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We present the first experimental evidence for the multifractality of a transport property at a topological
phase transition. In particular, we show that conductance fluctuations display multifractality at the integer
quantum Hall plateau-to-plateau transitions in high-mobility mesoscopic graphene devices. The multi-
fractality gets rapidly suppressed as the chemical potential moves away from these critical points. Our
combination of experimental study and multifractal analysis provides a novel method for probing the
criticality of wave functions at phase transitions in mesoscopic systems, and quantum criticality in several
condensed-matter systems.
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Since its discovery, the integer quantum Hall (IQH)
effect, a continuous quantum-phase transition in a two-
dimensional electron gas (2DEG) [1], has provided us with
a paradigm for topological phase transitions. In the pres-
ence of a large magnetic field B, applied perpendicular to
the surface, the density of states (DOS) of a noninteracting
2DEG develops into discrete, quantized Landau levels.
Disorder broadens these degenerate Landau levels into
bands of extended states separated by localized states.
When the Fermi level EF, tuned by changing either B
or the charge-carrier density n, lies in the localized states
[cf. Fig. 1(a)], the Hall conductance GXY is quantized in
units of e2=h, and the transverse conductanceGXX becomes
vanishingly small, with GXX ¼ 0 at a temperature T ¼ 0
[2]. In this regime, transport takes place through chiral edge
modes, whose number is dictated by the topological Chern
number of the system [3–6]. If, by contrast, EF lies in the
range of energies at the center of the Landau levels,
transport proceeds through the bulk with GXX ≠ 0 and a
nonquantized GXY .
The Hall conductivity at a given point depends strongly

on the disorder potential and the local DOS (LDOS)
over a length scale of the order of the localization length
ξ [17–22]. Central to this argument is the idea that IQH
plateau-to-plateau transitions are localization-delocalization
transitions across the mobility edge [23–26]. This observa-
tion, in turn, has significant implications for modern theories
of IQH that acknowledge the effect of local perturbations on
such topological phase transitions [27,28].
The eigenstates at the mobility edge are critical and

different from those in both localized and extended states
[23,29–31]. As the Landau-level filling factor ν approaches
its critical value, the localization length ξ diverges alge-
braically as ξ ∝ jν − νCj−γ. Theoretical studies show that
observables like the distribution of the local density

squared jψðrÞj2 [23,32] or the equilibrium current density
squared jjðrÞj2 [33] display multifractal fluctuations lead-
ing to anomalous diffusion [26] and, consequently, a
power-law decay of the density correlations, a slow decay
of temporal wave-packet autocorrelations [34] and, most
significantly for our purpose, multifractal conductance
fluctuations [35–39].
In this Letter, we present the first experimental evidence

for the multifractality of a transport property at a topo-
logical phase transition [3–6]. In particular, we show that,
in high-mobility graphene at the IQH plateau-to-plateau
transitions, the conductance fluctuations are multifractal.
The origin of this multifractality may be understood by
noting that as IQH criticality is approached, the LDOS
penetrates the bulk of the material from its edges, and a
complex hierarchical distribution emerges. This distribu-
tion is governed by the multifractal wave functions and
results in the multifractality of Hall conductance at criti-
cality [22]. Earlier studies on high-mobility GaAs/AlGaAs
heterostructures have shown that IQH transitions are
accompanied by large, reproducible fluctuations in both
GXX and GXY as functions of B and n [21,40,41]. Despite
an expectation that a multifractal analysis of these fluctua-
tions is essential for a complete description of the criticality
in IQH regimes [23,34], experimental confirmation of this
multifractality has been missing hitherto. Our results
address this vital lacuna. Our approach of probing the
criticality is not limited to studying mesoscopic fluctua-
tions. It can be suitably applied to probe a wide range
of systems such as superconductors and topological
insulators.
Multifractality, initially introduced to characterize the

statistical properties of fluid turbulence [42,43], was later
studied in a variety of fields ranging from heartbeats to
cloud structures [44–52]. In condensed-matter science,
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most investigations of multifractality, which manifests
itself at some phase transitions, employ a combination
of theoretical and numerical techniques [36–38,53–57].
The experimental characterizations of multifractality in
such condensed-matter settings require precision experi-
ments in high-quality samples, often at very low temper-
atures. Two recent examples of such measurements are the
study of multifractal conductance fluctuations at low
magnetic fields [35] and the study of multifractal super-
conductivity in the weak-disorder regime [58,59].
Our electrical-transport measurements were carried out

on hexagonal boron nitride (hBN) encapsulated graphene
devices with one-dimensional ohmic contacts—for details,
see Supplemental Material [7], S1. The electrical-transport

measurements were carried out in a dilution refrigerator,
with a base temperature of 20 mK, by using low-frequency
lock-in measurement techniques in a multiprobe configu-
ration at a low bias current (≤ 1 nA) to avoid Joule heating
(Supplemental Material [7], S2]. We focus primarily on our
data from two devices: 1DC8 and B15D4 (Supplemental
Material [7], S3). The samples were thermally cycled
multiple times; the data we present did not change
significantly on thermal cycling.
In Fig. 1(c), we present plots of the longitudinal

resistance R versus the back-gate voltage VG, measured
at B ¼ 0 and different values of T for device 1DC8.
The field-effect mobility, estimated at T ¼ 20 mK, is
μ ¼ 128 000 cm2V−1 s−1. The corresponding data for
device B15D4 are in the Supplemental Material [7], S3.
Figure 1(d) shows plots of GXY versus νð¼ nh=eBÞ at

different temperatures T and at B ¼ 16 T for 1DC8. Here,
n is the charge carrier density, h is the Planck constant, and
e is the electronic charge. Focusing on the data for
T ¼ 20 mK, we observe well-developed plateaus in GXY

at all integer multiples of e2=h, indicating a complete lifting
of the layer, spin, and valley degeneracies of the Landau-
level spectra [60,61]. For any one of the transitions between
two adjacent plateaus, the plots of GXY versus ν, measured
at different temperatures, intersect at a single point in the (ν,
GXY) plane. We identify each intersection as the critical
point for the quantum phase transitions from localized to
delocalized states [24].
To obtain the detailed fluctuation profiles and to inves-

tigate their statistics, fine-sweep measurements were per-
formed with a much-reduced step size (250 times higher
resolution), in either B or VG. In Figs. 2(a) and 2(b), we
show plots of GXY versus ν, for the ν ¼ 1 ↔ ν ¼ 2 IQH
transition, at T ¼ 20 mK measured with a very small step
size in either B or in Vg for 1DC8 (Supplemental Material
[7], S4). We find large fluctuations in GXY across the
plateau-to-plateau transition. The reproducibility of these
fluctuations [Fig. 2(c)] establishes them to be mesoscopic
fluctuations with a unique magnetofingerprint. Although
these fluctuations remain reproducible over a particular
thermal cycle, their detailed profile changes if the device is
thermally cycled to T > 10 K and back.
We obtain the conductance fluctuations G0

□
ðxÞ by

subtracting a smooth background from the measured data
using G0

□
ðxÞ ¼ G□ðxÞ − F½G□ðxÞ�. Here, x is either B or

VG, G□ stands for GXX or GXY, and the function F½G□ðxÞ�
is the smooth background in G□ðxÞ (Supplemental
Material [7], S4). In this Letter, we discuss the multi-
fractality of GXY ; the multifractal spectra of GXX are
quantitatively similar (Supplemental Material [7], S8).
In Fig. 2(d), we show representative plots of G0

XY versus
B, across the ν ¼ 1 ↔ ν ¼ 2 transition on device 1DC8,
for different values of T and at a fixed value of
n ¼ 4.75 × 1011 cm−2. With increasing T, the mean ampli-
tude of the fluctuations in G0

XY decreases, but the

(a)

(c)

(b)

(d)

FIG. 1. (a) A schematic diagram illustrating the dependence of
the DOS of 2DEG on energy in the IQH regime. The extended
states (brown regions) at the centers of the disorder-broadened
Landau levels are separated by the localized regions (light blue).
The quantum phase transitions between the localized and
extended states occur at the mobility edge around the critical
energies EC1 and EC2. (b) A false-color SEM image of device
1DC8. (c) Plots showing the dependence of R on VG at different
temperatures for 1DC8. The measurements were carried out at
B ¼ 0 T. The left inset shows an enlarged plot near the Dirac
point [see Supplemental Material [7], S2]. The inset at the right
indicates the contacts used in the measurement. (d) Plots of GXY
versus the filling factor ν measured at different temperatures and
magnetic field B ¼ 16 T for 1DC8. The arrows mark the
positions of IQH critical points at which the localization-
delocalization transitions occur. Inset: the contacts used in the
measurement. The arrow indicates the chirality of electron
transport at B ¼ 16 T. The corresponding number density n is
given on the top axis of (c) and (d).
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magnetofingerprint of mesoscopic fluctuations persists;
these signatures finally become smaller than the measure-
ment-noise level for T > 1 K. Although these fluctuations
in G0

XY disappear for T > 1 K, the plateaus of GXY , at e2=h
and 2e2=h, survive until much higher temperatures
[Fig. 1(b)].
Having established the mesoscopic origin of the fluctu-

ations in the conductance across the plateau-to-plateau
transitions, we now analyze the multiscaling behavior and
statistics of the fluctuations in the vicinity of the ν ¼ 1 ↔
ν ¼ 2 critical points. Our multifractal analysis of these
fluctuations is akin to the analysis in our previous low-field
study of universal conductance fluctuations in single-layer
graphene [35] (Supplemental Material [7], S5). Briefly, the
G0

XY data series is divided into several segments, each
centered at different values of the filling factor ν. We then
compute the multifractal spectrum as follows: each such
segment is detrended and subdivided into Ns overlapping
segments, indexed by j, and containing s data points, with
1 ≤ j ≤ Ns. The generalized Hurst exponents hðqÞ are
obtained from the power-law-scaling behavior of the order-
q moment of the fluctuations FqðsÞ using the following
relations:

grmsðjÞ ¼
�
1

s

Xs

i¼1

ðgiÞ2
�
1=2

; ð1Þ

FqðsÞ ¼
�
1

Ns

XNs

j¼1

grmsðjÞq
�
1=q

∼ shðqÞ: ð2Þ

A q-dependent hðqÞ indicates multifractality. That this is
indeed the case for GXY measured across the ν ¼ 1 ↔ ν ¼
2 transition can be clearly seen from the different slopes of
the log[FqðsÞ] versus logðsÞ plots for q ¼ �4 in Fig. 3(a)
and from the plot of hðqÞ versus q in Fig. 3(b). For similar
plots establishing the multifractality of the ν ¼ 2 ↔ ν ¼ 3
transition, the multifractality ofGXX, and for data on device
B15D4, see the Supplemental Material [7].
Multifractality can be represented by the singularity

spectrum, which is a plot of fðαÞ versus α obtained by
the Legendre transformation of hðqÞ as follows:

α ¼ hðqÞ þ qh0ðqÞ;
fðαÞ ¼ q½α − hðqÞ� þ 1: ð3Þ

In Fig. 3(c), we show a plot of fðαÞ, obtained at 20 mK near
the ν ¼ 1 ↔ ν ¼ 2 critical point; the data obtained for the
ν ¼ 2 ↔ ν ¼ 3 critical transition are qualitatively similar
(Supplemental Material [7], S13). The large width of fðαÞ,
Δα ≃ 1.1 indicates significant multifractality of the fluc-
tuations in the Hall conductance. The maximum of fðαÞ is
located at α0 ¼ 2.21 (marked by an arrow in the figure),
with fðα0Þ ¼ 1; the maximum of fðαÞ provides the support
dimension of the data series, which, in this case, is 1. A
similar analysis of the fluctuations in GXX yields that these
too are multifractal (Supplemental Material [7], S8).
Note that the standard deviations of the small-amplitude

fluctuations we analyze are at least an order of magnitude
larger than the noise level measured at the IQH plateaus

(a) (b)

(c) (d)

FIG. 2. Plots of GXY versus ν measured during ν ¼ 1 ↔ ν ¼ 2
IQH transition at (a) a fixed value of the magnetic field B ¼ 16 T
and (b) a fixed number density n ¼ 4.75 × 1011 cm−2 for the
device 1DC8. The corresponding values of n are shown on the top
axes. (c) Plots of two different traces of GXY versus B, measured
between ν ¼ 1.64 and ν ¼ 1.54, showing the reproducibility of
the mesoscopic conductance fluctuations. The datasets have
been shifted vertically for clarity. (d) Plots of segments of data
of G0

XY versus B, for the ν ¼ 1 ↔ ν ¼ 2 transition, measured at
different temperatures T and at a fixed carrier density
n ¼ 4.75 × 1011 cm−2. The data have been vertically offset for
clarity. The data presented in (c) are from a different cooldown
cycle than those in (a), (b), and (d).

(a) (b) (c)

FIG. 3. (a) Plots of log½FqðsÞ� versus log½s� [see Eq. (2)], for
q ¼ −4 (green circles) and q ¼ 4 (blue circles) for a typical data
segment of G0

XY . The thick lines are the linear fits to the data
points. (b) Plot of hðqÞ versus q for the data segment shown in (a).
(c) Plot of the singularity spectrum fðαÞ versus α obtained from
(b). The maximum value of this spectrum is fmaxðαÞ ¼ 1 located
at α0 ≃ 2.21 (marked by an arrow). The data were obtained at
ν ¼ 1.47 and 20 mK for the device 1DC8.
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(Supplemental Material [7], S4). Consequently, our fðαÞ
analysis is not contaminated by measurement noise. We
also find that a random shuffling of theGXY or theGXX data
series destroys its multifractality, suggesting that the origin
of the multifractality lies in the long-range correlations
picked up by charge carriers traversing through a hierar-
chical structure of the LDOS developed at IQH criticality
(Supplemental Material [7], S6) [62].
In Fig. 4(a) we plot the spectral width Δα versus ν − νC

in the vicinity of the ν ¼ 1 ↔ ν ¼ 2 transition for both
devices 1DC8 and B15D4; we find that the data for the two
devices are quantitatively similar within error bars. The
maxima in Δα is at ν ≃ νC, implying that the multifractality
inGXY peaks rather sharply near the ν ¼ 1 ↔ ν ¼ 2 critical
point. At ν ≃ νC, Δα ≃ 1.3, and it decreases sharply to
Δα ∼ 0.2 at jν − νCj ∼ 0.15. The value of Δα away from
ν ¼ νC is finite. We note that the critical states are confined
to E ¼ EC only in the thermodynamic limit. For a finite
sized system, all states with localization length ξ larger than
the system size appear to be extended, and the distribution
of physical observables (including conductance fluctua-
tions) is multifractal [30]. The divergence of ξ, away from
ν ¼ νC, is suppressed only algebraically and is governed by
γ; so the critical states for a finite-sized system can indeed
extend well beyond νC, albeit with algebraically reduced
probability. Thus, our observation of a finite multifractality
away from the critical point νC can be attributed to finite-
size effects.
We note here that it is crucial to work with sufficiently

high-mobility devices with a well-defined IQH critical
point to observe this multifractality. Our primary objective
was to study this multifractality at IQH criticality; the
appearance of intervening fractional quantum Hall phases

was, therefore, undesirable. The device widths were delib-
erately kept narrow to avoid the fractional quantum Hall
phases. Keeping the device width small was also necessary
to enhance the conductance fluctuations [63–65].
With increasing T, decoherence induced by inelastic

thermal scattering reduces quantum interference and results
in delocalization [66] leading to a monotonic decay in Δα
[Fig. 4(b)]. Note again that the multifractality of the
fluctuations in GXY decreases well before the IQH plateaus
disappear.
Finally, we discuss the possible effects of magnetic fields

and disorder on our observations. The penetration length
scale of the LDOS into the bulk of the material away from
the IQH critical point is determined essentially by the
magnetic length lB ¼ h=ð2πeBÞ. For a magnetic field of
6 T (lB ¼ 10 nm) and 16 T (lB ¼ 6.5 nm), the magnetic
lengths are extremely small as compared to the relevant
length scales like either the sample widthW ¼ 2 μm or the
localization length ξ (ξ in our devices is > 100 nm as
estimated from the temperature scaling of conductanceGXX
[67]). The multifractality of conductance fluctuations at
high B (where the separation between the Landau levels is
greater than either thermal or disorder broadening) is thus
essentially independent of the magnetic field value
(Supplemental Material [7], S9).
In the Hamiltonian of the IQH system, disorder enters as

a random potential characterized by its amplitude and
correlation length [23,68]. In hBN encapsulated graphene,
the disorder potential arises primarily from the Coulomb
interaction of the electrons with the fluctuating density of
the dopant atoms [68,69]. The actual value of the amplitude
VðrÞ is unimportant as long as it is less than the cyclotron
energy Ecyc. The correlation length λ, on the other hand, is
an important parameter: as long as λ=lB ≫ 1 (a condition
satisfied in high-mobility two-dimensional systems in the
presence of moderately strong B) the potential is smooth
[21,41,68]. This leads to simple localization and confine-
ment of the eigenstates (and LDOS) to a width ∼lB at the
sample edge. It follows that the LDOS (and consequently
the measured multifractality) will not be sensitive to the
details of disorder as long as both Ecyc=VðrÞ and λ=lB are
≫ 1 [21,70]. Between the two devices, 1DC8 and B15D4,
the defect density varies by a factor of 2, yet the multifractal
behavior is essentially the same [see Fig. 4(a)]. In support
of the statement that the disorder in our system is long-
range, we note that the valley degeneracy is completely
lifted at moderate values of B (see Supplemental
Material [7]).
To conclude, we have presented the first experimental

evidence for the multifractality of a transport property at a
topological phase transition [3–6]. In particular, we have
shown that conductance fluctuations at IQH ν ¼ 1 ↔ ν ¼
2 and ν ¼ 2 ↔ ν ¼ 3 transitions in a high-mobility meso-
scopic graphene device are multifractal. This multifractality
gets rapidly suppressed as ν moves away from νC or as T is

(a) (b)

FIG. 4. (a) Plot of the spectral width Δα versus ν − νC for the
devices 1DC8 and B15D4. The vertical line marks the ν ¼ 1 ↔
ν ¼ 2 critical point. The gray-shaded curve is a guide to the eye.
The error bars for the ν − νC axis are calculated from the intrinsic
impurity level in the device; the error bars in the Δα axis are
derived from the error in calculating the slopes of the plots of
log½FqðsÞ� versus log½s� (Supplemental Material, S5). (b) Plot of
Δα versus T for the device 1DC8, measured at ν ¼ 1.6. The red-
shaded curve is a guide to the eye.
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increased. Although theoretical studies have shown the
multifractality of eigenfunctions at this transition (see, e.g.,
Refs. [23,30,40,71–73]), there has been no experimental
study hitherto on the multifractality of transport coeffi-
cients. We conjecture that similar multifractality of con-
ductance fluctuations should also be present in (a) all IQH
plateau-to-plateau transitions, (b) the fractional quantum
Hall transitions, and (c) single-layer graphene devices. Our
preliminary results support the conjectures (a) and (c). Our
study also may provide an indirect route to access the
evolution of the spatial distribution of the LDOS in such
systems.
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