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We show that incompressible polar active fluids can exhibit an ordered, coherently moving phase even in
the presence of quenched disorder in two dimensions. Unlike such active fluids with annealed disorder
(i.e., time-dependent random white noise) only, which behave like equilibrium ferromagnets with long-
range interactions, this robustness against quenched disorder is a fundamentally nonequilibrium
phenomenon. The ordered state belongs to a new universality class, whose scaling laws we calculate
using three different renormalization group schemes, which all give scaling exponents within 0.02 of each
other, indicating that our results are quite accurate. Our predictions can be quantitatively tested in readily
available artificial active systems and imply that biological systems such as cell layers can move coherently
in vivo, where disorder is inevitable.
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One of the most significant discoveries in statistical
mechanics in the 20th century was the “Mermin-Wagner-
Hohenberg” theorem [1], which says that continuous
symmetries cannot be spontaneously broken in equilibrium
two-dimensional systems at finite temperature. This
implies, in particular, that magnetic systems with continu-
ous rotational symmetry like the XY or Heisenberg models
cannot exhibit long-range polar order characterized by a
nonzero magnetization in two dimensions (2D).
It is precisely for this reason that it was so surprising to

learn that 2D active systems can spontaneously develop
long-range polar order even in the presence of noise [2–6]. In
particular, polar self-propelled particles moving over a
frictional substrate (a system often described as a “dry polar
active fluid“) can “flock,” that is, form a statewith a nonzero
average velocity hvi, even when perturbed by noise.
In equilibrium systems, it is known that quenched

disorder [7–10]—that is, disorder that is time indepen-
dent—is even more destructive of long-range order than
thermal noise, which is, of course, time dependent. Indeed,
even arbitrarily small quenched disorder destroys long-
ranged ferromagnetic and crystalline order in all spatial
dimensions d ≤ 4 [7–10].
The above discussion raises the obvious question: Can

active systems retain long-range order even in the presence
of quenched disorder [11–20]? It has been shown [11,12]
that, for three-dimensional dry polar active systems with
quenched disorder, long-range polar order (i.e., a nonzero

average velocity hvi) can survive such quenched
disorder. But in 2D, only quasi-long-range polar order
(i.e., hvi vanishes as a power of system size L as L → ∞)
was found [11,12,21].
In this Letter, we report that it is possible to achieve true

long-rangepolar order in 2D in dry polar active systemswith
quenched disorder, if those systems are incompressible.
There are many ways to experimentally realize incom-

pressibility in active systems. One is to make them very
dense so that the effective compressibility of the flockers
vanishes [22,23]. An even more realizable incompressible
system is a suspension of swimmers in a fluid confined in a
narrow channel with “no slip” or “partial slip” boundary
conditions at the channel wall. Such boundary conditions
destroy momentum conservation in the fluid. Here, the
active agents “inherit” the incompressibility of the back-
ground fluid [23–25]. Strictly speaking, swimmer suspen-
sions differ from the systems we consider here, due to the
presence of an extra hydrodynamic variable in the former:
the density of the swimmers. However, if the swimmers in
the channel are constantly being born and dying [26] or can
switch between an active, motile state and a passive,
immotile one, so that the number of active swimmers is
not globally conserved, the dynamics of the system is
described by the theory presented here.
Finally, spin systems interacting via dipolar interactions

have the same long-time, large-distance properties as
magnets with a divergence-free constraint on the
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magnetization [22,27]. It has further been shown [28–30]
that the hydrodynamics of spin systems with non-
equilibrium and nonreciprocal asymmetric interactions
are described by the equations originally constructed for
(Malthusian) flocks [26]. Therefore, the hydrodynamics of
dipolar magnets with asymmetric exchange interactions
[30] is equivalent to incompressible flocks [22,31]. If such
a magnetic system were subject to quenched disorder, it
would again be described by the theory we develop here.
Any real flock with short-ranged interactions will, of

course, be compressible, even if only slightly so. Our
results should still apply to such systems, provided (i) that
the “Mach number”M ≡ ðv0=cÞ, defined as the ratio of the
typical speed v0 of the motile active agents to the typical
sound speed c, is very small (i.e., M ≪ 1), and (ii) that the
length scales L under consideration are so small that the
longest-wavelength sound mode has a period much shorter
than the shortest-wavelength diffusive mode under consid-
eration. This requirement leads to the condition

L
c
≪

a2

μ
; ð1Þ

where μ is a typical diffusion constant and a is a micro-
scopic length. This condition can be rewritten as

L ≪ Lc ≡ a2c
μ

; ð2Þ

which makes it clear that systems with a large sound speed
c will be well described by our theory out to extremely
large length scales Lc. For example, estimating μ as the
kinematic viscosity of water (10−2 cm2=sec), c as the sound
speed in water (1.5 × 105 cm=sec), and a ∼ 5 μm (a typical
bacteria size) gives Lc ∼ 3.75 cm, which is enormous on
the scale of a bacteria swarm.
Motivated by all of the examples above, we consider

here incompressible flocks in 2D [22] on a substrate with
quenched disorder. We also include the effects of
“annealed” disorder (by which we mean simply the usual
time-dependent “Langevin white noise”), which proves to
be subdominant for the equal-time correlations but gives
time dependence to the fluctuations, which would other-
wise be static. Considering the full nonlinear theory, we
demonstrate that the moving phase of such a flock can
sustain long-range polar order. A similar result was found,
based on a purely linearized theory, for number-conserving
active suspensions with quenched disorder [32] (which, as
noted above, differ somewhat from our system).
Using a dynamic renormalization group (DRG) analysis,

we calculate the long-time, large-distance scaling of the
fluctuations uðr; tÞ of the local active fluid velocity vðr; tÞ
about its mean value hvi≡ v0x̂, where we have defined our
coordinate system so that x̂ is along the mean velocity
spontaneously chosen by the system. This analysis leads to

scaling laws for the correlations of uðr; tÞ≡ vðr; tÞ − v0x̂,
which we obtain using three different DRG schemes: two
different d ¼ ðdc − ϵÞ expansions, which we term “hard
continuation” and “soft continuation,” and an uncontrolled
expansion in exactly 2D.
Specifically, we show that the u−u correlations are

given by

huðr; tÞ · uð0; 0Þi ¼ jyj2χGQ

� jxj
jyjζ

�
þ jyj2χ0GA

� jxj
jyjζ ;

jtj
jyjz

�
;

ð3Þ

where GA;Q are scaling functions that are universal up to an
overall multiplicative factor, corresponding to the annealed
(i.e., time-dependent) and quenched parts of the correla-
tions, respectively. The exponents in Eq. (3) are

z ¼ 0.49� 0.01; ζ ¼ 0.77� 0.01; ð4aÞ

χ ¼ −0.23� 0.01; χ0 ¼ −0.37� 0.02; ð4bÞ

in the physical case d ¼ 2, where the error bars correspond
to the differences between the three aforementioned DRG
schemes. The fact that both χ and χ0 are negative implies
that the fluctuations of the velocity field about a nonzero
mean velocity are finite and, hence, that the system has
long-range polar order [33].
The existence of a common anisotropy exponent ζ for

the quenched and the annealed parts of the correlation
function (3) and a simple scaling form for the latter is a
highly nontrivial result, which is a direct consequence of
the anomalous hydrodynamics of our system. Indeed, a
linearized treatment of our hydrodynamic model predicts a
much more complicated “double-scaling” form, with differ-
ent anisotropy exponents for the quenched and annealed
correlations, and a more complicated form for the annealed
part of the correlation function (what we mean by this will
become clear below). The latter is reminiscent of, e.g.,
simple fluids, whose spatiotemporal correlation functions
have a structure that reflects both the dispersionless
propagation of sound [which is characterized by a dynamic
exponent (z ¼ 1) and the diffusive nature of viscous
damping (z ¼ 2)].
Model.—The hydrodynamic equation of motion (EOM)

of incompressible polar active fluids moving on a disor-
dered substrate can be constructed based on symmetry
considerations alone [3,4,22,31,34] and is, therefore, a
description of the long-time, large-distance behavior of
incompressible flocks formed by all kinds of active polar
particles regardless of the details of their interactions, as
long as those interactions (i) are short-ranged and (ii) do not
break any symmetries such as rotation and translation
invariance. We defer its derivation to the companion paper
[35]. The EOM in the moving phase is identical to that
studied in Ref. [22], except for the presence of the
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quenched noise. Specifically, keeping only “relevant”
terms, by which we mean terms that can change the
long-distance, long-time behavior of the system, the
EOM governing u is, in Einstein component notation,

∂tui ¼ −∂iΠ − γ∂xui − bδix∂xux þ μ⊥∂2yui þ fiQ þ fiA

þ μx∂
2
xui − α

�
ux þ

u2y
2v0

��
δix þ

uy
v0

δiy

�
; ð5Þ

where the indices i and j label the spatial coordinates. In
Eq. (5), the “pressure” Π acts as a Lagrange multiplier to
enforce the incompressibility condition: ∇ · u ¼ 0, while γ
and b are (positive or negative) constants, and α and μx;⊥
are positive constants [35]. The quenched and annealed
noises fQðrÞ and fAðr; tÞ, respectively, are zero mean
Gaussian white noises with variances:

hfiQðrÞfjQðr0Þi ¼ 2DQδijδ
2ðr − r0Þ; ð6aÞ

hfiAðr; tÞfjAðr0; t0Þi ¼ 2DAδijδ
2ðr − r0Þδðt − t0Þ: ð6bÞ

Note the time independence of the noise fQðrÞ; this is
what we mean by “quenched.” As mentioned earlier,
Eq. (5) differs from the EOM in Ref. [22] only through
the presence of the quenched noise fQðrÞ. Note also that the
annealed noise fAðr; tÞ is simply the usual delta-correlated
white noise used to model the stochastic dynamics of active
agents.
Linear regime.—The linearized version of EOM (5)

is solved in Fourier space by projecting Eq. (5) transverse
to the wave vector using the projection operator
PliðqÞ ¼ δli − ðqlqi=q2Þ. Autocorrelating these solutions
and using the correlations (6a) and (6b) for the noises, we
obtain the correlation functions

huiðq̃Þuiðq̃0Þi ¼ Ci
Aðq̃; q̃0Þ þ Ci

Qðq̃; q̃0Þ; ð7Þ

where q̃≡ ðq;ωÞ, with ω being the frequency and q the
wave vector of the perturbation,

Cx;y
A ðq̃; q̃0Þ ¼ q2y;x

q2
2DAδðωþ ω0Þδðqþ q0Þ

½ω − ðbq2yq2 þ γÞqx�2 þ ½αq2yq2 þ ΓðqÞ�2
; ð8aÞ

Cx;y
Q ðq̃; q̃0Þ ¼ q2y;x

q2
4πDQδðωÞδðω0Þδðqþ q0Þ
ðbq2yq2 þ γÞ2q2x þ ½αq2yq2 þ ΓðqÞ�2

; ð8bÞ

where ΓðqÞ ≡ μ⊥q2y þ μxq2x and the subscripts A and Q
denote the annealed and quenched parts, respectively.
The real-time, real-space autocorrelation of uðr; tÞ

obtained via inverse Fourier transforming (8) is

huðr; tÞ · uð0; 0Þi ¼ jyj−1=3CQ
� jxj
jyj2=3

�

þ jyj−1=2CA
�jx − γtj

jyj1=2 ;
jtj
jyj

�
; ð9Þ

where CA=Q are scaling functions displayed in Ref. [35].
Thus, the linear theory predicts χ ¼ −1=6, χ0 ¼ −1=4, and
z ¼ 1, and also predicts different anisotropy exponents for
the quenched and annealed parts: ζquenched ¼ 2=3 and
ζannealed ¼ 1=2. Note also that the first argument of the
scaling function CA in the linear theory involves a
“boosted” x coordinate x − γt, in contrast to the nonlinear
result (3), in which the first argument of the annealed
scaling function involves only x, with no t dependence. The
negativity of the roughness exponents χ and χ0 implies
that the incompressible flock has long-range polar order
within the linear theory [32]. We will show that these
exponents are modified in the nonlinear theory, and, in
particular, the two anisotropy exponents ζquenched and
ζannealed become equal.
This persistence of two-dimensional long-range polar

order in a disordered medium is a result of a combination of
the effects of incompressibility and, crucially, active motil-
ity, as can be seen from Eq. (8). Indeed, in a 2D equilibrium
divergence-free magnet [27], the equal-time correlator of
the magnetization diverges as 1=μ2xq4x instead of as 1=γ2q2x
for qy ¼ 0 in the presence of quenched disorder. This
divergence is strong enough to destroy even quasi-long-
range order (QLRO). This implies that, while incompress-
ible flocks perturbed by annealed noise are equivalent to
equilibrium divergence-free magnets [22,27], they are
much more resistant to quenched disorder. Because of
motility, the quenched disorder is effectively “annealized”
for fluctuations propagating along the ordered direction x̂
at a speed γ: Along qy ¼ 0, Cy

Aðq;q0Þ and Cy
Qðq;q0Þ both

diverge as ∼1=q2x as q → 0.
Nonlinear regime and DRG analysis.—We now turn to

the full, nonlinear EOM of u (5).
Considerable past experience tells us that it is important

to check whether nonlinearities change the long-distance
behavior of the system. Many systems exhibit QLRO in the
linear approximation but only short-ranged order in reality.
Some examples are three-dimensional equilibrium smectics
[36], and the OðnÞ model in d ¼ 2 with n ≥ 2 (see, for
instance, Refs. [33,37] and driven 2D (isotropic) Bose
liquids [38]).
Indeed, we find here that nonlinearities do always

change the long-distance behavior for 2D incompressible
flocks. To see this, we begin by Fourier transforming, both
in space and time, the full, nonlinear EOM of u (5) and
operating on both sides with the transverse projection
operator Ply, we obtain
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−iωuy ¼ PyxðqÞF q̃

�
−α

�
ux þ

u2y
2v0

��

þ F q̃

�
−γ∂xuy − λuy∂yuy −

α

v0

�
ux þ

u2y
2v0

�
uy

þ fyA þ fyQ

�
; ð10Þ

where we have neglected terms that are irrelevant in the
dominant regime of wave vector qy ≪ qx, as we discovered
in our treatment of the linear theory. We will verify
a posteriori that this continues to hold for the nonlinear
theory. The symbol F q̃ represents the q̃th Fourier compo-
nent, i.e.,

F q̃½uðr; tÞ�≡ uðq̃Þ ¼ 1

ð2πÞ3=2
Z

d2rdteiðq·r−ωtÞuðr; tÞ:

ð11Þ

To evaluate the importance of the nonlinear terms in
Eq. (10), we rescale time, lengths, and fields as

t→ tezl; x→xeζl; y→yel; uy→uyeχl; ð12Þ

respectively, implying ux → uxeðχþζ−1Þl, and keep the form
of the resultant EOM unchanged by absorbing the rescaling
factors into the coefficients. The coefficients of the linear
terms Pyxux and ∂xuy and the noise strength are rescaled,
respectively, as

α → αeðzþ2ζ−2Þl; γ → γeðz−ζÞl; ð13aÞ

DA → DAeðz−2χ−ζ−1Þl; DQ → DQeð2z−2χ−ζ−1Þl; ð13bÞ

and the coefficients of the nonlinear terms Pyxu2y, uy∂yuy,
uxuy, and u3y as

α

2v0
→

α

2v0
eðzþχþζ−1Þl;

α

v0
→

α

v0
eðzþχþζ−1Þl; ð14aÞ

λ → λeðzþχ−1Þl;
α

2v20
→

α

2v20
eðzþ2χÞl: ð14bÞ

We choose z, ζ, and χ to fix α, γ, andDQ, which control the
size of the dominant fluctuations (i.e., those coming from
the quenched noise), which yields

z ¼ 2

3
; ζ ¼ 2

3
; χ ¼ −

1

6
: ð15Þ

As expected, these values of ζ and χ are identical to those
for the quenched correlations obtained from our linear
theory [e.g., see Eq. (9)]. Note that, while the choice of z is
formally necessary to restore the EOM to its original form,
it does not appear in the correlation function (9), because

the leading-order part of that correlation function is static,
since the quenched disorder that induces those leading-
order fluctuations is. Its value is different from the z in (9),
since the time-dependent part of the fluctuations comes
from the subdominant annealed disorder.
Substituting these values into Eq. (14), we find the

coefficients of the nonlinear terms Pyxu2y, uxuy, and u3y
rescale as

α

2v0
→

α

2v0
el=6;

α

v0
→

α

v0
el=6;

α

2v20
→

α

2v20
el=3; ð16Þ

which clearly all diverge as l → ∞. This implies that these
nonlinear terms are relevant in the hydrodynamic limit. In
contrast, λ → λeðzþχ−1Þl vanishes, which implies uy∂yuy is
irrelevant and, hence, can be neglected.
To deal with the relevant nonlinearities, we will perform

a one-loop DRG calculation using an ϵ-expansion method.
Our approach is that of Refs. [39,40] and is explained in
detail in the companion paper [35].
To employ the ϵ-expansion method, we rely on analytic

continuity to generalize our calculation to dimensions
d > 2. We have two distinct choices for doing this; we
can treat the soft x direction as one dimensional and
the hard y direction as d − 1 dimensional, or we can take
x to be d − 1 dimensional while treating y as one dimen-
sional. These lead to two distinct ϵ-expansion schemes
which we term the hard and soft continuations, respectively
[41]. Alternatively, we perform an uncontrolled one-
loop calculation in exactly d ¼ 2. The numerical values
given at the beginning of the Letter for the exponents
represent an average of the results from these three
schemes.
Crucially, in all three schemes, we make use of an

important simplification: Because of the rotation invariance
of our hydrodynamic EOM, it is convenient to choose the
values of χ and ζ so that all three α’s appearing in the EOM
(10) remain identical upon the rescaling, i.e.,

χ ¼ ζ − 1: ð17Þ

Using the above simplification to eliminate the roughness
exponent χ, the DRG recursion relations, to one-loop order,
for the hard continuation are [35]

d ln α
dl

¼ zþ 2ζ − 2þ ηα; ð18aÞ

d ln γ
dl

¼ z − ζ þ ηγ; ð18bÞ

d ln μx
dl

¼ z − 2ζ þ ημ; ð18cÞ

d lnDQ

dl
¼ 2z − 3ζ þ 3 − dþ ηQ; ð18dÞ
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d lnDA

dl
¼ z − 3ζ þ 3 − dþ ηA; ð18eÞ

where the η’s represent graphical corrections. To lowest
order in perturbation theory [35],

ηα¼−
1

27
g; ηγ ¼

8

27
g; ηQ¼10

27
g; ηA¼

16

27
g; ð19aÞ

ημ ¼ gμ þ
2

27
g; ð19bÞ

where we have defined

g≡ Sd−1
ð2πÞd−1 jγj

−7=3α1=3Λð3d−7Þ=3DQ; ð20aÞ

gμ ¼
Sd−1

ð2πÞd−1 Λ
d−3jγj−1μ−1x DQ; ð20bÞ

with Sd−1 the area of a (d − 1)-dimensional unit sphere and
Λ the inverse of the short-wavelength cutoff (which is the
inverse of the largest length scale of the following three: the
sample thickness, the interaction range, and the inter-
particle distance). In writing the recursion relations (18),
we have ignored some corrections arising from the
annealed noise DA which prove to be irrelevant (that is,
to vanish as l → ∞) [35].
From Eqs. (18), we can construct closed recursion

relations for g and gμ:

dg
dl

¼ 1

3
ð7 − 3d − gÞg; ð21aÞ

dgμ
dl

¼ ð3 − d − gμÞgμ: ð21bÞ

For d < 7=3, the above flow equations indicate that the
generic stable fixed point is at

g� ¼ 3ϵþOðϵ2Þ; g�μ ¼
2

3
þ ϵþOðϵ2Þ; ð22Þ

where ϵ ¼ 7=3 − d and theOðϵ2Þ part can be obtained only
through higher-order in perturbation theory calculations.
For d ¼ 2, ϵ ¼ 1=3, which is extremely small for ϵ
expansions. Therefore, we expect our one-loop DRG
results to be quantitatively very accurate.
The fact that both g and gμ flow to nonzero stable fixed

points also implies two exact relations between the η’s. The
definition of g (20a), together with Eq. (18), implies

d ln g
dl

¼ 1

3
ð7 − 3dÞ − 7

3
ηγ þ

1

3
ηα þ ηQ; ð23Þ

which leads to the exact relation, valid to all loop orders,

7 − 3d − 7ηγ þ ηα þ 3ηQ ¼ 0; ð24Þ

since d ln g=dl ¼ 0 at the fixed point. Similarly, Eqs. (20b)
and (18) lead to the second exact relation:

3 − dþ ηQ − ηγ − ημ ¼ 0: ð25Þ

Note that ημ does not vanish as ϵ goes to zero, since the
upper critical dimension of gμ is 3 instead of 7=3 [see
Eq. (20b)]. Since μx controls the annealed part of the
correlation, this implies that this part starts to depart from
the linear prediction, as d is decreased, from d ¼ 3, in
contrast to the quenched part, which first does so at
d ¼ 7=3. As shown in detail in Ref. [35], while within
the linear theory the anisotropy exponent for the quenched
and annealed parts of the correlator are distinct, the
annealed anisotropy exponent assumes the same value as
the quenched one for all d ≤ 7=3, that is, in precisely the
dimension at which the quenched anisotropy exponent first
departs from its linear value.
Scaling exponents.—We now use the DRG procedure to

calculate the real-time, real-space correlations CQðrÞ and
CAðt; rÞ, which represent the quenched and annealed parts
of huðr; tÞ · uð0; 0Þi, respectively. They are related to those
of the rescaled system [42] via

CQðα0; γ0; DQ0; rÞ ¼ e2χlCQ

�
αðlÞ; γðlÞ; DQðlÞ;

jxj
eζl

;
jyj
el

�
;

ð26aÞ

CAðα0; μx0; DA0; t; rÞ

¼ e2χlCA

�
αðlÞ; μxðlÞ; DAðlÞ;

jtj
ezl

;
jxj
eζl

;
jyj
el

�
; ð26bÞ

where α, γ, and DQ control the magnitude of CQðrÞ, while
α, μx, and DA control the magnitude of CAðr; tÞ and the
subscript “0” denotes the bare values of the parameters. We
choose ζ and z such that α, γ, μx, and DQ are all fixed [i.e.,
equate the rhs of Eqs. (18a)–(18b) to 0], which is possible,
since ηγ;α;Q;μ are constrained by the exact relations (24) and
(25). Choosing l ¼ ln ðΛjyjÞ and taking the renormaliza-
tion factor of DA to the front, we write the rhs of Eqs. (26a)
and (26b) in the form displayed by Eq. (3) with

GQ

� jxj
jyjζ

�
≡ Λ2χCQ

�
α0; γ0; DQ0;

jxj
ðjyjΛÞζ ;

1

Λ

�
ð27Þ

and

GA

� jtj
jyjz ;

jxj
jyjζ

�
≡Λ2χ0CA

�
α0;γ0;DA0;

jtj
ðjyjΛÞz ;

jxj
ðjyjΛÞζ ;

1

Λ

�
;

ð28Þ
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with the various exponents being

ζ ¼ 2þ ηγ − ηα
3

¼ 2

3
þ 1

3
ϵþOðϵ2Þ; ð29aÞ

z ¼ 2 − 2ηγ − ηα
3

¼ 2

3
−
5

9
ϵþOðϵ2Þ; ð29bÞ

χ ¼ −1þ ηγ − ηα
3

¼ −
1

3
þ 1

3
ϵþOðϵ2Þ; ð29cÞ

χ0 ¼ ηA − ηγ − 1

2
¼ −

1

2
þ 4

9
ϵþOðϵ2Þ; ð29dÞ

where in the second equalities we have used Eq. (19) and
the results for g and gμ to OðϵÞ given by Eq. (22). Note that
this calculation shows explicitly that, beyond the linear
theory, the anisotropy exponents for the quenched and the
annealed correlations become equal, and the x dependence
of the annealed part of the correlation function involves an
“unboosted” x, not a boosted variable x − γt. This confirms
our earlier claim.
The analysis for the soft continuation and the uncon-

trolled one-loop calculation in precisely d ¼ 2 are very
similar and give comparable quantitative results [35]. In
fact, coincidentally, the uncontrolled one-loop calculation
obtains precisely the same numerical values for the
exponents as the hard continuation. The exponents quoted
earlier are an equally weighted average of these three
results; the quoted error bars more than cover the spread
between the three different calculations.
Summary and outlook.—We have demonstrated that a

combination of active motility and incompressibility leads
to the formation of two-dimensional long-range ordered
flocks, even in the presence of random quenched disorder.
In contrast, neither active motility nor incompressibility
alone can overcome quenched disorder, although either can
successfully compete with annealed (i.e., time-dependent)
noise [5,27].
One experimental realization of incompressibility

in a two-dimensional system is motile particles moving
through a narrow channel filled with an incompressible
fluid [23,24] or at high particle densities [22,23]. Since
some degree of disorder will always be present in all
experimental systems, especially biological ones, our work
should be valuable in interpreting numerous experiments in
both artificial and biological active systems. In particular,
our finding demonstrates that confluent cell layers on
substrates can move coherently despite the presence of
static random impurities.
We also look forward to quantitative tests of our

predictions in artificial active systems, for instance,
Quincke rotors [20] or vibrated granular systems [43].
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