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We realize a turbulent cascade of wave excitations in a homogeneous 2D Bose gas and probe on all
relevant time and length scales how it builds up from small to large momenta, until the system reaches a
steady state with matching energy injection and dissipation. This all-scales view directly reveals the two
theoretically expected cornerstones of turbulence formation—the emergence of statistical momentum-
space isotropy under anisotropic forcing and the spatiotemporal scaling of the momentum distribution at
times before any energy is dissipated.
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Turbulence is a multiscale phenomenon that is still not
understood on a microscopic level, but is believed to
generically feature cascades of excitations across different
length scales [1–3]. When Richardson introduced the
concept of a turbulent cascade a century ago [1], he posited
that energy injected into a fluid at a large length scale flows
without loss through momentum space until it is dissipated
at some small length scale. This is now known as a direct
cascade, and the concept has been extended to an inverse
one [4], from small to large length scales.
In a fully developed steady state, with matching energy

injection (at one length scale) and dissipation (at another),
turbulence is commonly manifested in stationary power-
law spectra of system-dependent quantities like energy [5]
or enstrophy [4,6]. Such spectra have been observed in a
variety of contexts [5–9], ranging from ocean waves [8] to
financial markets [7]. However, little is established exper-
imentally about how such nonequilibrium steady states
emerge, starting from an equilibrium system.
In this Letter, we observe this emergence for a direct

wave cascade in a homogeneous two-dimensional (2D)
atomic Bose gas [10,11]. Compared to earlier work on 3D
wave turbulence in a homogeneous Bose gas [12], our
geometry allows us to directly view the system on all
relevant length scales, from the large one where we inject
energy by an oscillating force to the small one where it is
eventually dissipated. Our Letter also complements studies
of the inverse energy cascade associated with vortex
turbulence in 2D Bose gases [13,14] and opens possibilities
for further research, ranging from the interplay of wave and
vortex turbulence [15] to quantum simulation of processes
believed to have taken place in the early Universe [16].
The two key phenomena theoretically associated with

the birth of direct-cascade wave turbulence are outlined in

Fig. 1(a). First, according to this picture, even though the
continuous energy injection at a large length scale (small
wave number k ¼ jkj) is anisotropic, beyond a sufficiently
large k the cascade is statistically isotropic; such isotropy is
believed to emerge in systems that, like our trapped gas,
carry no net momentum [17] (see [18,19] for a more
general discussion). The second key phenomenon is
dynamic scaling—once the isotropic cascade front kcf
forms, it evolves algebraically in time t, as kcf ∝ t−β (with
β < 0), until it reaches the dissipation scale kD and a steady
state is established. In its wake, kcf leaves an isotropic
power-law momentum distribution nkðkÞ ∝ k−γ [19,20], so
the pre-steady-state nk (at large k) follows the general form
of self-similar spatiotemporal (dynamic) scaling,

ðt=t0Þ−αnkðk; tÞ ¼ nkððt=t0Þβk; t0Þ; ð1Þ

where t0 is a reference time and in our case α ¼ γβ [19,20].
Such scaling, known from classical surface growth [21,22],
and also seen in the relaxation dynamics of quantum
gases [23–27], is hypothesized to be generic to far-from-
equilibrium many-body quantum systems [28,29] and
proposed as a way to classify them analogously to equi-
librium universality classes.
As outlined in Fig. 1(b), we prepare a quasipure 2D

superfluid of 39K atoms in a square optical box trap and
drive it anisotropically with a time-periodic force created
by a magnetic field gradient along one of the box axes,
denoted x [30]. The gas is confined to the x-y plane by a
harmonic potential with angular trap frequency ωz and has
chemical potential μ ¼ Nℏ2g̃=ðmL2Þ, where N is the atom
number, L is the box size, m is the atom mass, and g̃ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8πmωz=ℏ

p
a [31,32], where a is the 3D s-wave scattering

length, which we tune using a Feshbach resonance; for our
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typical system parameters, see the legend in Fig. 1(c). The
spatially uniform driving force, F ¼ F0 sinðωFtÞ, with
ωF ¼ cπ=L, where c ¼ ffiffiffiffiffiffiffiffiffi

μ=m
p

is the speed of sound,
resonantly injects energy into a longest-wavelength phonon
mode, with wave vector kF ¼ ðπ=L; 0Þ. Our energy-
injection scale is thus set by the system size, kF ¼ π=L≲
0.1 μm−1, while the dissipation scale kD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mUD=ℏ2

p
≈

5 μm−1 is set by the trap depth UD; the energy is dissipated
from the system by particles with energy larger than UD
leaving the trap [33,34]. Between kF and kD, the nature of
excitations changes from phonons to particlelike matter
waves at k ¼ 1=ξ, where ξ ¼ L=

ffiffiffiffiffiffi
g̃N

p
∼ 1 μm is the 2D

healing length [32].
We first summarize the universal features of our energy

injection [Fig. 1(c)] and the resulting steady-state turbu-
lence [Figs. 1(d) and 1(e)] and then study how such a steady
state gets established (Figs. 2 and 3). To probe the gas on all
length scales from kF to kD, we use three complementary
tools: (i) using principal component analysis (PCA)
[35,36], we directly visualize the dynamics of the low-
lying (k ∼ kF) discrete quantum states; (ii) with time-of-
flight (TOF) expansion, we study the emergent statistical
behavior at large k; and (iii) using Bragg spectro-
scopy [37,38], we bridge the k-space gap between these
measurements.

To measure the energy flux ϵ injected at kF (averaged
over half a drive period), we monitor the periodic displace-
ment of the cloud’s center of mass (c.m.), which is propor-
tional to the density modulation due to the phonon excitation
at kF [see Fig. 1(b)] [30]. Specifically, ϵ ¼ NF0v0=2, where
v0 is the amplitude of the c.m. speed. Defining the
dimensionless flux ϵ=ðNμωFÞ ¼ pv0=ð2πcÞ, where p ¼
F0L=μ is the dimensionless drive strength [12], we find that
it follows a universal curve, ∝ p1.31ð3Þ [Fig. 1(c)]. This
scaling is in contrast with linear response (where v0 ∝ F0, so
ϵ ∝ p2) and agrees with ϵ ∝ p4=3 for a nonlinear transfer of
energy to higher-lying excitations, as previously observed in
3D for a single interaction strength [39].
For sufficiently strong drives, p≳ 0.5 (corresponding to

v0=c ≳ 0.15), and at sufficiently long times, in TOF we
observe steady-state power-law distributions such as those
shown in Fig. 1(d) for p ¼ 0.85 and t ¼ 5 × 2π=ωF. The
line-integrated distributions parallel and perpendicular to
the drive, n̄k;xðyÞðkxðyÞÞ ¼

R
dkyðxÞnkðkx; kyÞ, are essentially

identical, implying an isotropic nk. Note, however, that due
to finite-size effects, these measurements are not accurate
for k≲ 0.6 μm−1 (see Supplemental Material [40]). We
also show the (azimuthally averaged) radial distribution
nkðkÞ, from which we extract γ ≈ 2.9 (solid line). As shown
in Fig. 1(e), γ is robust under changes of the system
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FIG. 1. Direct wave cascade in a 2D quantum gas. (a) Generic momentum-space picture of emergent isotropy and dynamic scaling.
Anisotropic energy injection at a small wave number k (black) and microscopic interactions (orange) lead to an isotropic cascade
(blue), with the cascade front evolving as kcf ∝ t−β (where t is time and β < 0) until it reaches the dissipation scale kD and a steady
state is established. (b) Our experiment. Left: we start with a homogeneous 2D superfluid of N atoms with chemical potential μ in a
square box trap of size L (here 53 μm) and depth UD, which sets kD ∝

ffiffiffiffiffiffiffi
UD

p
. Right: a spatially uniform force F ¼ F0 sinðωFtÞ along

x resonantly injects energy into a phonon mode with wave vector kF ¼ ðπ=L; 0Þ, visualized using PCA. (c)–(e) Universal steady-state
features. (c) The energy-injection rate ϵ scaled by NμωF for different system parameters. The solid line shows ϵ=ðNμωFÞ ∝ p1.31ð3Þ,
where p ¼ F0L=μ. (d) Steady-state momentum distributions seen in TOF for p ¼ 0.85 and system parameters as for the green
triangles in (c). Left: line-integrated distributions parallel (n̄k;x) and perpendicular (n̄k;y) to the drive; right: azimuthally averaged
nkðkÞ. The solid lines show nk ∝ k−γ and n̄k;xðyÞ ∝ k−γþ1, with γ ¼ 2.9. (e) Exponent γ for different experimental parameters; shaded
region shows γ ¼ 2.90ð5Þ.
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parameters, including the box size and the drive strength;
from different measurements (always fitting in the range
1.5–3 μm−1) we get a combined estimate γ ¼ 2.90ð5Þ.
To trace how such a steady state gets established, we start

with the onset of the cascade at low k, by studying in situ
the spatiotemporal modulations of the gas density n
[Fig. 2(a)]; here we use our larger, 53-μm box, with
parameters as for the red diamonds in Fig. 1(c) and
p ¼ 0.6, while below for Bragg and TOF measurements
we use a 31-μm box with all parameters as in Fig. 1(d) [40].
Using PCA, we decompose nðx; y; tÞ in an unbiased way

as
ffiffiffi
λ̄

p
f̄ðx; yÞ þP

J−1
j¼1

ffiffiffiffi
λj

p
fjðx; yÞbjðtÞ, with orthonormal

ffjðx; yÞg and fbjðtÞg, and J equal to the number of
different times for which we measure n. Here f̄ is the
normalized time-averaged density profile and fj are the
principal components of the modulations Δnðx; y; tÞ,
with eigenvalues λj decreasing with increasing j, and
P

J−1
j¼1 λj=λ̄ ¼ hðΔnÞ2i=hni2, where h…i denotes an aver-

age over both space and time. For weak modulations, fj
directly visualize the wave functions of the underlying
excitations through interference with the quasiuniform
condensate.
We find that the first four fj [see Fig. 2(a)], with f1

showing the resonantly excited phonon, all closely resem-
ble phonon wave functions with k ¼ jkF; here J ¼ 81, but
the first four modes account for 75% of the total (norma-
lized) density variance

P
80
j¼1 λj=λ̄ ¼ 0.08, and we do not

identify any clear structures in the remaining ones. The
directly driven b1 oscillation at ωF quickly reaches a steady

state, while b2 oscillates predominantly at 2ωF and with a
discernible delay; b3 and b4 show more complex behavior,
but for t > 2π=ωF, all four bj are fitted well byP

4
l¼1 Bj;l cosðlωFtþ ϕj;lÞ, which gives their harmonic

weights Λj;l ¼ B2
j;l=ð

P
4
l¼1 B

2
j;lÞ. The nonlinear cascade

naturally results in the appearance of the diagonal terms
Λj;j, corresponding to jkF phonons being created and
revealed through interference with the condensate. The
prominent off-diagonal ones Λ3;1 and Λ4;2 can be partially
explained by noting that two-phonon interference also
contributes to Δn (e.g., B4;2 arising from interference of
kF and 3kF phonons); another contribution to B3;1 arises
from weak off-resonant direct driving of the 3kF phonon.
Crucially, up to 4kF, corresponding to ≈0.15=ξ, all the

dynamics are essentially one dimensional. In the presence
of a condensate, which makes a three-wave interaction
(two phonons combining into a single higher-energy one)
the dominant nonlinear process, such absence of cross-
directional coupling is indeed theoretically expected for
k ≪ 1=ξ [46].
To follow the fate of the anisotropy at higher k, we use

Bragg spectroscopy, which gives the line-integrated dis-
tributions n̄k;x and n̄k;y without any finite-size artifacts.
Normalizing n̄k;xðkÞ and n̄k;yðkÞ to unity for zero k and t
[40], in Fig. 2(b) we show them for t ¼ 2π=ωF. By this
time, the excitations already cascade to k > 1=ξ and,
while at low k their distribution is clearly anisotropic, at
k≳ 1=ξ ¼ 1.0 μm−1 it is isotropic [47].
With the isotropy of the momentum distribution estab-

lished for k≳ 1=ξ and t ≥ 2π=ωF, we turn to TOF
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FIG. 2. From low-k anisotropy to high-k isotropy. (a) PCA decomposition of the in situ density modulations, for p ¼ 0.6. The spatial
structures fjðx; yÞ of the first four modes show excitations only along the drive direction x. The temporal fits, bjðtÞ ¼P

4
l¼1 Bj;l cosðlωFtþ ϕj;lÞ for t > 2π=ωF (solid lines, with the dashed ones showing extrapolations to shorter t), give the harmonic

weights Λj;l ¼ B2
j;l=ð

P
4
l¼1 B

2
j;lÞ. The normalized PCA eigenvalues λj=λ̄ are also shown for the next five modes (open circles), which

do not show any clear structures. (b) Emergence of isotropy seen in Bragg spectroscopy, for p ¼ 0.85 and t ¼ 2π=ωF. Here n̄k;xðkÞ and
n̄k;yðkÞ are normalized by their common value n̄00k , measured for k ¼ 0 and t ¼ 0. The emergence of isotropy is seen in the convergence
of the two curves for k≳ 1=ξ ¼ 1.0 μm−1; in the inset (enlarged at high k), the dashed line indicates distributions measured with similar
error bars for p ¼ 0.
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measurements to study how nkðk; tÞ evolves until the steady
state is reached. In Fig. 3(a), we show the evolution of the
compensated spectrum nkkγ, which highlights the propa-
gation of its leading edge. From nk, measured at half-
periods of the drive, we extract the total kinetic energy in
the isotropic cascade (k > 1=ξ), EcðtÞ ¼

R
dk2πkεk, where

εk ¼ nkℏ2k2=ð2mÞ [40] [Fig. 3(b)] and the cascade front
kcfðtÞ [Fig. 3(c)].
Beyond some time t� ≈ 3.5 × 2π=ωF, both Ec and kcf

saturate, as expected for a steady state with matching
energy injection and dissipation [34]. Prior to that, the
growth of Ec is consistent with the independently measured
ϵ injected at kF (solid line); note that the systematic error in
ϵ is ≈20%, dominated by the errors in the calibration of N
and L (see Supplemental Material [40]). For kcf > 1=ξ,
associating a constant increase of Ec with the growth of kcf
leads to the scaling prediction [19,33] kcf ∝ t−β (for t < t�),
with

β ¼ −1=ðdþ 2 − γÞ; ð2Þ
where d is the system dimensionality [48]. Note that this
relation assumes a quadratic wave dispersion, which is our
case for k > 1=ξ [49]. For a quadratic dispersion, the
analytical theory of weak-wave turbulence [19,20] predicts
γ ¼ d ¼ 2 and β ¼ −1=2, assuming very weak interactions
and lnðkD=kFÞ ≫ 1. Our experimental γ is different, and
the origin of this difference remains to be elucidated (note

that in a 3D gas γ ≈ 3.5 was observed [12]). However, the
relationship between β and γ in Eq. (2), which embodies the
concept of dynamic scaling, should hold more generally
[33], as its derivation is valid for any γ < dþ 2 [19,20].
Taking our experimental γ ¼ 2.90ð5Þ and d ¼ 2, we predict
β ¼ −0.91ð4Þ, and in Fig. 3(c) we show that kcfðtÞ agrees
with this prediction (solid line). Alternatively, fitting kcf ∝
t−β for t < 3 × 2π=ωF gives a consistent β ¼ −0.85ð7Þ (not
shown), with the error dominated by the systematic
uncertainty in kcfðtÞ.
In Fig. 3(d), we show the data from Fig. 3(a) rescaled

according to Eq. (1). The collapse of the curves for t < t�
confirms the dynamic scaling in the pre-steady-state,
and we also show its breakdown at longer times. In the
dynamics of closed quantum systems, such breakdown
is expected when a system approaches equilibrium
[25,28,29]; here it occurs when our driven gas reaches a
nonthermal steady state.
In conclusion, our experiments provide a complete, all-

scales picture of the birth of 2D wave turbulence, and our
microscopic view on the far-from-equilibrium dynamics
could allow many further studies. It would be interesting
to vary the energy-injection scale, explore excitations above
an established turbulent steady state, and study decaying
turbulence [20]. In a broader context, such studies could also
allow quantum simulation of the postinflationary cosmo-
logical reheating [16]. One could also search for scenarios in
which the emergence of isotropy breaks down, for example,
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by forcing the gas through a channel between two reservoirs
[50], so that turbulence forms in a moving frame.

The supporting data for this Letter are available in the
Apollo repository [51].
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