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In a standard quantum sensing (QS) task one aims at estimating an unknown parameter θ, encoded into
an n-qubit probe state, via measurements of the system. The success of this task hinges on the ability to
correlate changes in the parameter to changes in the system response RðθÞ (i.e., changes in the
measurement outcomes). For simple cases the form of RðθÞ is known, but the same cannot be said
for realistic scenarios, as no general closed-form expression exists. In this Letter, we present an inference-
based scheme for QS. We show that, for a general class of unitary families of encoding, RðθÞ can be fully
characterized by only measuring the system response at 2nþ 1 parameters. This allows us to infer the value
of an unknown parameter given the measured response, as well as to determine the sensitivity of the
scheme, which characterizes its overall performance. We show that inference error is, with high probability,
smaller than δ, if one measures the system response with a number of shots that scales only as
Ωðlog3ðnÞ=δ2Þ. Furthermore, the framework presented can be broadly applied as it remains valid for
arbitrary probe states and measurement schemes, and, even holds in the presence of quantum noise. We also
discuss how to extend our results beyond unitary families. Finally, to showcase our method we implement it
for a QS task on real quantum hardware, and in numerical simulations.
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Introduction.—Quantum sensing (QS) is one of the most
promising applications for quantum technologies [1]. In QS
experiments one uses a quantum system as a probe to
interact with an environment. Then, by measuring the
system, one aims at learning some relevant property of
the environment (usually some characteristic parameter)
with a precision and sensitivity that are higher than those
achievable by any classical system [2]. QS has applications
in a wide range of fields such as quantum magnetometry
[3–6], thermometry [7–10], dark matter detection [11], and
gravitational wave detection [12,13].
In a QS experiment one first prepares an n-qubit probe

state ρ that is as sensitive as possible to an external parameter
θ of interest. This ensures that upon encoding two distinct
parameters θ and θ0 on the system, the respective measure-
ments associated to ρθ and ρθ0 will be sufficiently distin-
guishable, a prerequisite to any task of sensing. Second, one
obtains the system responseRðθÞ to the external interaction
by measuring some observable over ρθ. Third, if the func-
tional form of RðθÞ is known and invertible, one can infer
the value of θ from measurement outcomes, as well as
estimate the sensitivity of the QS scheme.
In simple cases all the previous steps are well-

characterized. For instance, in an idealized magnetometry

experiment it is known that the optimal probe state is the
n-qubit Greenberg-Horne-Zeilinger (GHZ) state, while the
optimal measurement is a parity measurement [14,15].
In this case, RðθÞ ¼ cosðnθÞ, which allows one to
obtain the magnetic field as θ ¼ cos−1½RðθÞ�=n [assuming
θ ∈ ð−π=n; π=nÞ], and the state’s sensitivity as ðΔθÞ2 ¼
1=n2, which corresponds to the Heisenberg limit [2].
However, the situation becomes more involved in realistic
scenarios where the system dynamics are not known, and
hence where the explicit functional form of RðθÞ may not
be accessible. For instance, when noise in the magnetom-
etry setting is taken into account, the GHZ state is no longer
optimal [16–18]. In this case the true response RðθÞ will
inevitably deviate from the idealized cosine formula, limit-
ing the extent to which θ can be accurately estimated. While
recent works have focused on maximizing the sensitivity of
QS protocols in noisy situations, by means of variational
approaches [17,19–24], methods to recover the true RðθÞ
in situ are still lacking.
Here, we introduce a data-driven inference method that

allows us to efficiently characterize the exact functional
form of RðθÞ for a general class of unitary families. We
show that RðθÞ can be expressed as a trigonometric
polynomial of degree n, such that it can be fully determined
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by only measuring the system response at a set of 2nþ 1
known parameters. We then discuss how the inferred
function can be used to estimate the value of any unknown
parameter, as well as the sensitivity of the scheme.
Moreover, we rigorously analyze the inference error.
Finally, we show that our method can be extended to cases
where the system response is no longer exactly a trigono-
metric polynomial, but can still be approximated by one.
The applications of the inference scheme are demonstrated
in both numerical simulations as well as real implementa-
tions on a quantum computer.
Results.—Here, we consider a single-parameter QS

setting employing an n-qubit probe state ρ to estimate a
parameter θ. As shown in Fig. 1, ρ is prepared by sending a
fiduciary state ρin through a state preparation channel E
such that EðρinÞ ¼ ρ. We focus on the case of unitary
families where the parameter encoding mechanism is of the
form

SθðρÞ ¼ e−iθH=2ρ eiθH=2 ¼ ρθ: ð1Þ

Here, H is a Hermitian operator such that H ¼ P
j hj with

h2j ¼ 1, and ½hj; hj0 � ¼ 0, ∀ j, j0. As shown below, the
Hamiltonian in a magnetometry task is precisely of this
form. We allow for the possibility of sending ρθ through a
second premeasurement channel D that outputs an m-qubit
state DðρθÞ (with m⩽n), over which we measure the

expectation value of an observable O, with kOk∞⩽1.
The system response is thus defined as

RðθÞ ¼ Tr½D∘Sθ∘EðρinÞO�: ð2Þ

This setting encompasses cases where E or D are noisy
channels, as well as cases of imperfect parameter encoding
where a θ-independent noise channel acts after Sθ, as is
further discussed in the Supplemental Material (SM) [25].
Leveraging tools from the quantum machine learning

literature [30] we prove the following theorem.
Theorem 1: Let RðθÞ be the response function in

Eq. (2) for a unitary family as in Eq. (1). Then, for any E,D
and measurement operator O, RðθÞ can be exactly
expressed as a trigonometric polynomial of degree n.
That is,

RðθÞ ¼
Xn
s¼1

½as cosðsθÞ þ bs sinðsθÞ� þ c; ð3Þ

with fas; bsgns¼1 and c being real valued coefficients.
Notably, Theorem 1 determines the exact functional

relation between the encoded parameter θ and the system
response. Furthermore, the 2nþ 1 coefficients fas; bsgns¼1

and c, which are not known a priori, can be efficiently
estimated by means of a trigonometric interpolation [31].
This is readily achieved by measuring the system responses
at a set of predefined parameters P ¼ fθkg2nþ1

k¼1 (see Fig. 1),
as this leads to a system of 2nþ 1 equations with
2nþ 1 unknown variables. Hence, one needs to solve a
linear system problem of the form A · x ¼ d. Here, x ¼
½a1;…an; b1;…bn; c� is the vector of unknown coeffi-
cients, d ¼ ½Rðθ1Þ;…;Rðθ2nþ1Þ� is a vector of measured
system responses across P, and A is a ð2nþ 1Þ × ð2nþ 1Þ
matrix with elements Akj ¼ cos ðjθkÞ for j ¼ 1;…n, Akj ¼
sin ðjθkÞ for j ¼ nþ 1;…2n and Akð2nþ1Þ ¼ 1. Thus,
solving x ¼ A−1 · d allows us to fully characterize RðθÞ.
In the SM we provide additional details on this linear
system problem.
Here, we note that A can be singular (for instance if

θk ¼ θk0 þ 2π for any two θk; θk0 ∈ P), and hence care
must be taken when determining the 2nþ 1 parameters. As
shown in the SM, the optimal strategy is to uniformly
sample the parameters as

θk ¼
2πðk − 1Þ
2nþ 1

; with k ¼ 1;…; 2nþ 1; ð4Þ

since this choice reduces the matrix inversion error.
In practice one cannot exactly evaluate the responses

RðθkÞ, but rather can only estimate them up to some
statistical uncertainty resulting from finite sampling. We
define R̄ðθkÞ as the N-shot estimate ofRðθkÞ, and R̃ðθÞ as
the inferred response, a trigonometric polynomial of the
form in Eq. (3), obtained by solving the linear system of

FIG. 1. Inference-based QS scheme. An input state ρin is sent
through the following channels: state preparation E, parameter
encoding Sθ, premeasurement D. We then measure the expect-
ation value of O. By measuring the system response at 2nþ 1
parameters, we can recover the exact form of RðθÞ in Eq. (3).
FromRðθÞwe can infer the value of a parameter given the system
response, and compute the sensitivity of the sensing scheme.
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equations with the estimates R̄ðθkÞ. The effect of the
estimation errors on the accuracy of the inferred response
can be rigorously quantified as follows.
Theorem 2: Let RðθÞ be the exact response function,

and let R̃ðθÞ be its approximation obtained from theN-shot
estimates R̄ðθkÞ with θk given by Eq. (4). Defining the
maximum estimation error ε ¼ maxθk∈PjRðθkÞ − R̄ðθkÞj,
then we have that for all θ

jRðθÞ − R̃ðθÞj ∈ Oðε logðnÞÞ: ð5Þ

Since the maximum estimation error ε is fundamentally
related to the number of shots N, we can derive the
following corollary.
Corollary 1: The number of shots N, necessary to

ensure that with a (constant) high probability, and for all θ,
the error jRðθÞ − R̃ðθÞj⩽δ, for an inference error δ, is
in Ωðlog3ðnÞ=δ2Þ.
It follows from Corollary 1 that, for fixed δ, a poly-

logarithmic number of shots N ∈ Ωðlog3ðnÞÞ suffices to
guarantee that R̃ðθÞ will be a good approximation for the
true responseRðθÞ. Once the inferred response is obtained,
it can be further employed for tasks of parameter estimation
and to characterize the sensitivity of a sensing apparatus—
two aspects of central importance when devising a QS
protocol (see Fig. 1).
When inferring the value of an unknown parameter θ0,

we assume that one is given an estimate of the system
response R̄ðθ0Þ, and the promise that θ0 is sampled from a
known domain Θ. In such a case, one estimates the
unknown parameter as θ� ¼ argminθ∈ΘjR̃ðθÞ − R̄ðθ0Þj.
In many cases of interest, such as high-precision estimation
of small magnetic fields, Θ will be small enough such that
R̃ðθÞ is bijective, ensuring that the solution θ� is unique.
The resulting error in the estimate of the parameter θ0 can
be analyzed via the following corollary.
Corollary 2. Let ϵ0 be the estimation error in R̄ðθ0Þ for

some θ0 in a known domainΘ where the system response is
bijective. Let χ be the error introduced when estimating θ0

via R̃ðθÞ relative to the case when the exact responseRðθÞ
is used. The number of shots, N, necessary to ensure that
with a (constant) high probability χ is no greater than δ0

is Ωðlog3ðnÞ=ðδ0 þ ε0Þ2Þ.
Corollary 2 certifies that R̃ðθÞ can be used to infer an

unknown parameter from a measured system response
without incurring additional uncertainties as long as
enough shots are used. In fact, for fixed δ0 and ε0, one
only needs a polylogarithmic number of shots.
Our inference-based method also allows for estimating

the sensitivity of QS schemes. Knowing the functional form
of the response enables one to directly compute the
sensitivity using the error propagation formula ðΔθÞ2 ¼
ðΔRðθÞÞ2=j∂θRðθÞj2 [32,33], which relates the variance
ðΔθÞ2 in estimates of the parameter θ to the variance

ðΔRðθÞÞ2 of the observable O used to estimate θ [i.e.,
ðΔRðθÞÞ2 ¼ Tr½D∘Sθ∘EðρinÞO2� − Tr½D∘Sθ∘EðρinÞO�2]
and to the slope ∂θRðθÞ of the response with respect to θ.
When O2 ¼ 1 (i.e., measuring a Pauli operator), the
sensitivity is

ðΔθÞ2 ¼ 1 − ðPn
s¼1 ½as cosðsθÞ þ bs sinðsθÞ� þ cÞ2

jPn
s¼1 s½−as sinðsθÞ þ bs cosðsθÞ�j2

: ð6Þ

A similar expression will hold when using R̃ðθÞ in place of
RðθÞ. As shown in the SM, using R̃ðθÞ to estimate the
sensitivity at a parameter θl leads to an error that scales as
Oðε logðnÞ=DlÞ, where Dl ¼ ∂θRðθÞjθ¼θl

. Moreover, as
proven in the SM, a polynomial number of shots suffices
to guarantee jΔθ − Δθ̃j⩽δ00 for some fixed δ00 if
Dl ∈ Ωð1=polyðnÞÞ. Notably, the inferred sensitivity
ðΔθÞ2 in Eq. (6) can be compared with the quantum
Cramer-Rao bounds [34,35], or the ultimate Heisenberg
limit, to determine the optimality of the sensing scheme. In
the SM we use this insight to show how our inferred
response function can be used to train a measurement
operator to reach the optimal sensing scheme given a fixed
probe state.
One can further ask whether Eq. (3) can still be used in

scenarios where the system response is no longer a
trigonometric polynomial. Such a case will arise, for
instance, if Sθ is not of the form in Eq. (1). Still, we
can leverage tools from trigonometric interpolation to
accurately approximate the system response. Here, the
following theorem holds for periodic responses and for
parameters close enough to the θk values in P (regions of
great interest for several QS tasks such as small magnetic
field estimation).
Theorem 3: Let fðθÞ be a 2π-periodic function with

jfðθÞj⩽1 ∀ θ, and let R̃ðθÞ be its trigonometric poly-
nomial approximation obtained from the N-shot estimates
of f̄ðθkÞ, with θk given by Eq. (4). Defining the maximum
estimation error ε0 ¼ maxθk∈PjfðθkÞ − f̄ðθkÞj, and assum-
ing that jθ − θkj ∈ Oð1=polyðnÞÞ, then

jfðθÞ − R̃ðθÞj ∈ O
�
max

�
M

polyðnÞ ; ε
0 logðnÞ

��
; ð7Þ

where M is the Lipschitz constant of fðθÞ.
Theorem 3 shows that ifM ∈ OðnÞ, which can occur for

a wide range of parameter encoding schemes [36], then we
can derive a result similar to that in Corollary 1. Namely,
using a polylogarithmic number of shots to estimate the
quantities f̄ðθkÞ leads to R̃ðθÞ being a good approximation
of fðθÞ.
Experimental results.—We demonstrate the performance

of the inference method for a magnetometry task performed
on the IBM_MONTREAL quantum computer. This consists of
preparing the GHZ state, encoding a magnetic field via
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Eq. (1) with H ¼ P
n
j¼1 Zj, and measuring the parity

operator O ¼⊗n
j¼1 Xj. Here, Zj and Xj are the Pauli z

and x operators acting on the jth qubit, respectively. We set
D to be the identity channel and perform the QS task for
systems of up to n ¼ 22 qubits.
We first measure the system response at 2nþ 1 training

fields θk ∈ P, sampled according to Eq. (4). These esti-
mates are then used to infer the response R̃ðθÞ of Eq. (3), as
well as to fit a function gðθÞ ¼ α cosðβθ þ γÞ þ ζ. As
discussed in the SM, the latter corresponds to a first order
approximation of a noisy response under where the
coefficients α, β, γ, and ζ correct the cosine to account
for the effects of hardware noise. To evaluate the ability of
these two functions to recover the true response of the
system, we compare their predictions against the measured
system response at a set of random test fields.
In Fig. 2(a) we display inference results for n ¼ 8 and

n ¼ 16 qubits, indicating that our method (red solid curve)
is clearly able to fit the training and test fields better than
the cosine response (black dotted curve). More quantita-
tively, in Fig. 2(b), we show the scaling of the error as a
function of the system size. One can see that for all problem
sizes considered our method leads to smaller response
prediction error. We note that for larger n the effect of noise
becomes more prominent, as the hardware noise suppresses
the measured expectation values [37–39]. Hence, in this
regime both methods are equally limited by finite sampling
noise that becomes of the same order as the magnitude of
the response. Still, even for system sizes as large as n ¼ 22
qubits, the inference method reduces the relative error by a
factor larger than 2 when compared to that of the gðθÞ fit.
Finally, we also use R̃ðθÞ and gðθÞ for parameter estima-
tion, i.e., to determine an unknown magnetic field encoded

in the quantum state. As shown in Fig. 2(c), the gðθÞ fit
matches the worst possible prediction already for n ¼ 8
qubits, whereas our inference method can outperform the
gðθÞ fit by up to 1 order of magnitude. In the SM we further
discuss the behavior of the parameter prediction curves of
Fig. 2(c).
Numerical simulations.—We complement the previous

study with numerical results from a density matrix simu-
lator that includes hardware noise, but where finite sam-
pling can be omitted. We evaluate our inference method by
emulating several magnetometry tasks as they would have
been performed on a trapped-ion quantum computer (see
[40,41]). To this end, we consider three different sensing
setups. First, we study the same standard GHZ magne-
tometry setting as implemented on the IBM device. Second,
we characterize the squeezing in a system where the probe
state is a spin coherent state, H ¼ P

j<k XjXk is the
one-axis twisting Hamiltonian [42], and O ¼ Zn (note that
we did not choose the optimal measurement operator
O ¼ P

j Zj as we want to showcase that we can infer
the response for any choice of O). Finally, we study a
scenario where the probe state is constructed by a unitary
composed of four layers of a hardware efficient ansatz
with random parameters [43,44], H ¼ P

n−1
j¼1 ZjZjþ1 and

O ¼ ð1=nÞPn
i¼1 Xi. (This case is relevant for variational

quantum metrology [17,19,20,23,24], where one wishes to
prepare a probe state via some parametrized quantum
circuit that is usually initialized with random parameters.)
In all cases D is the identity channel. See SM for further
details, including the circuits employed.
As motivated by Corollary 1, R̃ðθÞ is inferred with

N ¼ ⌈5 × 102 logðnÞ2 log½2 × 102ð2nþ 1Þ�⌉ shots per θk.
Figure 3(a) shows that in all three QS settings considered

(a)
(b)

(c)

FIG. 2. Magnetometry task on IBM hardware. (a) Inferred response R̃ðθÞ for system sizes of n ¼ 8 and 16 qubits. The fields used to
train (red point) and test (blue star) the inference scheme, were estimated on the IBM_MONTREAL quantum computer using 3.2 × 104

shots per expectation value. We depict the inferred response R̃ðθÞ (red solid curve) as well as the fit gðθÞ ¼ α cosðβθ þ γÞ þ ζ (black
dotted curve). (b) Relative response error versus n. Statistics were obtained over 74 test fields and 7 experiment repetitions. The relative
error is defined as the difference between the fit or inferred value and the measurement response, normalized by the average test
expectation value. The red (black) points correspond to R̃ðθÞ [gðθ)], while solid (dashed) lines represent the median (upper quartile)
error. (c) Parameter prediction error versus n, with green dots denoting the worst possible prediction (see SM).

PHYSICAL REVIEW LETTERS 129, 190501 (2022)

190501-4



the inferred response closely matches the exact one [i.e., the
red curve for R̃ðθÞ and the black curve for RðθÞ are
overlaid]. In Fig. 3(b) we further show the scaling of the
error jRðθÞ − R̃ðθÞj with respect to the system size. This
analysis reveals that our method always performs signifi-
cantly better than the upper bound given by Theorem 2.
Indeed, we can see that allocating a number of shots N that
increases polylogarithmically with n allows the error to
decrease with increasing system size.
Finally, we use R̃ðθÞ to estimate the sensitivity of the

three experimental setups. As shown in Fig. 3(c), our
method (red curves) recovers the behavior of the exact
sensitivity (black curves). The sensitivity diverges in
parameter regions where the experimental setup is insensi-
tive to the field (when the response function has a vanishing
gradient). In the SM we further provide a theoretical and
numerical analysis for the estimated sensitivity, as well as
the scaling of the error of inferring an unknown parameter.
Conclusions.—We introduced an inference-based

scheme for QS that fully characterizes the response
RðθÞ for a general class of unitary families by only

measuring the system at 2nþ 1 known parameters. This
framework leverages techniques from quantum machine
learning and polynomial interpolation [30,45,46] for quan-
tum sensing, leading to new insights and methodology for
the characterization, implementation, and benchmarking of
sensing protocols.
One of the main advantages of our method is that it can

be readily combined with existing sensing protocols. For
instance, further research could explore the use of the
inferred response function in a variational setting, involving
an optimization of the experimental setup to maximize the
sensitivity and parameter prediction accuracy (see SM).
This paves the way for a new approach in data-driven
quantum machine learning for QS where the optimization
procedure does not require knowledge of the classical or
quantum Fisher information [17,20–24,47–52].
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Piganeau, and Jens Eisert, Stochastic gradient descent for
hybrid quantum-classical optimization, Quantum 4, 314
(2020).

[37] Samson Wang, Enrico Fontana, M. Cerezo, Kunal Sharma,
Akira Sone, Lukasz Cincio, and Patrick J. Coles, Noise-
induced barren plateaus in variational quantum algorithms,
Nat. Commun. 12, 6961 (2021).

[38] Daniel Stilck França and Raul Garcia-Patron, Limitations of
optimization algorithms on noisy quantum devices, Nat.
Phys. 17, 1221 (2021).

PHYSICAL REVIEW LETTERS 129, 190501 (2022)

190501-6

https://doi.org/10.1073/pnas.1601513113
https://doi.org/10.1038/natrevmats.2017.88
https://doi.org/10.1038/natrevmats.2017.88
https://doi.org/10.1103/PhysRevLett.114.220405
https://doi.org/10.1038/ncomms12782
https://doi.org/10.1103/PhysRevA.98.012115
https://doi.org/10.1103/PhysRevA.99.052318
https://doi.org/10.1103/PhysRevA.99.052318
https://doi.org/10.1103/PhysRevD.96.035009
https://doi.org/10.1103/PhysRevLett.124.171102
https://doi.org/10.1103/PhysRevLett.124.171102
https://doi.org/10.1103/PhysRevLett.123.231107
https://doi.org/10.1119/1.16243
https://doi.org/10.1126/science.1097576
https://doi.org/10.1103/PhysRevLett.79.3865
https://doi.org/10.1088/1367-2630/ab965e
https://doi.org/10.1103/PhysRevLett.123.250502
https://doi.org/10.1038/s42254-021-00348-9
https://doi.org/10.1038/s42254-021-00348-9
https://doi.org/10.1103/PhysRevResearch.4.013083
https://doi.org/10.1103/PhysRevResearch.4.013083
https://doi.org/10.1103/PhysRevA.104.062602
https://doi.org/10.1088/2058-9565/abfbef
https://doi.org/10.1088/2058-9565/abfbef
https://doi.org/10.1103/PhysRevX.11.041045
https://doi.org/10.1038/s41534-021-00425-y
http://link.aps.org/supplemental/10.1103/PhysRevLett.129.190501
http://link.aps.org/supplemental/10.1103/PhysRevLett.129.190501
http://link.aps.org/supplemental/10.1103/PhysRevLett.129.190501
http://link.aps.org/supplemental/10.1103/PhysRevLett.129.190501
http://link.aps.org/supplemental/10.1103/PhysRevLett.129.190501
http://link.aps.org/supplemental/10.1103/PhysRevLett.129.190501
http://link.aps.org/supplemental/10.1103/PhysRevLett.129.190501
https://doi.org/10.1016/0024-3795(92)90016-4
https://doi.org/10.1090/S0002-9947-1913-1500957-1
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.34.2151&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.34.2151&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.34.2151&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.34.2151&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.34.2151&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.34.2151&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.34.2151&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.34.2151&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.34.2151&rep=rep1&type=pdf
https://doi.org/10.1103/PhysRevResearch.2.043158
https://doi.org/10.1103/RevModPhys.90.035005
https://doi.org/10.1103/RevModPhys.90.035005
https://doi.org/10.1116/1.5119961
https://doi.org/10.1116/1.5119961
https://doi.org/10.1088/1751-8113/49/27/275302
https://doi.org/10.1088/1751-8113/49/27/275302
https://doi.org/10.22331/q-2020-08-31-314
https://doi.org/10.22331/q-2020-08-31-314
https://doi.org/10.1038/s41467-021-27045-6
https://doi.org/10.1038/s41567-021-01356-3
https://doi.org/10.1038/s41567-021-01356-3


[39] Samson Wang, Piotr Czarnik, Andrew Arrasmith, M.
Cerezo, Lukasz Cincio, and Patrick J. Coles, Can error
mitigation improve trainability of noisy variational quantum
algorithms? arXiv:2109.01051.

[40] Lukasz Cincio, Yiğit Subaşı, Andrew T. Sornborger, and
Patrick J. Coles, Learning the quantum algorithm for state
overlap, New J. Phys. 20, 113022 (2018).

[41] Colin J. Trout, Muyuan Li, Mauricio Gutiérrez, Yukai Wu,
Sheng-Tao Wang, Luming Duan, and Kenneth R. Brown,
Simulating the performance of a distance-3 surface code in a
linear ion trap, New J. Phys. 20, 043038 (2018).

[42] Masahiro Kitagawa and Masahito Ueda, Squeezed spin
states, Phys. Rev. A 47, 5138 (1993).

[43] Abhinav Kandala, Antonio Mezzacapo, Kristan Temme,
Maika Takita, Markus Brink, Jerry M. Chow, and Jay M.
Gambetta, Hardware-efficient variational quantum ei-
gensolver for small molecules and quantum magnets,
Nature (London) 549, 242 (2017).

[44] M. Cerezo, Akira Sone, Tyler Volkoff, Lukasz Cincio, and
Patrick J. Coles, Cost function dependent barren plateaus in
shallow parametrized quantum circuits, Nat. Commun. 12,
1791 (2021).

[45] Olivia Di Matteo, Josh Izaac, Tom Bromley, Anthony
Hayes, Christina Lee, Maria Schuld, Antal Száva, Chase

Roberts, and Nathan Killoran, Quantum computing with
differentiable quantum transforms, arXiv:2202.13414.

[46] DavidWierichs, Josh Izaac, CodyWang, and Cedric Yen-Yu
Lin, General parameter-shift rules for quantum gradients,
Quantum 6, 677 (2022).

[47] Johannes Jakob Meyer, Fisher information in noisy inter-
mediate-scale quantum applications, Quantum 5, 539 (2021).

[48] Iris Cong, Soonwon Choi, and Mikhail D. Lukin, Quantum
convolutional neural networks, Nat. Phys. 15, 1273 (2019).

[49] Arthur Pesah, M. Cerezo, Samson Wang, Tyler Volkoff,
Andrew T. Sornborger, and Patrick J. Coles, Absence of
Barren Plateaus in Quantum Convolutional Neural Net-
works, Phys. Rev. X 11, 041011 (2021).

[50] Kunal Sharma, M. Cerezo, Lukasz Cincio, and Patrick J.
Coles, Trainability of Dissipative Perceptron-Based
Quantum Neural Networks, Phys. Rev. Lett. 128, 180505
(2022).

[51] Jeffrey Marshall, Filip Wudarski, Stuart Hadfield, and Tad
Hogg, Characterizing local noise in QAOA circuits, IOP
SciNotes 1, 025208 (2020).

[52] Cheng Xue, Zhao-Yun Chen, Yu-Chun Wu, and Guo-
Ping Guo, Effects of quantum noise on quantum approximate
optimization algorithm, Chin. Phys. Lett. 38, 030302
(2021).

PHYSICAL REVIEW LETTERS 129, 190501 (2022)

190501-7

https://arXiv.org/abs/2109.01051
https://doi.org/10.1088/1367-2630/aae94a
https://doi.org/10.1088/1367-2630/aab341
https://doi.org/10.1103/PhysRevA.47.5138
https://doi.org/10.1038/nature23879
https://doi.org/10.1038/s41467-021-21728-w
https://doi.org/10.1038/s41467-021-21728-w
https://arXiv.org/abs/2202.13414
https://doi.org/10.22331/q-2022-03-30-677
https://doi.org/10.22331/q-2021-09-09-539
https://doi.org/10.1038/s41567-019-0648-8
https://doi.org/10.1103/PhysRevX.11.041011
https://doi.org/10.1103/PhysRevLett.128.180505
https://doi.org/10.1103/PhysRevLett.128.180505
https://doi.org/10.1088/2633-1357/abb0d7
https://doi.org/10.1088/2633-1357/abb0d7
https://doi.org/10.1088/0256-307X/38/3/030302
https://doi.org/10.1088/0256-307X/38/3/030302

