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The crossover from quantum to semiclassical behavior in the seminal Rabi model of light-matter
interaction still, surprisingly, lacks a complete and rigorous understanding. A formalism for deriving the
semiclassical model directly from the quantum Hamiltonian is developed here. Working in a displaced
Fock-state basis jα; ni, the semiclassical limit is obtained by taking jαj → ∞ and the coupling to zero. This
resolves the discrepancy between coherent-state dynamics and semiclassical Rabi oscillations in both
standard and ultrastrong coupling and driving regimes. Furthermore, it provides a framework for studying
the quantum-to-semiclassical transition, with potential applications in quantum technologies.
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Studies of the physics of a two-level system interacting
with an electromagnetic field, as typified by the semi-
classical and quantum Rabi models, date back to the 1960s
[1–3]. Both models have been studied extensively and their
predictions are well known. Likewise, it is well known that
taking the limit of large photon numbers in the quantum
model does not straightforwardly reproduce the semiclass-
ical results, in an apparent contradiction of the correspon-
dence principle [4–8]. Despite its long and illustrious
history, this puzzle in quantum optics has yet to be resolved
in a way that is mathematically and physically satisfactory.
For a field alone, defining the transition from quantum to

classical is straightforward. The coherent state is known to
be the “most classical” of the quantum field states, and its
behavior becomes more classical as the average number of
photons increases [9]. When the field is coupled to a
discrete quantum system, however, the question of corre-
spondence between the quantum and classical models for
the field becomes more complicated [10]. The semiclassical
Rabi model within the rotating-wave approximation (RWA)
predicts simple sinusoidal Rabi oscillations of the two-level
system. In the corresponding quantum model, taking the
field to be in a “classical” coherent state famously produces
complex collapse and revival dynamics [11,12]. It is instead
the highly nonclassical photon number states, known as
Fock states, that lead to sinusoidal oscillations resembling
the predictions of the semiclassical theory [4,5,7,13,14].
Further discrepancies between the quantum and semi-

classical results appear in parameter regimes beyond the
validity of the RWA, particularly when the quantum
coupling and the classical drive amplitude become large.
For a high-frequency field, the semiclassical Hamiltonian
may be written in terms of Bessel functions that depend on

the drive strength [15–18], while the quantum energy levels
are characterized by Laguerre polynomials in the coupling
strength [17,19,20]. An asymptotic relationship between the
Laguerre polynomials and the Bessel functions is often
invoked to reconcile the quantum and semiclassical pre-
dictions [21–23]; however, as discussed later, this is ques-
tionable on both mathematical and physical grounds. A
more rigorous approach requires the assumption of certain
statistical properties for the quantum field, resembling those
of a coherent state, in order to reproduce the semiclassical
results [15,24,25]. Comparing this with the RWA regime,
where coherent states lead to highly nonclassical dynamics,
highlights a further discrepancy in the existing understand-
ing of the quantum-to-semiclassical correspondence.
With the rise of quantum technology, the distinction

between quantum and classical behavior of a field inter-
acting with a two-level system, or qubit, is freighted with
practical significance. Engineered quantum devices now
routinely operate in regimes where strong single-photon
coupling at the quantum level is readily achievable [26–28].
Both ultrastrong classical driving [29–32] and ultrastrong
quantum coupling [33–35] have been experimentally dem-
onstrated. These achievements open up the possibility of
studying the quantum-to-semiclassical transition in unprec-
edented detail.
In this Letter, we develop a methodology that resolves

the question of how to reconcile the quantum and semi-
classical predictions. Applying a unitary transformation
often used in the ultrastrong coupling regime, we show that
the quantum Rabi Hamiltonian may be recast in terms of
operator-valued Bessel functions. The appearance of nor-
mal ordering in this expression suggests a connection to the
semiclassical limit by way of coherent states. Rather than
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working with coherent states alone, we write the
Hamiltonian in terms of displaced Fock states, an ortho-
normal basis set that serves as a generalization of the
coherent states. Taking the displacement amplitude to
infinity and the coupling strength to zero, keeping their
product finite, recovers the semiclassical Rabi Hamiltonian
while preserving the full quantum Hilbert space structure.
The same technique may be applied equally well to the
untransformed Rabi model, with or without the RWA;
however, working in the transformed basis exposes the
central importance of the small-coupling limit in the
quantum-to-semiclassical transition. We argue that this
constitutes a general formalism for defining the semi-
classical limit at the Hamiltonian level that is unambiguous,
mathematically rigorous, and physically intuitive. What is
more, it provides a mathematical framework that will allow
the transition to be studied in detail.
The semiclassical Rabi Hamiltonian is

ĤscðtÞ ¼
1

2
Ωσ̂z þ 2Aσ̂x cosω0t; ð1Þ

where Ω is the two-level system frequency, σ̂x;z are Pauli
matrices describing the two-level system, ω0 is the field
frequency, and A is the classical drive amplitude [36].
In the case of strong driving at high frequency, the

dynamics of the two-level system exhibits a Bessel-
function dependence on the drive amplitude. This result
may be obtained by several means, of which Shirley’s
application of Floquet theory [15] is perhaps the best
known. For our purposes, however, the most useful
approach is a unitary transformation technique [16–18].
The derivation is briefly outlined here; a full version may be
found in the Supplemental Material [37]. A transformation
is made to a rotating frame with the operator

ÛscðtÞ ¼ exp½−ið2A=ω0Þσ̂x sinω0t�; ð2Þ
which represents the exact solution for the time-evolution
operator with Ω ¼ 0 [40]. Expanding in terms of Bessel
functions, the Hamiltonian becomes

H̃scðtÞ ¼
1

2
Ωσ̂zJ0ð4A=ω0Þ þ

1

2
Ω
X∞
p¼1

σ̂zð−σ̂xÞpJpð4A=ω0Þ

× ½eipω0t þ ð−1Þpe−ipω0t�: ð3Þ
Various approximation schemes may then be employed
to derive solutions of the transformed Hamiltonian [16–
18,41]. To lowest order (i.e., neglecting the time-dependent
terms [16,17]), the frequency Ω of the two-level system
is renormalized by the coupling to the field, becoming
Ωsc

r ¼ ΩJ0ð4A=ω0Þ.
An analogous approach can be used to study the

quantum version of the Rabi Hamiltonian,

Ĥq ¼ ω0â†âþ 1

2
Ωσ̂z þ λσ̂xðâ† þ âÞ; ð4Þ

where â†ðâÞ is the raising (lowering) operator for the
quantum field and λ is the coupling strength between the

two-level system and the field [42]. Solving the Ω ¼ 0 case
yields the spin-dependent displacement transformation
[19,20]

D̂

�
−

λ

ω0

σ̂x

�
¼ exp

�
−

λ

ω0

σ̂xðâ† − âÞ
�
: ð5Þ

Under this transformation, the matrix elements of the
quantum Hamiltonian in the Fock-state basis become
[19,20]

hnþkjD̂†ĤqD̂jni¼
�
nω0−

λ2

ω0

�
δk;0þ

1

2
Ωe−2λ2=ω2

0

�
−
2λ

ω0

�
k

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n!

ðnþkÞ!

s
Lk
n

�
4λ2

ω2
0

�
σ̂zσ̂

k
x; ð6Þ

for k ¼ 0; 1; 2;… [43]. Again taking a lowest-order
approximation [44], the renormalized frequency of the
two-level systemΩq

r ¼ Ωe−2λ2=ω2
0Lnð4λ2=ω2

0Þ now depends
on the state jni of the field. The quantum model is
characterized by Laguerre polynomials in place of the
Bessel functions of the semiclassical model.
According to the broadly accepted interpretation of the

correspondence principle, the predictions of the semiclass-
ical and quantum models should agree in the limit of large
photon numbers [45,46]. In the literature, a common
approach to reconciling the quantum and semiclassical
Rabi predictions is to take n → ∞ and apply the asymptotic
relation [47] limn→∞n−pL

p
nðx=nÞ ¼ x−p=2Jpð2

ffiffiffi
x

p Þ [21–23].
Provided that λ is scaled as A=

ffiffiffi
n

p
, where A is identified as

the classical drive amplitude, the renormalized frequencies
found above become mathematically equivalent. However,
simply comparing the frequencies of the two-level system
derived from lowest-order approximations is far from a
complete correspondence. Attempting to apply a similar
argument to the Hamiltonian itself results in both math-
ematical and conceptual conundrums, as discussed later.
As we now show, a more transparent and rigorous

connection between the quantum and semiclassical equa-
tions at the Hamiltonian level can be made. The similarities
are emphasized by working in a rotating frame with respect
to the field. By putting the displacement operator [Eq. (5)]
into normal-ordered form [25,48], the transformed Rabi
Hamiltonian may, after some algebra (see Supplemental
Material [37] for details), be written as

H̃qðtÞ ¼ −
λ2

ω0

þ 1

2
Ωe−2λ2=ω2

0 σ̂z∶J0ð4λ
ffiffiffiffiffiffiffiffi
â†â

p
=ω0Þ∶

þ 1

2
Ωe−2λ2=ω2

0 σ̂z
X∞
p¼1

ð−σ̂xÞp∶
Jpð4λ

ffiffiffiffiffiffiffiffi
â†â

p
=ω0Þ

ð
ffiffiffiffiffiffiffiffi
â†â

p
Þp

× ½eipω0tâ†p þ ð−1Þpe−ipω0tâp�∶; ð7Þ
where ∶∶ denotes normal ordering without the use of
commutators, e.g., ∶ââ†∶ ¼ â†â. This represents an expan-
sion of the transformed Hamiltonian in terms of
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multiphoton transitions within the displaced basis, with
temporal frequencies determined by the number of photons
exchanged. Up to this point, no approximations have been
made; Eq. (7) is completely equivalent to the original Rabi
Hamiltonian. The form of this equation is, to our knowl-
edge, a new result. Its similarity to the semiclassical
Hamiltonian in Eq. (3) is immediately evident.
At this point, the textbook recipe for reducing the

quantum Hamiltonian to its semiclassical counterpart
dictates replacing the quantum field operators â and â†

by their classical expectation values α and α� and identify-
ing the classical drive amplitude Awith λjαj ¼ λ

ffiffiffī
n

p
, where

n̄ is the average photon number [1,7,49–51]. It is readily
seen that the untransformed semiclassical Hamiltonian (1)
may be obtained from its quantum counterpart (4) in this
way. However, applying this recipe to the transformed
Hamiltonian (7) reveals a problem: the corresponding
semiclassical model (3) is not exactly reproduced. The
two differ by a factor of e−2λ

2=ω2
0 and a constant term

−λ2=ω0, which originate from the noncommutativity of â
and â† and thus are purely quantum effects that should not
persist in the semiclassical limit [52].
We propose a more rigorous procedure for taking the

semiclassical limit, inspired by an approach introduced by
Mollow [53] for calculating radiation scattering and later
discussed by Pegg [54] and used by Knight and Radmore

[55] and Berman and Ooi [56] to study coherent-state
collapse and revival dynamics in the Jaynes-Cummings
model. A unitary transformation D̂ðαÞ ¼ exp½αâ† − α�âÞ�
is applied directly to the Hamiltonian. This generates a
displacement of the field, which may be interpreted as a
classical drive [53]. The vacuum field state j0i in this
picture corresponds to the coherent state jαi in the original
basis. Mathematically, this is equivalent to writing the
Hamiltonian in the displaced Fock-state basis jα; ni≡
D̂ðαÞjni. The quantum Rabi Hamiltonian (in the rotating
frame) transforms as

D̂†ðαÞĤqðtÞD̂ðαÞ ¼ 1

2
Ωσ̂z þ λσ̂xðeiω0tα� þ e−iω0tαÞ

þ λσ̂xðeiω0tâ† þ e−iω0tâÞ: ð8Þ

The coupling splits into two terms, the first of which is the
standard semiclassical driving term, while the second is the
quantum interaction term. Taking the limit λ → 0 while
letting α → ∞ eliminates the quantum coupling term,
reproducing the semiclassical Hamiltonian [57,58].
Less trivially, the same idea may be applied to the

Bessel-function form of the quantum Hamiltonian (7).
The matrix elements H̃nþk;n

q ðtÞ ¼ hα; nþ kjH̃qðtÞjα; ni
(k ¼ 0; 1;…) are given by (see derivation in
Supplemental Material [37])

H̃nþk;n
q ðtÞ ¼ −

λ2

ω0

δk;0 þ
1

2
Ωe−2λ2=ω2

0

�
−
2λ

ω0

�
k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n!

ðnþ kÞ!

s
Lk
n

�
4λ2

ω2
0

�
×

�
σ̂z

�
α

jαj
�

k
Jkð4λjαj=ω0Þ

þ
X∞
p¼1

σ̂zð−σ̂xÞp
�
ð−1Þkeipω0t

�
α�

jαj
�

p−k
Jp−k

�
4λjαj
ω0

�
þ ð−1Þpe−ipω0t

�
α

jαj
�

pþk
Jpþk

�
4λjαj
ω0

���
: ð9Þ

Both quantum and semiclassical features may be iden-
tified in this expression. The Laguerre polynomials arise
from the quantum model: as jαj → 0, Jkð4λjαj=ω0Þ → δk;0
and the Hamiltonian in the standard Fock-state basis is
recovered. The Bessel functions, as previously discussed,
are characteristic of semiclassical behavior.
Taking the limit λ → 0, jαj → ∞ with λjαj held fixed, the

off-diagonal terms of Eq. (9) vanish (see Supplemental
Material [37]) and Eq. (9) reduces to a tensor product of the
semiclassical Hamiltonian with the identity operator Îf for
the quantum field,

H̃qðtÞ → H̃scðtÞ ⊗
X∞
n¼0

jα; nihα; nj ¼ H̃scðtÞ ⊗ Îf: ð10Þ

The full Hilbert space structure of the quantum model is
preserved, but the two-level system now obeys an effective
semiclassical Hamiltonian independent of the quantum
state of the field.

Based on these results, we propose a new recipe for
reducing the quantum Rabi Hamiltonian to the correspond-
ing semiclassical model: (1) Transform to a rotating frame
with respect to the field mode. (2) Expand in the displaced
Fock-state basis jα; ni. (3) Take the limit λ → 0, jαj → ∞
such that λjαj remains constant. The semiclassical drive
amplitude A corresponds to λjαj. The semiclassical
Hamiltonian is thus obtained directly from the quantum
Hamiltonian, without specifying a particular initial state for
the quantum field or imposing assumptions about its
statistical properties. Since the Hilbert space structure is
maintained and the procedure involves a well-defined
mathematical limit, this approach opens up the possibility
of studying the crossover from quantum to semiclassical
behavior by examining quantum perturbations to the semi-
classical Hamiltonian.
The two key ingredients are the choice of basis states and

the form of the mathematical limits. As coherent states are
the most classical states of a quantized field, it is natural to
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expect them to be involved. The displaced Fock states jα; ni
may be viewed as interpolating between the semiclassical
coherent states jαi and the eigenstates jni of the quantized
field. Unlike the overcomplete set of coherent states, the set
fjα; nig with fixed α forms an orthonormal basis set with
properties similar to the Fock-state basis. For n > 0, these
states are distinctly nonclassical. Nevertheless, we argue
that the displaced Fock states constitute the correct basis for
carrying out the semiclassical limit [59].
To support this claim, let us first examine the time

evolution of jα; ni. Upon transforming back out of the
rotating frame with respect to the field Hamiltonian,
the states become time dependent: e−iω0tâ†âjα; ni ¼
e−inω0tjαe−iω0t; ni. Defining a general time-dependent state
vector for the field jψðtÞi ¼ P

m cmðtÞe−imω0tjαe−iω0t; mi
and a spin state jϕi, the time evolution generated by the
correspondingly transformed Hamiltonian may be
expressed in terms of the matrix elements given in Eq. (9),

X∞
m¼0

i_cmðtÞjαe−iω0t; mijϕi

¼
X∞
m¼0

cmðtÞH̃m;m
q ðtÞjαe−iω0t; mijϕi

þ
X∞
m¼0

X∞
k¼1

cmðtÞe−ikω0tH̃mþk;m
q ðtÞjαe−iω0t; mþ kijϕi

þ
X∞
m¼0

Xm
k¼1

cmðtÞeikω0tH̃m−k;m
q ðtÞjαe−iω0t; m − kijϕi:

ð11Þ

An initial state jαe−iω0t; ni will evolve over time into a
superposition of displaced Fock states. In the semiclassical
limit, however, the off-diagonal terms of H̃q vanish and the
basis states jαe−iω0t; mi become uncoupled. A field state
jαe−iω0t; ni then undergoes intrinsic time evolution corre-
sponding to a rotation in phase space—such that the
expectation values of operators obey the classical harmonic
oscillator equations of motion—but its amplitude remains
constant. Meanwhile, the spin obeys an effective
Hamiltonian that is independent of the quantum state of
the field. The spin and field remain in a separable state at all
times: precisely the expected semiclassical behavior.
This does not, however, imply that all of the displaced

Fock states may be considered equally classical. The
dispersion of the position and momentum operators in
jα; ni scales as n, so states with n > 0 exhibit greater
quantum fluctuations than the minimum imposed by the
uncertainty principle; they may also have negative-valued
Wigner functions, another hallmark of nonclassical behavior.
Off-diagonal terms in H̃q that couple jα; ni with jα; nþ ki
scale as ðλ ffiffiffi

n
p Þk. This suggests that, for finite values of α and

λ, leakage into different states happens on faster timescales

for larger n. Hence the semiclassical evolution of the
displaced Fock states becomes increasingly fragile against
quantum corrections as n increases.
Turning next to the limits, taking the field amplitude (as

measured by the average photon number or coherent-state
amplitude) to infinity is widely assumed to correspond to
the correct semiclassical limit [5–7,13,14,46,60]. In our
formalism, this is accounted for by the limit jαj → ∞.
(Note, however, that α here serves as a continuous
c-number variable that parametrizes a unitary transforma-
tion and cannot, in general, be identified with the average
photon number [61].) By contrast, the small-coupling limit
λ → 0 is widely neglected in the literature, apart from an
occasional mention that this limit allows the coherent-state
dynamics in the Jaynes-Cummings model to be reconciled
with the semiclassical predictions (e.g., [6,62,63]; a more
careful discussion is found in [64]). Working in the trans-
formed basis defined by Eq. (5) reveals the central necessity
of this limit. It is, in fact, the λ → 0 limit that eliminates the
quantum terms from the Hamiltonian; taking jαj → ∞ is
only needed to ensure that the classical drive amplitude
does not vanish. The physical interpretation is clear and
intuitive: in the semiclassical limit, not only must the field
become classical, but the interaction of the two-level
system with individual photons must become negligible.
It is worth noting that the semiclassical limit does not

automatically reduce to what would be obtained from the
Jaynes-Cummings model (JCM), although the JCM is
commonly thought of as the weak-coupling limit of the
full Rabi model. At the most basic level, this is because the
quantum RWA requires the assumption of near-resonance
(ω0 ≈Ω) as well as weak coupling (λ=ω0 ≪ 1), whereas
the formalism presented here places no restriction on the
values of ω0 and Ω. There is a more subtle point, though.
Applying our recipe to the Jaynes-Cummings Hamiltonian
produces the semiclassical Rabi Hamiltonian within the
RWA. However, the validity of the semiclassical RWA
requires the driving A to be weak. The procedure presented
here for taking the semiclassical limit places no constraints
on the value of A ¼ λjαj, so recovering the semiclassical
rotating-wave dynamics is not guaranteed when starting
from the quantum Rabi model [65].
Considering these limits also clarifies the relationship

between ultrastrong coupling in the quantum model and
ultrastrong driving in the semiclassical model. As the
classical drive amplitude is A ¼ λjαj, strong driving may
be obtained by taking either the quantum coupling λ or the
field amplitude α (or both) to be large [51]. Within the
theoretical framework established here, λmust go to zero in
the semiclassical limit. Consequently, a semiclassical limit
for ultrastrong quantum coupling cannot, in principle, exist.
While the case of strong semiclassical driving parallels that
of strong quantum coupling in the sense illustrated in Fig. 1,
the semiclassical drive must be provided by a large ampli-
tude field with a vanishingly small single-photon coupling.
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Intriguingly, the same recipe may be used to derive
the semiclassical transformation operator ÛscðtÞ from
the quantum operator D̂½ð−λ=ω0Þσ̂x� (see Supplemental
Material [37]). This completes the correspondence
between the quantum and semiclassical cases, as summa-
rized in Fig. 1. It furthermore suggests that the procedure
developed here for the specific case of the Rabi model
may have wider applicability to related models of light-
matter interaction [64].
To conclude, we have developed a mathematically

rigorous and physically intuitive method for obtaining
the semiclassical Rabi model from the underlying quantum
model at the Hamiltonian level. The arguments presented
here indicate that the semiclassical limit emerges most
naturally when the quantum field is expressed in the basis
of displaced Fock states. The time evolution of these states
converges to the expected semiclassical dynamics when the
appropriate mathematical limit is carried out. This approach
appears almost trivial when applied to the standard form of
the Rabi Hamiltonian. A more compelling case, however,
emerges from a transformed model in which the quantum
Rabi Hamiltonian is expressed in terms of operator-valued
Bessel functions. The derivation of this form, which
constitutes a notable result in its own right, parallels the
Bessel-function expansion that has long been known for the
semiclassical model.
The formalism presented here resolves the long-standing

question in quantum optics theory regarding the emergence
of the semiclassical limit from the quantum Rabi model.
Importantly, it is equally applicable in both the standard

parameter regime (including the Jaynes-Cummings model)
and the ultrastrong coupling and driving regimes that have
attracted increasing theoretical and experimental interest in
recent years. As the full quantum Hilbert space structure is
preserved in the process of taking the semiclassical limit,
the method provides a natural framework for calculating
quantum corrections to the semiclassical dynamics. This
will enable studies of the effect of field quantization on
operations where a classical driving field is usually
assumed, a situation of considerable experimental rel-
evance in cavity and circuit QED and related quantum
technologies.
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