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We investigate the compression of quantum information with respect to a given set M of high-
dimensional measurements. This leads to a notion of simulability, where we demand that the statistics
obtained from M and an arbitrary quantum state ρ are recovered exactly by first compressing ρ into a
lower-dimensional space, followed by some quantum measurements. A full quantum compression is
possible, i.e., leaving only classical information, if and only if the setM is jointly measurable. Our notion
of simulability can thus be seen as a quantification of measurement incompatibility in terms of dimension.
After defining these concepts, we provide an illustrative example involving mutually unbiased bases, and
develop a method based on semidefinite programming for constructing simulation models. In turn we
analytically construct optimal simulation models for all projective measurements subjected to white noise
or losses. Finally, we discuss how our approach connects with other concepts introduced in the context of
quantum channels and quantum correlations.
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Introduction.—Quantum measurements play a funda-
mental role in quantum theory and its applications, nota-
bly in quantum information processing and metrology.
Indeed measurements represent the bridge between a
quantum system and an external observer; hence essen-
tially any quantum experiment relies on a quantum meas-
urement process. More recently, the role of quantum
measurements as a resource was clarified in the context
of quantum information processing tasks; see Refs. [1,2]
for a review. At the formal level, the concept of joint
measurability [3] provides a framework for the characteri-
zation and quantification of the incompatibility of quantum
measurements, which can be connected to their usefulness
in, e.g., state-discrimination problems [4–9] and quantum
steering [10–13].
A natural question is whether quantum measurement

incompatibility can also be quantified in terms of dimen-
sion. Intuitively, a set of quantum measurements defined on
a high-dimensional Hilbert space may feature a stronger
form of incompatibility than what is possible for lower
dimensions.
In this Letter we address this question and propose a

notion of dimensionality for measurement incompatibility.
This notion can be understood, and naturally motivated, in a
scenario involving the compression of quantum informa-
tion. Loosely speaking, we ask whether the statistics of a set
of d-dimensional positive operator-valued measures
(POVMs) M (considering any possible quantum state ρ)
can be exactly recovered from first projecting ρ onto an
n-dimensional space (with 1 ⩽ n < d) and then performing

POVMs in this lower-dimensional space. If such a com-
pression is possible, we say the set M is n-dimensional
simulable. Note that the case n ¼ 1 exactly corresponds to
the notion of joint measurability; indeed, in this case, the full
quantum information can be compressed to classical infor-
mation; see also Refs. [14,15]. However, as we will
see below, there exist sets of POVMs M that are incom-
patible, but yet simulablewith n-dimensionalmeasurements
with 1 < n < d. The notion of n-dimensional simulability
can thus be seen as an extension of the concept of joint
measurability, providing a quantification of the incompat-
ibility of quantum measurements in terms of dimension.
After introducing these ideas more formally, we provide

illustrative examples based on sets of mutually unbiased
measurements. Then, we present a method based on
semidefinite programming (SDP) to show that a set of
measurements is n-dimensional simulable. In turn we
consider the continuous sets of all projective measurements
subjected to noise or losses, and construct optimal n-
simulation models. Finally, we establish a link to partially
entanglement-breaking channels [16], and discuss connec-
tions to other concepts as well as open questions.
Scenario and definition.—Consider the following task: a

sender (Alice) is located on the moon and wants to transmit
an (arbitrary) d-dimensional quantum state ρ to a receiver
(Bob) located on earth. Upon receiving ρ, Bob will perform
a set of measurements M ¼ fMajxga;x, where fMajxga
denotes a POVM, i.e., Majx ⩾ 0 and

P
a Majx ¼ 1∀ a, x.

This leads to the following statistics termed the target
data: pðajx; ρÞ ¼ TrðMajxρÞ.
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So far, we assumed that the channel between Alice and
Bob is ideal, i.e., a d-dimensional identity channel. In the
following, however, we will consider the dimensionality of
the quantum channel as a resource, which we will aim to
minimize. Note that a classical channel (of arbitrary
capacity) is always available for free.
We now ask if the target data could be reproduced

by using a lower-dimensional quantum channel. That is,
we look for a quantum instrument fEλgλ, where each
Eλ∶BðCdÞ → BðCnÞ is a completely positive (CP) map, λ
a classical outcome, and the map

P
λ Eλ is trace preserving.

Alice would then send the compressed n-dimensional
state EλðρÞ to Bob, together with the classical outcome λ.
Bob finally chooses from a set of measurements N ¼
fNajx;λga;x;λ. The protocol is successful if we recover the
target data, i.e., if

X
λ

Tr½Najx;λEλðρÞ� ¼ TrðMajxρÞ ∀ ρ; ð1Þ

or equivalently if Majx ¼
P

λ E
�
λðNajx;λÞ, where E�

λ is the
adjoint map to Eλ (for continuous instruments one replaces
the sum with an integral; see examples below). In this case,
we say thatM is n-dimensional simulable, as illustrated in
Fig. 1. Clearly, in the casen ¼ 1, the instrument corresponds
to a POVM, and the measurements afterward form classical
postprocessings of the classical output. This coincides with
the concept of joint measurability:Majx ¼

P
λGλpðajx; λÞ,

where fGλg represents the joint (or parent) POVM [1,2].
Illustrative example.—To illustrate the concept, we

present an example involving mutually unbiased bases
(MUBs). Recall that two bases fjφ1

i igi and fjφ2
jigj are

termed mutually unbiased if jhφ1
i jφ2

jij2 ¼ 1=d for all i and
j. There are at most dþ 1 MUBs in dimension d, and a
construction for the complete set of dþ 1 MUBs is only
known when d is a power of a prime number [17].
Here we consider a setM consisting ofmmeasurements

in MUBs subject to white noise. That is, projection-valued
measures (PVMs) composed of projectors Pajx ¼ jφx

aihφx
aj

preceded by a white noise channel. The resulting POVMs
read as

Mη
ajx ¼ ηPajx þ ð1 − ηÞ 1

d
; ð2Þ

where x ∈ f1;…; mg and a ∈ f1;…; dg. Note that we use
the standard construction of MUBs [17] with fjφ1

i igi being
the computational basis.
We now show that, depending on the amount of noise

1 − η, the set M becomes n-dimensional simulable. Let us
first construct an appropriate map, implementing the
compression from dimension d to n. For a given basis
fjψ iigi we consider the set of ðdnÞ projectors Πλ onto an
n-dimensional subspace of Cd spanned by the vectors of
the basis.
This defines an instrument fEλg, with each Eλ given by a

Kraus operator Kλ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðdnÞ−1ðd=nÞ

q
Πλ, compressing from

dimension d to n. Here ðdnÞ is simply the number of
projectors Πλ with n ones on the diagonal, and the termffiffiffiffiffiffiffiffiffiffiffiffiðd=nÞp

is due to normalization. Next, for any POVM Pa

acting on Cd, define its restriction to the subspace labeled
by λ as

Najλ ¼ ΠλPaΠλ; ð3Þ

which is a POVM on Cn since Najλ ⩾ 0 and
P

a Najλ ¼
Πλ1dΠλ ¼ 1n. We can now compute

X
λ

E�
λðNajλÞ ¼

n − 1

d − 1
Pa þ

�
1 −

n − 1

d − 1

�
T fjψ iig½Pa� ð4Þ

where T fjψ iig½Pa� ¼
P

i jψ iihψ ijPajψ iihψ ij is the twirling
map in the basis fjψ iig used to define the instrument. In
particular, if the eigenbasis of Pa and fjψ iig are mutually
unbiased, one obtains T fjψ iig½Pa� ¼ ð1=dÞ, while if they
coincide, one trivially gets T fjψ iig½Pa� ¼ Pa.
If the set M is composed of m MUBs, we construct an

instrument that chooses one of the bases y ¼ 1;…; m
randomly and performs fEλjyg as defined above. Then,
for the setting x Bob does the measurement Najλ;x;y as
defined in Eq. (3). This construction results in

X
λ;y

1

m
E�
λjyðNajλ;x;yÞ

¼ 1

m
Pajx þ

m − 1

m

�
n − 1

d − 1
Pajx þ

�
1 −

n − 1

d − 1

�
1
d

�
; ð5Þ

which equals Mη
ajx for 1 − η ¼ ½ðm − 1Þ=m�f1 − ½ðn − 1Þ=

ðd − 1Þ�g, and implies the following observation.
Result 1. The set M in Eq. (2) of m noisy projective

measurements inMUBs onCd is n-dimensional simulable if

η ⩽ 1 −
m − 1

m
d − n
d − 1

: ð6Þ

FIG. 1. A measurement assemblage fMajxg in dimension d is
said to be n-dimensional simulable if it can be replicated by first
compressing the measured system down to dimension n < d with
a “parent” instrument fEλg independent of the setting x, and then
performing some measurements fNajx;λg on the n-dimensional
system.
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Let us first discuss the case of a pair of MUBs, i.e.,
m ¼ 2. It is known that the pair is jointly measurable (i.e.,
one-dimensional simulable) if and only if η ⩽ η� ¼ 1

2
f1þ

½1=ð1þ ffiffiffi
d

p Þ�g [18,19]. Hence it follows that for a noise
parameter satisfying 1 − 1

2
½ðd − nÞ=ðd − 1Þ� ⩾ η > η�

(which is possible for all d > 2) we get a set of measure-
ments that is incompatible but nevertheless n-dimensional
simulable (for some n > 1). Alternatively, consider the full
set of m ¼ 4 MUBs in d ¼ 3. This set is incompatible if
and only if η > ð1þ 3

ffiffiffi
5

p Þ ≈ 0.4818 [19] while it is two-
dimensional simulable for η ⩽ 5

8
¼ 0.625.

Finally, note that the above construction forn-dimensional
simulability uses a heuristic choice of bases for the com-
pression instrument. We verify below that this choice is
suboptimal.
SDP method.—In order to explore more general

schemes, involving arbitrary bases for the compression,
we now present a numerical approach based on SDP. For
the example of MUBs, this shows that better schemes are
indeed possible.
Consider a set of measurements Majx, to which we add

noise. For clarity we focus here on the case of white noise,
but the technique applies in general. Formally, we consider
sets of POVMs of the form

Mη
ajx ¼ ηMajx þ ð1 − ηÞTr½Majx�

1d
d
:

Our goal now is to derive a lower bound on the critical
value η�, below which the set is n-dimensional simulable.
In particular, if the lower bound is found to be trivial, i.e.,
η ⩾ 1, we conclude that the original measurementsMajx are
n-dimensional simulable.
We first choose a compression map, i.e., an instrument

fEλg consisting of a finite number of CP maps Eλ. For a
fixed compression map fEλg and measurements Mη

ajx we

can now find the maximal value of η (i.e., minimize the
noise) while ensuring n-dimensional simulability, optimiz-
ing over Bob’s final measurements, via the following SDP:

max
η;fÑajx;λg

η

such that
X
λ

EλÑajx;λE
†
λ ¼ Mη

ajx ∀ a; x

X
a

Ñajx;λ ⩽ 1n ∀ x; λ

Ñajx;λ ⩾ 0 ∀ a; x; λ; ð7Þ

where fÑajx;λga;x;λ is the set of subnormalized measure-
ments in dimension n. To illustrate the relevance of this
method, let us consider again the case of a pair of MUBs in
dimension d ¼ 3, i.e., setting Majx ¼ jφx

aihφx
aj, and com-

pressing to n ¼ 2. Here we choose a simple compression

channel: we first choose a basis (via a unitary Uμ) and
perform a projection onto the ðdnÞ n-dimensional subspaces,
denoted by projectors Πi. Hence we set Eλ ¼ UμΠi

with μ ∈ 0;…; jμj − 1, i ∈ f0;…; ðdnÞ − 1g and hence
λ ∈ f0;…; jμjðdnÞ − 1g. Optimizing over choices of the
jμj ¼ 2 and jμj ¼ 3 basis, we find noise thresholds of
η ≈ 0.7803 and η ≈ 0.8281, respectively, hence clearly
improving upon the bound of η ¼ 5=8 we got in the
analytical construction; see Eq. (6). Moreover, when
allowing for more basis (up to jμj ¼ 5), we could find
no improvement. The MATLAB code can be found in the
Supplemental Material [20].
The case of all projective measurements.—So far we

analyzed sets M with finitely many measurements. Now
we turn our attention to continuous sets of measurements.
Precisely, we consider assemblages Mη

PVM made of all
rank-1 projective measurements subjected to white noise.
Note that this automatically extends to all projective
measurements which can be obtained from rank-1 projec-
tive measurements by postprocessing. Assuming an iso-
tropic noise, our set is made of all POVMs

Mη
PVM ¼ fMη

ajUgU with Mη
ajU ¼ U†Mη

aU; ð8Þ

whereU runs through all unitary operators on Cd andMη
a is

the noisy (or lossy) measurement in the computational
basis. On the one hand, the continuous case may seem more
complicated as the infinite number of possible measure-
ments cannot be tackled with the SDP of Eq. (7). On the
other hand, the symmetry of the set helps simplifying the
optimal compression scheme as we shall see now.
The set Mη

PVM is a particular case of what we call an
invariant assemblage. This is a set M such that Ma ∈ M
implies that U†MaU is also in M for all unitaries U. For
such an invariant assemblage the choice of the compression
bases does not play any role, which leads to the following
observation.
Result 2. An n-dimensional simulable invariant

assemblage M can be compressed with the continuous
instrument fEVgV with CP map density EV, such that
EVðρÞ ¼ KVρK

†
V with

KV ¼
ffiffiffi
d
n

r
ΠnV; ð9Þ

withV running through all unitary operators onCd, andΠn is
a projection onto a fixed n-dimensional subspace of Cd. In
addition, if there exists a measurement Ma ∈ M such that
U†MaU generates all of M (i.e., the action is transitive),
then it suffices to findNajV satisfyingMa ¼

R
dV E�

VðNajVÞ,
as then U†MaU ¼ R

dV E�
VðNajVU†Þ.

Here and below dV ¼ dμðVÞ is the Haar measure. If
there are multiple orbits, that is, a family of measurements
N such that U†NU generates all of M, then it suffices to
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find a measurement NajV as above for each measurement in
N . A detailed proof of the result can be found in the
Supplemental Material [20], and we explain only the
intuition here. First, because of the invariance of M one
can freely apply any (random) unitary V to the state before
the compression. Thus if the set is compressible with some
instrument fEλg it is also compressible with an instrument
where a random V is applied before fEλg. Second, one
shows that any such instrument can be obtained by
postprocessing of fEVg defined in the statement of the
result. Finally, the relation between the compressed
POVMs NajV and NajVU† is a simple consequence of
Haar measure invariance.
All noisy projective measurements.—We now consider

the set of all projective measurements Mη
PVM in Eq. (8)

subject to white noise

Mη
a ¼ ηjaihaj þ 1 − η

d
1; ð10Þ

where jai denotes the d vectors of the computational basis.
We now want to find the NajV such that

R
dV E�

VðNajVÞ
equals Mη

a for the highest value of η possible. In fact, the
optimal compressed POVM here is given by

NajV ¼ argmax
Ña∶POVMonCn

Xd
a¼1

hajV†ÑaVjai ð11Þ

with Ña embedded in Cd, which can be seen in two steps;
cf. Supplemental Material [20] for details. First, this choice
does result in an operator of the desired form M0

a¼
ηðxÞjaihajþf½1−ηðxÞ�=dg1 with ηðxÞ¼½ðdx−1Þ=ðd−1Þ�
and

x ¼ 1

n

Z
dV max

Ña∶POVMonCn

Xd
a¼1

hajV†ÑaVjai: ð12Þ

Second, by construction with the max inside the integral
this yields the highest value of x, and thus η, possible (This
is precisely the intuition behind the definition [Eq. (11)].}.
This leads to the following full characterization of
n-dimensional simulability of noisy PVMs in any finite
dimensional system.
Result 3. The set of all noisy (white noise) projective

measurements Mη
PVM in dimension d is n-dimensional

simulable if and only if

η ⩽ ηd↦n ¼
dx − 1

d − 1
ð13Þ

with x given in Eq. (12) where dV is the Haar measure on
the unitary operators V on Cd, fjaigda¼1 is the computa-
tional basis of Cd, and Cn is any n-dimensional subspace
of Cd.

The POVM maximization [Eq. (12)] is a simple SDP, so
the threshold ηd↦n can be computed numerically by
sampling from the Haar measure (or integrating numeri-
cally) and solving the SDP for each V. We report some
values in Table I.
An upper bound on the threshold can be obtained by

applying the Cauchy-Schwarz inequality to the sum in
Eq. (12), and leads to ηd↦n ⩽ f[d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi½ðnþ 1Þ=ðdþ 1Þ�p
− 1]=

½d − 1�g, as we show in the Supplemental Material [20] by
using results fromRefs. [22,23]. Therewe also derive a lower
bound ηd↦ðd−1Þ⩾ (fd2−d½1þP

d
k¼1ð1=kÞ�þ1g=ðd−1Þ2)

for the case n ¼ d − 1.
For n ¼ 1 our considerations reduce to the joint meas-

urability of noisy projective measurements, where the white
noise threshold is known ηd↦1¼½Pd

k¼1ð1=kÞ−1�=ðd−1Þ
[21]. In this case the subspace Cn contains a single state
jΨi ¼ Vj1i. Accordingly to Eq. (12) ηd↦1 can be computed
from x ¼ R

dΨmaxajhajΨij2 ¼ ð1=dÞPd
k¼1ð1=kÞ, where

dΨ is the uniform measure over states in Cd (invariant
under unitraries), which is equivalent to the derivation
in Ref. [21].
All lossy projective measurements.—We now briefly

analyze the set of all projective measurements Mη
PVM in

Eq. (8) subject to loss:

Mη
a ¼ ηjaihaj; Mη

=0 ¼ ð1 − ηÞ1 ð14Þ

This set describes measurements with a limited
efficiency—the additional element Mη

0 corresponds to the
“no-click" outcome. The required rank-1 form of the
operators Mη

a ∝ jaihaj implies that for a ≠ 0 the POVM
element N̂ajV can only be nonzero if E�

VðN̂ajVÞ ∝ jaihaj. In
other words, the vector jai has to be in the n-dimensional
subspace selected by the instrument, i.e.,

jai ∈ spanfVj1i;…; Vjnig: ð15Þ

TABLE I. Some values of the white noise threshold ηd↦n for
the n-dimensional simulability of Mη

PVM—the set of all projec-
tive measurements in dimension d. We computed the values
with Wolfram Mathematica using the build-in function Circular-
UnitaryMatrixDistribution to sample from the Haar measure (5000
points in each case), and SemidefiniteOptimization to solve the
optimal POVMs Ña in Eq. (12); the code can be found in the
Supplemental Material [20]. The values in italics give the known
white noise threshold for the incompatibility of all PVMs and equal
to ηd↦1 ¼ ½Pd

k¼1ð1=kÞ − 1�=ðd − 1Þ, cf. [11,21].

nnd 2 3 4 5 6

1 0.5 0.42 0.36 0.32 0.29
2 0.70 0.56 0.48 0.42
3 0.77 0.64 0.56
4 0.81 0.70
5 0.84
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This condition is only fulfilled for a set of V of measure
zero, hence M0

a ∝ jaihaj ⇒ M0
a ¼ 0. We can thus con-

clude that
Result 4. For any positive efficiency η > 0 the set of

all lossy projective measurements Mη
PVM is not n-dimen-

sional simulable for any n < d.
An equivalent definition.—The notion of joint measur-

ability has a direct connection to entanglement-breaking
properties of quantum channels, cf. Refs. [13] and [24,25].
As a final point we now discuss how this connection
naturally extends to n-dimensional simulability.
A quantum channel Λ is said to be n-partially entangle-

ment breaking (n-PEB) if, for all states ρ, the Schmidt
number of the state ðΛ ⊗ 1Þ½ρ� is less than or equal to n
[16]. In the finite-dimensional setting, this is equivalent to
the existence of Kraus operators fKλg of Λ each with
rankðKλÞ ⩽ n [16]. This notion provides an alternative way
to define n-dimensional simulability:
Claim 5. A measurement assemblage Majx is

n-dimensional simulable if and only if there exists a
quantum channel Λ that is n-PEB and a measurement
assemblage Najx such that

Majx ¼ Λ�ðNajxÞ: ð16Þ

For the if direction one uses the singular value decom-
position of the rank-n Kraus operators fKλg and Najx to
define the instrument fEλg with n-dimensional output and
the subsequent measurement Najx;λ. For the only if direc-
tion one can simply view any compression instrument fEλg
as a channel Λ that outputs a quantum system of dimension
n and a classical register encoding λ. This channel is
manifestly n-PEB. The details of the proof can be found in
the Supplemental Material [20]. Note that we prove the
result for a finite amount of classical communication λ,
respectively a channel Λ with a finite dimensional output,
and conjecture it to be true in general.
Related concepts.—We now compare the idea of

n-dimensional simulability with some previously intro-
duced notions. First, in Ref. [26] a related notion of
“n-compressibility” of a set of quantum measurements
has been proposed. Similarly to our definition a set of
measurements is said to be n-compressible if Majx ¼P

λ E
�
λðNajx;λÞ [Notably the authors of Ref. [26] also

consider the possibility to bound the amount of classical
communication via the number of different instrument
outcomes λ (the dimension of the classical register output
by the instrument).], but in sharp contrast the compressed
measurement has to take the form Najx;λ ¼ Ẽ�

jλðMajxÞ.
Here, Ẽjλ is a set of completely positive and trace preserving
maps decompressing the system back into dimension d,
and the same measurement Majx has to be used after the
decompression. Clearly, a set of n-compressible measure-
ments is n-dimensional simulable by construction, but not

the other way around. In particular, it is known that single
measurements can have a larger compression dimension
than one [26].
Other works have investigated measurement (in)compat-

ibility in subspaces [27–29], while Ref. [30] defined a
concept of n-compatibility considering a scenario where a
set of measurements is performed on n copies of a state.
As far as we can say, these concepts are unrelated to
n-dimensional simulability.
Finally, the problem of implementing POVMs with given

resources has been investigated [31–33], for example the
implementation of POVMs using only projective measure-
ments of the samedimension [34–36]. This questionhas been
connected to the compression of quantum information [31].
Conclusion.—We have introduced the concept of

n-dimensional simulability of a set of measurements,
motivated by a scenario of compression of quantum
information. When full compression is possible (i.e.,
n ¼ 1), our notion corresponds to joint measurability.
Hence our approach can be used as a quantification of
measurement incompatibility in terms of dimension. We
discussed a number of examples, providing analytical
constructions as well as numerical methods.
More generally, the concept of n-dimensional simula-

bility turns out to be connected to several other relevant
notions of quantum information theory. First, as we showed
above, n-dimensional simulability relates to partially entan-
glement-breaking channels. Second, there is a direct con-
nection between n-dimensional simulability and the notion
of genuine high-dimensional steering [37], which will be
presented in detail in a companion article [38]. These links
generalize the well-known connection between joint meas-
urability, steering, and quantum channels [10–12]. They
also open new questions, for example, whether the dimen-
sionality of a quantum channel could be tested in a partially
device-independent manner.
Beyond quantum compression, our approach also has

implications for device-independent quantum information
processing. For example, it is clear that a set of measure-
ments that is n-dimensional simulable is of limited use for
randomness certification, as it can lead to (at most)
2 logðnÞ bits of randomness in a black-box setting.
Finally, an intriguing question is whether our approach

could be generalized to the case of continuous variable
measurements. It turns out that, in the infinite-dimensional
case, the Kraus operators’ ranks and entanglement-breaking
properties of a channel are not tied together anymore [39,40],
opening different possibilities to extend our concept.
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