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We show both numerically and analytically that a chemically patterned active pore can act as a micro- or
nanopump for fluids, even if it is fore-aft symmetric. This is possible due to a spontaneous symmetry
breaking which occurs when advection rather than diffusion is the dominant mechanism of solute transport.
We further demonstrate that, for pumping and tuning the flow rate, a combination of geometrical and
chemical inhomogeneities is required. For certain parameter values, the flow is unsteady, and persistent
oscillations with a tunable frequency appear. Finally, we find that the flow exhibits convection rolls and
hence promotes mixing in the low Reynolds number regime.
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The manipulation of fluid flow at the micro- and nano-
meter scale has currently attracted the attention of a large
scientific community [1–4]. Indeed, the emerging techniques
of micro- and nanofluidics have been applied successfully to
the synthesis of microparticles, to the transport of bioma-
terials, and to the functioning of chemical reactors [5–7].
Such techniques have been exploited in biomedical research
to study and manipulate biological tissues, and to develop
both new drugs and means of delivering them [8–12].
Similarly, inkjet printing, a common technique for 3D
fabrication, requires fluids to be pumped through channels
with a diameter of∼50–80 μm [13–15]. Moreover, lab-on-a-
chip setups have been employed both in medical research
[16–18] as well as in clinical diagnosis and treatment [4,9].
In all these situations, a fluid needs to be pumped in a
controlled fashion, making micropumps a basic component
of many microfluidic systems [8,19]. In addition, controlling
chemical reactions within such microfluidic devices requires
the stirring of solutions by means of micromixers [20,21].
As the cross sections of the channels are reduced, surface
and finite size effects become more relevant and can be
exploited for designed microfluidic applications [22–27].
From this perspective, phoretic phenomena [28] can

provide an intriguing technique to manipulate fluid flows
in a micro- and nanochannel or pore. In particular in

diffusioosmosis, inhomogeneous densities of certain com-
ponentsof the solution set up localpressure imbalances in the
vicinityof solidwalls, hence leading to theonset of anet fluid
flow [28]. Oneway of inducing such local pressure gradients
at steady-state is to fabricate chemically or geometrically
inhomogeneous pores [29–31]. A similar procedure has
already been exploited for colloids and led to the realization
of self-phoretic Janus particles [32–38]. For these colloids
netmotion is attained because half of their surface is covered
with a catalyst promotinga chemical reactionwhich in turn is
responsible for the inhomogeneous density of reaction
products along the surface of the colloid. Interestingly, even
colloids homogeneously coveredwith catalyst can swimdue

FIG. 1. Longitudinal section of the axially symmetric and
partially active pore with length 2L and variable radius RðzÞ.
The decomposition of a chemical species to produce solute
occurs solely in the catalytically active part of the inner pore wall
with length 2Lacov (black). Convection rolls (dark blue arrows)
appear due to diffusioosmosis and eventually may lead to the
onset of a net nonzero flow rate Q̃.
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to an instability triggered when the transport of solute by
advection is comparable to that due to diffusion [39,40].
In this Letter, we show that diffusiophoresis within

inhomogeneously chemically patterned pores can lead to
the onset of spontaneous symmetry breaking (pumping),
oscillations, and mixing. By means of both numerical
simulations and analytical modeling we show that the
onset of these regimes is controlled by three dimensionless
parameters: the Péclet number (controlling the role of
advection), the chemical patterning (controlling the surface
inhomogeneity), and the corrugation (controlling the geo-
metrical inhomogeneity).
In particular, as reported [41,42] previously, pumping

does not occur for pores with homogeneous (constant)
cross sections or for pores with chemically homogeneous
surface properties. In addition, beyond the stationary
Stokes limit, the steady flow becomes unstable and we
observe the onset of an “inertial phoresis” regime charac-
terized by sustained oscillations, the frequency of which
can be tuned upon varying the extent of the catalytic
coverage of the pore. In all cases, convection rolls emerge,
which can be exploited as so-called micromixers [20,43].
In the following, we consider hourglass-shaped pores,

see Fig. 1, which are axially symmetric with respect to the z
axis and symmetric with respect to the plane z ¼ 0 in the
center (fore-aft symmetry). The pore is defined by its length
2L, its maximum radius Rmax, and its opening angle θ
(Fig. 1). Thus, the spatially varying radius RðzÞ is given by

RðzÞ ¼ RmaxðθÞ − tanðθÞðL − jzjÞ: ð1Þ

Upon a change of θ, Rmax is adjusted in order to
approximately conserve the volume of the pore. The pore
is filled with a Newtonian fluid, the dynamics of which is
governed by the Navier-Stokes equation with no-slip
boundary conditions on the pore walls. The surface of
the pore is patterned with a catalytic coating in the section
z ∈ f−acovL; acovLg, where the covering fraction acov can
vary from zero (no coating) to one (full coating). Such a
catalytic coating enables a chemical reaction resulting in
the local synthesis of reaction products, which in the
following are summarily called “solute.” The solute is
decomposed homogeneously in the bulk fluid with rate χ
(with dimension sec−1). In order to keep the model simple,
we assume that the number densities of the reactants are
kept constant in time and homogeneous in space, and that
the number density ρ of the solute is much smaller than the
number densities of the fluid molecules such that effec-
tively it can be regarded as an ideal gas. The effective
interaction potential Uwall between the solute molecules
and the pore walls is assumed to be a piecewise linear
function of the distance r from the wall,

UwallðrÞ ¼
�
U0ð1 − r=lÞ 0 ≤ r ≤ l;

0 l ≤ r;
ð2Þ

where l is the range ofUwall. It is assumed to bemuch smaller
than the average radius of the pore R0 ¼ Rmax − tanðθÞL=2.
The overdamped dynamics of the solute number density is
governed by the Smoluchowski equation,

_ρ ¼ −∇j − χρ; j ¼ −D∇ρ − βDρ∇Uwall þ vρ; ð3Þ

where D is the diffusion coefficient of the solute, β ¼
1=ðkBTÞ is the inverse thermal energy, v is the velocity field
of the solution, and χ is an empirical input parameterwith the
unit sec−1. Equations (3) obey periodic boundary conditions
on the endsof thepore segment and fluxboundaryconditions
on the surface of the pore,

j · nj½z;ϕ;r¼RðzÞ� ¼
�
ξ; jzj < Lacov;

0; otherwise;
ð4Þ

where ϕ is the azimuthal angle, n is a unit vector
perpendicular to the pore wall (pointing towards the inside
of pore), and ξ is a positive constantwith dimension ½m2 s�−1.
The wall-solute interaction results in a laterally inho-

mogeneous pressure along the wall, hence coupling Eq. (3)
with the Navier-Stokes equation and the continuity equa-
tion for the fluid density (see Supplemental Material [44]).
These three equations are solved in parallel using a finite-
difference solver for the first one (second order in space and
first order in time), and the lattice Boltzmann method
(LBM) [45–47] for the other two ones. (Details of the
numerical implementation can be found in Ref. [48].)
In the following, we report all quantities in units of the

pore length 2L (40 spatial lattice units), and of the fluid
relaxation time τf ¼ ð2LÞ2=ν (9600 temporal lattice units),
which is the time required for momentum to diffuse across
the pore in the longitudinal dimension, with ν being the
kinematic viscosity (1=6 in lattice units).
By following Ref. [48], in all simulations we have used

parameter values as reported in the caption of Fig. 2. We
remark that there is a maximum value of θ for which the
bottleneck of the pore is shut down. This value is obtained
by numerically solving for θmax such that Rðz ¼ 0; θ ¼
θmaxÞ ¼ 0. For the geometry under consideration, this value
amounts to θmax ≈ 0.4π. The system is initialized with the
fluid at rest and with a fore-aft asymmetric density profile of
the solute. Since the effective interaction potential is repul-
sive, the flow field resulting from the initial one is directed
from the solute-poor half of the pore to the solute-rich half
[28] [see Figs. 2(a) and 2(b)]. The competition between
advective and diffusive transport is key to the dynamics we
report. This competition is quantified by the Péclet number
Pe ¼ v�L=D which is proportional to the characteristic
velocity v� and sets the ratio of the timescales of diffusive
and advective transport. Since it is possible to vary Pe by
varying any of the three quantities, due to numerical
efficiency, we varied Pe by tuning the diffusion coefficient.
Only the solute inside the thin region around the pore walls
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where Uwall ≠ 0 contributes to diffusioosmosis. Therefore,
we focus on the transport in this region. The characteristic
velocity v� is estimated from the numerical simulations by
averaging the velocity of the fluid close to the porewalls (see
Supplemental Material) for the cases in which pumping
occurs, which yields v� ¼ 1.3 (0.0056 in lattice units).
For sufficiently small values of Pe the flow field

relaxes to a steady state characterized by convection rolls
[Fig. 2(a)], which act to mix the fluid. These states are
characterized also by a vanishing fluid flow rate

Q̃ ¼ τf
ð2LÞ3

Z
RðzÞ

0

dr r
Z

2π

0

dϕ vzðr;ϕ; zÞ ð5Þ

[see the dashed line in Fig. 2(c)], which we report
normalized by ð2LÞ3=τf. However, upon increasing the
value of Pe, we observe a nonvanishing steady-state fluid
flow rate, Q̃ ≠ 0 [Figs. 2(b) and 2(c)]. In these steady states,
the advection of solute compensates for the diffusion which
attempts to equilibrate the solute density in both the fore
and the aft half of the pore. As the convection rolls are
present also in these pumping states, the channel mixes and
pumps the fluid at the same time.
Figure 3(a) shows the dependence of Q̃ on Pe, and it

highlights the presence of a crossover value of Pec above
which pumping (i.e., Q̃ ≠ 0) occurs. The values of both Pec
and Q̃ are sensitive to the chemical and geometrical
properties of the pore. Indeed, Fig. 3(b) shows that
pumping is suppressed in the limits of small (acov → 0)
and large (in this case acov ≳ 0.8) chemical patterns,
respectively. In particular, we have found no pumping
steady state in the case of a pore fully covered with catalyst
(acov ¼ 1). The onset of pumping is sensitive to the
geometry of the pore, too. In fact, Fig. 3(c) shows that
there are both lower and upper limits θmin < θ < θmax
below and above which pumping does not occur. This is in
contrast to what has been (theoretically) reported for
colloidal particles which undergo a spontaneous symmetry
breaking also in the case of homogeneous surface proper-
ties. Figure 3 clearly shows that the three dimensionless

parameters (Pe, acov, θ) which we have identified play a
crucial role in the onset of the spontaneous symmetry
breaking. Therefore the rich phenomenology that we report
here cannot be attained for low Péclet numbers (no
advection), homogenous chemical patterning (small and
large values of acov), and for flat or very corrugated
channels (small and large values of θ).
Remarkably, there is a regime (solid symbols in Fig. 3),

with Pe > Peosc, acov > aosccov, and θ > θosc, in which Q̃
exhibits sustained oscillations about a nonvanishing flow,
rather than converging towards a steady state [see the full
line in Fig. 2(c)]. These sustained oscillations are qualita-
tively different from those observed in Ref. [42] which
occur at zero pumping rate. Here, the pulsatilelike flow
arises from a negative feedback loop which works as
follows. An initial increase in Q̃ causes the solute to be
advected away from the center of the pore at a rate faster
than the rate at which the catalysis at the wall can replace it.
This results in a large amount of solute (which we denote as
a plume) which is rapidly ejected from the wall (see video

FIG. 2. Panels (a) and (b), snapshots of the steady-state velocity profile in the plane x ¼ 0 for Pe ¼ 2.0 and 2.4, respectively. (c) Flow
rate Q̃ as a function of time, with acov ¼ 0.45. The parameters are Rmax=ð2LÞ ¼ 1, ντf=ð2LÞ2 ¼ 1, βU0 ¼ 4 × 10−4, l=ð2LÞ ¼ 0.1,
ξð2LÞ2τf ¼ 1.5 × 107, and χτf ¼ 9.6. In lattice units: L ¼ 20, η ¼ 1=6, U0 ¼ 4 × 10−4, l ¼ 4, ξ ¼ 1, χ ¼ 10−3, β ¼ 1, and θ ¼ π=6.
The simulation box is of size 80 × 80 × 40.

FIG. 3. Time-averaged flow rate hQ̃i. Open (solid) symbols
mark systems which converge to a steady state (limit cycle). hQ̃i
(a) as function of Pe for θ ¼ π=6 and for acov ¼ f0.45 (squares),
0.55 (inverted triangles), 0.65 (diamonds)g; (b) as function of acov
for θ ¼ π=6 and for Pe ¼ f2.4 (inverted triangles), 5.3 (squares),
8.0 (triangles)g; (c) as function of θ, for fPe; acovg ¼ ½f5.3; 0.45g
(triangles), f8.0; 0.45g (inverted triangles), f8.0; 0.55g (squares)�.
For further parameters see the caption of Fig. 2. In panel (c), the
size of the simulation box is adjusted so as to keep the volume of
the pore constant. The dashed lines are guides to the eye.
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in the Supplemental Material). The depletion of solute
from the center of the hourglass causes the flow J of the
solute, i.e.,

J ¼
Z

Rð0Þ

0

dr r
Z

2π

0

dϕ vzðr;ϕ; z ¼ 0Þρðr;ϕ; z ¼ 0Þ ð6Þ

to be reduced even as Q̃ increases. This eventually triggers
a decrease in the asymmetry of the solute between each half
of the pore. Eventually, Q̃ is diminished, even though the
center of the pore repopulates with solute, and the solute
flow J increases. This delay between Q̃ and J is visible in
Figs. 4(a) and 4(b), and is a result of the nonzero relaxation
time τf ¼ ð2LÞ2=ν of the fluid velocity distribution.
Accordingly, the sustained oscillations occur when the
fluid velocity cannot adiabatically follow the solute density
field. This latency triggers an instability and prevents
relaxation to a steady state.
Interestingly, the onset of sustained oscillations roughly

coincides with the regime in which the time-averaged flow
rate hQ̃i diminishes upon an increase in Pe, i.e., upon
favoring even further advection with respect to diffusion
[Fig. 3(a)]. Such a nonmonotonic dependence of Q̃ on Pe is
reminiscent of the one observed for both isotropic and
Janus colloids [39,49,50]. To further characterize the
sustained oscillations of Q̃, we analyze their Fourier spectra
(SQ̃ Q̃, see Supplemental Material). Figure 4(c) shows rich
power spectra with multiple excited modes. In order to
analyze the dependence of the power spectra on the extent
acov of the chemical pattern, and on Pe, we focus on the
period Tmax associated with that frequency for which
the power spectrum attains its maximum: 2πτf=Tmax.
The dependence of Tmax on acov, normalized by the
relaxation time of the fluid, is plotted in Fig. 4(d). In
general, larger values of acov result in larger values of Tmax,
but all values remain comparable to (but less than) the
relaxation time of the fluid. Accordingly, the period of the
oscillations is shorter than the relaxation time of the fluid,
hence preventing the relaxation of the fluid velocity
towards a steady state. Concerning the amplitude of the
oscillations, Fig. 4(e) shows that larger values of acov lead
to larger amplitudes ΔQ̃ ¼ ðQ̃max − Q̃minÞ=2, defined as

one half of the difference between the maximum, Q̃max, and
the minimum, Q̃min, value of Q̃ (i.e., to larger plumes).
Interestingly, the comparison of Figs. 4(d) and 4(e) tells that
larger periods Tmax are associated with larger amplitudes of
the oscillations as both increase upon increasing acov. This
different behavior on both sides of the oscillatory regime
implies that the transition to oscillations from the side of
smaller values of acov is of a different kind as compared to
the one which occurs upon approaching it from the side of
larger values of acov. Indeed, in the former case, the
amplitude of the oscillations grows smoothly from
ΔQ̃ ¼ 0, i.e., a supercritical Hopf bifurcation occurs
[51]. In contrast, upon approaching from large values of
acov (acov ≳ 0.65), the amplitude of the oscillations sud-
denly jumps from ΔQ̃ ¼ 0 to ΔQ̃ ≠ 0 (i.e., oscillations in
Q̃), i.e., a subcritical Hopf bifurcation occurs [51].
Finally, in Fig. 5, we report on the asymptotic dynamics

as a function of two out of the three dimensionless
parameters identified in Fig. 3, namely, Pe and acov for
a given value of the corrugation θ ¼ π=6. In particular, we
observe a minimum value of Pe below which there is no
pumping (Q̃ ¼ 0) for any value of acov and that acov ≈ 0.5
maximizes the range of Pe values for which pumping
occurs. Interestingly, Fig. 5 shows that not only pumping
(see Fig. 3), but also oscillations occur for a specific range
of values of Pe and acov (in the present case θ is fixed). In
order to understand the onset of pumping, we develop a

FIG. 4. In panels (a) and (b) Q̃ and J [thick lines (orange, blue), and grey thin lines, respectively] normalized by their maximum value.
In (a) facov;Peg ¼ f0.55; 4.6g and in (b) facov;Peg ¼ f0.55; 7.0g. (c) Power spectrum SQ̃ Q̃ of Q̃ðtÞ [from panels (a) and (b)]. (d) Period
of oscillations Tmax in units of τf. (e) Amplitude of the oscillations ΔQ̃. For (d) and (e), the data are shown as function of acov for
Pe ¼ f5.3 (squares), 7.9 (triangles)g. For further parameters see the caption of Fig. 2.

FIG. 5. Classification of the asymptotic dynamics into non-
pumping states (crosss), steady pumping states (circles), and
oscillating states (filled circles). Overlapping symbols indicate
bistability (see Supplemental Material). The purple line is a
semianalytic prediction for the onset of pumping. (Concerning
the parameter set, see the caption of Fig. 2.)
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semianalytical approach based on the Fick-Jacobs equation
[52–54]. Within this approach, we couple Eq. (3), which
governs the dynamics of the solute, to the stationary Stokes
equation in the case of weakly varying pores for which we
can apply the lubrication approximation (see Supplemental
Material). Without any fitting parameter, the theory semi-
quantitatively reproduces the onset of pumping described
by the condition ΔΩðPe; acovÞ ¼ 0, where the function
ΔΩðPe; acovÞ is given by the right-hand side of Eq. (S71) of
the Supplemental Material. This approach captures the
corresponding values of PeonðacovÞ, as well as the two
values of aoncov associated with a given value of Pe.
The typical experimental realization of phoresis relies on

hydrogen peroxide decomposed by platinum. In such a
setup, the role of the solute is played by oxygen, which
has a diffusion coefficient of D ≈ 103 μm2 s−1. This
setup generates flows with characteristic velocities v� ≲
10 μms−1 [55]. According to our results, for a symmetric
active pore with acov ≈ 0.5, pumping occurs for Pe ≈ 1, and
therefore for L ≈ 102 − 103 μm. The fluid relaxation time
for an aqueous solution (ν ≈ 106 μm2 s−1) in this pore is
τf ≈ 10−2 − 1 s, and so we expect the oscillations to have a
frequency in the order of 1=τf ≈ 1–100 Hz.
By means of both numerical simulations and analytical

modeling, we have shown that diffusioosmosis inside pores
can lead to spontaneous symmetry breaking and sustained
oscillations of the flow rate. In particular, our results show
that the spontaneous symmetry breaking occurs when three
conditions are met simultaneously: large Péclet number
(Pe≳ 1), inhomogeneous chemical patterning (acov ≠ 0,
1), and mild channel corrugation (0 < θ < θmax). The
oscillations, which resemble a pulsatile flow, appear as
an additional instability, occurring at higher values of Pe
than the spontaneous symmetry breaking leading to steady
pumping. They occur if the magnitude of acov lies between
two “critical” values, one showing a subcritical and the
other one a supercritical Hopf bifurcation. In particular, the
frequency of these oscillations can be tuned hence paving
the way for the design of a phoretic microfluidic oscillator
[56]. Interestingly, the three functionalities of the active
pore (mixer, pump, oscillator) can be enabled via acov
which may be varied by changing the light source shining
on the pore in the case in which the pore is coated by a
photoactivated catalyst [57].
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