηki can be
written as ⊗

l
jηli⊗nlðkÞ, and typicality implies nlðkÞ ≤

mðql þ δÞ. Therefore, jηki can be obtained from
⊗
l
jηli⊗⌈mðqlþδÞ⌉, which has the energy variance

P
l ⌈mðqlþ

δÞ⌉VHðηlÞ. Using the second part of Theorem 4, one can
show that the period of this state is equal to τ, the period of
ρ. Then, using a simple variant of Theorem 1 we show that
as m → ∞, by consuming ðτ=πÞ2 Pl ⌈mðql þ δÞ⌉VHðηlÞ
cbits, we can prepare state jηki with a vanishing error (note
that the energy variance of cbit is π2=τ2). Using the facts
that

P
l qlVHðηlÞ ¼ FHðρÞ=4 and VHðηlÞ ≤ kHk2, where

kHk is the operator norm, we conclude that for any δ > 0,
by consuming cbits at rate ðτ=2πÞ2 × ðFHðρÞ þ 4δkHk2Þ
per copy, one can prepare copies of the desired system with
vanishing error. This proves one direction of Theorem 2.
See SM [30] for details and the proof of the other direction.
Conclusion.—Preparing a general state requires con-

sumption of both work and energetic coherence. When
coherence is a free resource, the work cost is determined by
the free energy and when work is free the coherence cost is

determined by QFI. In a more complete picture
both of these resources should be taken into account.
Understanding the possible tradeoff between these resource
costs remains an open question. Also, generalizing the
present results to the case of non-Abelian groups, such as
SO(3) will be interesting (see, e.g., Refs. [68,69] for
progress in this direction). Our resource-theoretic approach
enabled us to clarify a previously unnoticed relation
between fundamental properties of QFI, which is arguably
the most studied quantity in quantum metrology and
estimation theory. As QFI has found extensive applications
in different areas of physics, exploring further implications
of Theorems 2 and 3 will be interesting.
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