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Understanding and predicting lattice dynamics in strongly anharmonic crystals is one of the long-
standing challenges in condensed matter physics. Here, we propose a first-principles method that gives
accurate quasiparticle (QP) peaks of the phonon spectrum with strong anharmonic broadening. On top of
the conventional first-order self-consistent phonon (SC1) dynamical matrix, the proposed method
incorporates frequency renormalization effects by the bubble self-energy within the QP approximation.
We apply the developed methodology to the strongly anharmonic α-CsPbBr3 that displays phonon
instability within the harmonic approximation in the whole Brillouin zone. While the SC1 theory
significantly underestimates the cubic-to-tetragonal phase transition temperature (Tc) by more than 50%,
we show that our approach yields Tc ¼ 404–423 K, in excellent agreement with the experimental value of
403 K. We also demonstrate that an accurate determination of QP peaks is paramount for quantitative
prediction and elucidation of the phonon linewidth.
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Lattice vibrations in functional materials often exhibit
strong anharmonicity; i.e., thermal or quantum fluctuation
of atoms is so large that lattice dynamics cannot be
predicted accurately by the quasiharmonic phonon theory.
Notable examples of such materials include perovskites
[1–3], thermoelectric materials [4–6], and superconducting
hydrides [7,8]. In particular, halide perovskites have been
attracting growing interest due to their unique physical
properties, including high photovoltaic performance [9]
along with relevant electron-phonon coupled physics and
ultralow thermal conductivity [3,10]. However, an in-depth
theoretical understanding and quantitative predictions of
the lattice dynamics and phonon-related properties in these
materials are still challenging due to the lack of first-
principles computational approaches that can describe with
high fidelity the intricate complexities associated with
anharmonic behavior. In principle, lattice anharmonicity
can be fully captured using ab initio molecular dynamics
based on density functional theory (DFT). However, this
approach is of limited use, because it invariably requires the
use of large supercells to capture phonon-phonon inter-
actions involving nonzero-wave-vector phonons and a long
simulation time to extract well-converged values of the
band- and momentum-resolved phonon frequencies and

linewidths. Thus, such simulations can quickly develop
into a computational bottleneck.
To mitigate these challenges, several quasiparticle

(QP)-like approaches have been proposed in the past
decade [11–15]. Although QP approximation cannot
describe satellite peaks, i.e., incoherent parts of spectra,
it has several advantages. Namely, it simplifies the evalu-
ation of physical quantities such as group velocity and heat
capacity, allowing for a direct comparison with experiment.
Besides, the QP treatment gives an effective one-body
Hamiltonian of interacting phonons that is necessary as
input for calculations of electron-phonon and phonon-
phonon couplings in functional materials. The first-order
self-consistent phonon (SC1) theory is one of the most
successful methods, which determines the renormalized
phonon frequencies by the variational principle applied to
the first-order cumulant expansion of the Helmholtz free
energy [16,17]. Since the SC1 theory can, to a large extent,
remedy the negative frequency problems of the harmonic
approximation, it has been actively employed in first-
principles calculations of phonon-related physics of anhar-
monic materials, including thermal transport [13,18–21],
phonon-limited mobility [22], band-gap renormalization
[23,24], thermal expansion [25,26], and conventional
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superconductivity [7,12,27]. While these studies clearly
demonstrate the advantage of the SC1 theory over the
quasiharmonic theory and purely perturbative approaches,
the quantitative accuracy of SC1 is still inadequate for
strongly anharmonic materials. More specifically, SC1
theory tends to overpredict phonon frequencies at finite
temperatures, because it neglects the frequency shift
associated with the bubble self-energy. Indeed, as we will
show below, such a shift is substantial in the strongly
anharmonic CsPbBr3 and has significant effects on the
theoretical phase transition temperature and phonon
linewidth.
In this Letter, we propose a first-principles phonon

calculationmethod that gives accurateQPpeaks of a phonon
spectrum broadened by phonon-phonon interactions. The
developed method, which we formulate using the modern
language employed in the GW approximation in electronic
structure theory [28], incorporates the frequency shift by the
bubble self-energywithin theQPapproximation and thereby
solves the overestimation problem inherent to the SC1
theory. We apply the developed method to cubic CsPbBr3
(α phase), which displays strong lattice anharmonicity
accompanying the cubic-to-tetragonal phase transition at
Tc ¼ 403 K [29]. Although the SC1 theory underpredicts
Tc bymore than 50%, the QP theory givesTc values of 404–
423 K, which successfully reproduce the experimental
value. We also show that the lattice thermal conductivity
(LTC) of α-CsPbBr3 calculated based on the QP theory
combined with a beyond-Boltzmann treatment [30] is
ultralow (< 0.5 W=mK at 500 K) and shows weak temper-
ature dependence, whereas the LTC based on SC1 shows a
clear trend of overestimation, thus highlighting the impor-
tance of an accurate determination of QP peaks for quanti-
tative prediction of the phonon linewidth and LTC.
Reliable modeling of lattice dynamics requires an

accurate treatment of lattice anharmonicity, which is
manifested as an interaction between noninteracting (har-
monic) phonons. This problem can be formulated by the
Dyson equation as

fGqðωÞg−1 ¼ fG0
qðωÞg−1 − Σq½G�ðωÞ; ð1Þ

where G0
qjj0 ðωÞ is the noninteracting phonon propagator

and Σq½G�ðωÞ is the anharmonic self-energy. For the self-
energy, the most important terms associated with the third-
and fourth-order anharmonicity are usually considered as
Σq½G�ðωÞ ¼ ΣT

q ½G;Φ3� þ ΣL
q ½G;Φ4� þ ΣB

q ½G;Φ3�ðωÞ.
Here, T, L, and B stand for the tadpole, loop, and bubble
diagrams, respectively. Their dependence on anharmonic
force constants ðΦ3;Φ4Þ is indicated explicitly. Once the
above Dyson equation is solved for GðωÞ, the information
of lattice dynamics can be obtained from the spectral
function AqðωÞ ¼ jImGqðωÞj=π. However, achieving a
fully self-consistent solution to Eq. (1) is challenging,
because both sides of the equation depend on G and ω.

The SC1 theory greatly simplifies Eq. (1) as

fGS
qðωÞg−1 ¼ fG0

qðωÞg−1 − ΣT
q ½GS;Φ3� − ΣL

q ½GS;Φ4�; ð2Þ

where the ω-dependent ΣB
q ½G;Φ3�ðωÞ is dropped.While the

SC1 theory is powerful in its versatility and reasonable
accuracy, the frequency shift associated with the neglected
bubble diagram is not small [8,17] and particularly large in
α-CsPbBr3, as we will show below. Hence, ΣB

q ½G;Φ3�ðωÞ
should be included. Given that the SC1 propagator GS

qðωÞ
is reasonably close to the fully dressed propagator GqðωÞ,
we may simplify Eq. (1) as

fGqðωÞg−1 ≈ fGS
qðωÞg−1 − ΣB

q ½GS;Φ3�ðωÞ; ð3Þ

where the self-consistency for G is lifted. This is similar to
the G0W0 approximation in electronic structure, where the
Kohn-Sham wave function is used for the noninteracting
part and the correlation is treated in “one shot” with
Σ ¼ iG0W0. So far, Eq. (3) has been employed to calculate
the phonon spectral function of anharmonic solids [17,31].
However, instead of calculating the ω-dependent propa-
gator, we aim to develop an effective one-body Hamiltonian
that well represents the QP peaks given by Eq. (3). To this
end, we propose the following self-consistent equation [32]:

Ω2
qν ¼ ðωS

qνÞ2 − 2ωS
qνReΣB

qν½GS;Φ3�ðω ¼ ΩqνÞ: ð4Þ

Here,ωS
qν is the SC1 frequency, and the bubble self-energy is

evaluated at the QP frequency Ωqν. The above nonlinear
equation, again resembling the QP approximation in the
GW calculations [28], needs to be solved self-consistently
for Ωqν. To simplify this, it is tempting to linearize
ΣB
qν½GS;Φ3�ðΩqνÞ around Ωqν ¼ ωS

qν, yielding Ω2
qν ¼

ðωS
qνÞ2 − 2Zqνω

S
qνReΣB

qν½GS;Φ3�ðωS
qνÞ with Zqν ¼ ½1þ

ð∂ReΣB
qν=∂ωÞjω¼ωS

qν
�−1 being the renormalization factor.

However, we found that this linearization yields a non-
smooth temperature dependence of Ωqν due to the complex
ω dependence of ReΣB

qνðωÞ. Hence, we do not employ such
linearization in this study. Instead of the nonlinear QP
equation [Eq. (4)], which we call QPNL, several different
QP treatments are possible. The simplest is the static
approximation (ω ¼ 0), which incorporates the first-order
correction term that appears in the Hessian of the SC1 free
energy [33]. Another option is to setω ¼ ωS

qν. For the clarity
of the following discussion, we denote these QP methods as
QP[0] andQP[S], respectively. QP[S] is equivalent to setting
Zqν ¼ 1 in the above linearized equation. We note that,
beyond this one-shot treatment of the bubble self-energy
would be possible with an approximation akin to that used
in the QP self-consistent GW method [34], which is left for
a future study.
We now apply the developed QPNL method to

α-CsPbBr3. The DFT calculations were conducted using
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QUANTUM ESPRESSO [35], with the GGA-PBEsol func-
tional [36]. The lattice dynamics calculations were per-
formed using ALAMODE [37]. To include thermal expansion

effects, we evaluated FðSÞ
vibðV; TÞ at various volumes and

temperatures. The T-dependent volume was then obtained
by minimizing the Helmholtz free energy as VðSÞðTÞ ¼
argminVfE0ðVÞ þ FðSÞ

vibðV; TÞg. This approach was shown
to work even for the cases where the quasiharmonic theory
breaks down due to the presence of unstable modes [25].
Harmonic and anharmonic interatomic force constants
necessary for the lattice dynamics calculations were esti-
mated using a compressed sensing approach [38] based on
adaptive LASSO [39]. More details are provided in
Supplemental Material [40].
We first discuss the T-dependent lattice constant shown

in Fig. 1(b). The optimized value obtained by DFT is
5.868 Å that agrees exceptionally well with the exper-
imental value of 5.873 Å at 473 K [48]. However, this
almost perfect agreement is accidental as inferred after
accounting for phonon excitations. Namely, at the SC1
level, we obtained 5.941 Å at 480 K that overestimates the
experimental value by ∼1%. The calculated linear thermal
expansion coefficient of α ≃ 25 × 10−6 K−1 is consistent
with experimental results 28–33 × 10−6 K−1 [49].
In α-CsPbBr3, phonon softening occurs in the whole

Brillouin zone, as can be inferred at the harmonic level
[Fig. 1(a)]. After accounting for anharmonic effects, these
soft modes became dynamically stable in the high-
temperature region, and their frequencies decrease gradually
with cooling following the Curie-Weiss law, as we elaborate
below. The calculated temperature dependence of these
soft modes are shown in Figs. 1(c) and 1(d). The SC1 theory
always yields stable phonons when the self-consistent
equation [Eq. (2)] converges. Notwithstanding, we can
estimate Tc by fitting the linear part of ðωS

qνÞ2 with
AðT − TcÞ; see Table I. Given that the cubic-to-tetragonal
phase transition is first order [29] with a small temperature
hysteresis of ∼7 K [50], the prediction based on the Curie-
Weiss law should be interpreted as a lower bound of Tc.
As seen from the table, SC1 significantly overestimates the
soft mode frequencies and thereby underestimates Tc, which
is less than 50% of the experimental Tc of 403 K.
Including the bubble diagram by solving Eq. (4), we can

see from Fig. 1(c) and Table I that the Tc value is in better
agreement with experiment. The QPNL method with V ¼
V0 gives a Tc value of 404–423 K, which agrees reasonably
well with the experimental value. Also, the static QP[0]
theory led to Tc values that are similar to those of the QPNL
method. This is reasonable, because the QP energy
approaches zero (Ωqν → 0) in the limit of T → Tc; hence,
ΣB
qνðΩqνÞ approaches ΣB

qνð0Þ. By contrast, the QP[S]
frequencies were generally larger than that of the static
approximation, and the Tc value became lower by ∼40 K.
All of these results clearly highlight the significant effect of

the bubble diagram. Moreover, we observed that the Tc
value is quite sensitive to the lattice constant. When we
used the SC1 volume, the frequencies of the soft modes at
M and R points became larger than those obtained with the
DFT volume, which can be attributed to their negative
Grüneisen parameters [40]. Consequently, the estimated Tc
value decreases by ∼20% even though the difference in the
lattice constant is only ∼1% (see Sec. S3 in Supplemental
Material [40]). Since a DFT lattice constant depends on the
choice of the exchange-correlation functional and pseudo-
potential, the present result indicates the importance of
carefully choosing them in the quantitative predictions of
Tc for CsPbBr3. A similar sensitivity has also been reported
for BaTiO3 [51].
To obtain insight into the accuracy of the QP theory over

a wider frequency range, the calculated anharmonic phonon

(c)

(a)

(d)

(b)

FIG. 1. Calculated phonon frequency and lattice constant of
α-CsPbBr3. (a) Harmonic phonon dispersion calculated with
V ¼ V0. (b) Temperature dependence of VðSÞðTÞ compared with
the experimental data [48]. (c) and (d) Temperature dependence
of the squared frequency of soft modes at M and R points with
V ¼ V0 and V ¼ VðSÞðTÞ. The QP[0] results are shown by
translucent symbols.

TABLE I. Critical temperature (K) of the cubic-to-tetragonal
phase transition calculated at different levels of the QP theory.
The two values in each cell show the Tc values estimated from the
soft mode frequency at M and R points, respectively. The
experimental Tc is 403 K [29].

Method DFT volume SC1 volume

SC1 [Eq. (2)] 177, 198 164, 183
QP[0] 415, 424 322, 324
QP[S] 369, 382 303, 307
QPNL [Eq. (4)] 404, 423 319, 324
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dispersion curves are compared with the spectral function
in Fig. 2. Here, the spectral function AqðωÞ is obtained from
GqðωÞ of Eq. (3) with full frequency dependence of ΣB

qνðωÞ
and is used as a reference to assess the accuracy of the QP
theory. The SC1 theory tends to overestimate the phonon
frequency as compared to the peak frequency of AqðωÞ.
The overestimation is particularly notable in the low-
frequency soft modes that are still stable below Tc (left
panel). Such overestimation is mostly rectified by the QP
theory, irrespective of the adopted value for ω. However,
Fig. 2 clearly shows that QP[0] underestimates the phonon
frequencies above ∼70 cm−1 as compared to AqðωÞ. The
underestimation of the optical modes around 100 cm−1 is
as large as 10 cm−1. We found that the QPNL theory is free
from such an under- or overestimation artifact and thereby
best represents the peak frequency of AqðωÞ (solid lines in
Fig. 2). Therefore, we posit that QPNL gives the most
reliable effective one-particle picture among the investi-
gated approximations. We also found that the QP[S] gives
similar results to QPNL although slightly overestimates the
frequencies in the low-frequency region at low temper-
atures (see Fig. S3 in Supplemental Material [40]).
Although more comprehensive study is needed, we expect
the bubble frequency correction affects the soft-mode
frequencies and associated physical properties, such as
Tc and dielectric permittivity, in a broad range of materials
that exhibit structural phase transition.
The strong modifications of the phonon band structures

due to anharmonic effects uncovered by the QP theories
beyond SC1 is expected to have a strong influence on the
phonon linewidth. To uncover such effects, we calculated
the phonon linewidths as Γ3ph

qν ¼ ImΣB
qν½G;Φ3�ðΩqÞ. As

shown in Fig. 3(b), the difference in the input dynamical
matrix results in notable change in the phonon lifetime
(inverse linewidth); the lifetime becomes the longest

(shortest) with the SC1 (QP[0]) frequency. When the
phonon frequency is overestimated, the scattering phase
space will be underestimated because of a smaller occu-
pation number nqν ¼ ½exp ðβℏωqνÞ − 1�−1. Besides, the
strength of the three-phonon interaction will be smaller
due to the weaker hybridization [52]. These combined
effects explain the factor of 2 difference in τqν; with the SC1
frequency, the average phonon lifetime below 50 cm−1 is
∼6.2 ps at 500 K, whereas it becomes ∼2.7 ps with the QP
[0] frequency.
We compared the calculated phonon frequency and

linewidth with the experimental values [53] for the trans-
verse acoustic modes along the G − X and G −M lines. As
shown in Fig. S5 in Supplemental Material [40], the SC1
overestimates the TA phonon frequencies, while QP[0] and
QPNL agree better with the experimental data. As for the
linewidth, the calculated Γ3ph

qν was smaller than the exper-
imental values even when the QPNL dynamical matrix was
used, which indicates the potential role of higher-order
phonon scattering processes. To examine this, we also
computed the four-phonon scattering rate Γ4ph

qν following
Refs. [54,55]. As shown in Fig. S5, the total linewidth Γqν ¼
Γ3ph
qν þ Γ4ph

qν agrees reasonably well with the experimental
values only when the QPNL dynamical matrix is used.
Next, we investigate the influence of the input dynamical

matrix on LTC of α-CsPbBr3. To this end, we evaluated the
LTC using a two-channel model as [30]

κL ¼ 1

NqV

X

qνν0

cqνωqν0 þ cqν0ωqν

ωqν þ ωqν0
vqνν0 ⊗ vqν0ν

×
Γqν þ Γqν0

ðωqν − ωqν0 Þ2 þ ðΓqν þ Γqν0 Þ2
; ð5Þ

FIG. 2. Anharmonic phonon dispersion curves and spectral
function of cubic CsPbBr3 calculated (a) below and (b) above
Tc ¼ 403 K. The white thin lines, yellow dashed lines, and cyan
solid thick lines represent the dispersion curves obtained within
the SC1 theory, QP[0] theory, and the QPNL theory, respectively.
The color map shows the spectral function AqðωÞ. The volume is
set to V ¼ V0.

(a)

(b)

(c)

FIG. 3. Lattice thermal conductivity and phonon lifetimes in
α-CsPbBr3 calculated using different dynamical matrices as
inputs. (a) Lattice thermal conductivity κL [Eq. (5)] above the
theoretical Tc values. (b) Phonon lifetimes τqν ¼ ℏ=2Γ3ph

qν at
500 K. (c) Spectral decomposition of the Peierls term calculated
at 500 K. All calculations are done with V ¼ VSðTÞ.
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where cqν is the mode heat capacity, V is the unit-cell
volume, and vqνν0 ¼ 1=2ðωqνωqν0 Þ−1=2hηqνj∂qCðqÞjηqν0 i is
the interband generalization of the group velocity [56] with
CðqÞ and jηqνi being the dynamical matrix and polarization
vector, respectively. The band diagonal term (ν ¼ ν0)
corresponds to the Peierls contribution (κP) within the
relaxation-time approximation, whereas the off-diagonal
term gives the coherent contribution (κC); the total LTC is
given as κL ¼ κP þ κC. When calculating the phonon
frequency and vqνν0 , we used the effective second-order
force constants obtained from either the SC1 or QP
eigenfrequencies and eigenvectors. Simoncelli, Marzari,
and Mauri applied Eq. (5) to orthorhombic CsPbBr3,
combined with Γqν ≈ Γ3ph

qν , and obtained excellent agree-
ments with experimental LTC [30]. Hence, we employ the
same approximation for Γqν. Note that the inclusion of the
four-phonon scattering process in Eq. (5) is technically
straightforward, but it can underestimate LTC of strongly
anharmonic materials because of the missing contributions
from anharmonic heat flux [57].
Figure 3(a) shows the temperature-dependent κL calcu-

lated with three different dynamical matrices: SC1, QP[0],
and QPNL. As seen in the figure, SC1 gives the largest κL,
while QP[0] gives the smallest values. The difference
mostly originated from κP, and κC was rather insensitive
to the adopted dynamical matrix. The calculated phonon
lifetimes and the spectra of the Peierls term κPðωÞ are
shown in Figs. 3(b) and 3(c), respectively. The κPðωÞ data
clearly show that κP is dominated by the low-frequency
phonons below 50 cm−1, and the difference among
SC1, QP[0], and QPNL is most notable in this frequency
region. From Fig. 2 (right panel), the phonon group
velocity vqνν does not change appreciably in the three
QP theories at 500 K. Indeed, the difference in κP can be
attributed to the phonon lifetime. Consequently, a factor of
2 difference was observed also in κP: 0.68, 0.30, and
0.44 W/mK with the SC1, QP[0], and QPNL frequencies,
respectively. Interestingly, we found that the phonon life-
times τqν ¼ ℏ=2Γ3ph

qν of α-CsPbBr3 are as large as those
in α − SrTiO3 [17], whose LTC at 500 K is larger than
7 W/mK. Hence, the small group velocity also contributes
to realizing ultralow LTC of α-CsPbBr3, in accord with the
previous interpretation [58].
For the coherent term κC, we obtained 0.051, 0.065, and

0.060 W/mK at 500 K using SC1, QP[0], and QPNL
dynamical matrices, respectively; these values were nearly
temperature independent above Tc. In comparison to the κC
value of 0.3 W=mK (300 K) reported for the orthorhombic
CsPbBr3 [30], the coherent term for the cubic phase was
smaller by a factor of ∼5–6. This is reasonable considering
that the number of phonon branches is 15 in the cubic
phase, while it is 60 in the orthorhombic phase. Even for the
cubic phase, the coherent term accounts for more than 13%

of the total LTC when the QP dynamical matrix is used and,
therefore, should not be neglected.
The κL values at 500 K predicted by the SC1, QP[0], and

QPNL theories are 0.73, 0.37, and 0.50 W=mK, respec-
tively. Although no experimental κL value is available for
α-CsPbBr3, we expect it would be similar to that of the
orthorhombic phase κL ∼ 0.4 W=mK at 300 K [59]. More
recently, κL ∼ 0.46 W=mK at 500 K has been reported for
another all-inorganic halide perovskite α-CsSnBr3 [10].
Since the phonon frequencies of α-CsPbBr3 and α-CsSnBr3
are quantitatively similar, a similar κL value is expected for
α-CsPbBr3. Judging from these estimations, SC1 appears
to overpredict the LTC of α-CsPbBr3, and the predictions
by the QP theories look more reasonable. We expect that
calculations based on QPNL are the most reliable, at least
theoretically, because it best represents the peak positions
of AqðωÞ. This expectation should be validated by a future
experimental study.
Although the developed QPNL approach still has a

limitation in describing lattice dynamics involving dynami-
cal disorder, it offers an improved description of an
effective one-body Hamiltonian of anharmonic systems
and, thereby, paves the way to more reliable predictions of
various phonon-related properties in functional materials.

This study is partly supported by JSPS KAKENHI Grant
No. 21K03424.
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