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Molecules have long been known to align in moderately intense, far off-resonance laser fields with
a large variety of applications in physics and optics. We illustrate and describe the physical origin of
a previously unexplored phenomenon in the adiabatic alignment dynamics of molecules, which is
fundamentally interesting and also has an important practical implication. Specifically, the intensity
dependence of the degree of adiabatic alignment exhibits a threshold behavior, below which molecules are
isotropically distributed rotationally and above which the alignment rapidly reaches a plateau. Furthermore,
we show that both the intensity and the temperature dependencies of the alignment of all linear molecules
exhibit universal curves and derive analytical forms to describe these dependencies. Finally, we illustrate
that the alignment threshold occurs very generally at a lower intensity than the off-resonance ionization
threshold, a numerical observation that is readily illustrated analytically. The threshold behavior is
attributed to a tunneling mechanism that rapidly switches off at the threshold intensity, where tunneling
between the potential wells corresponding to the two orientations of the aligned molecules becomes
impossible. The universal threshold behavior of molecular alignment is a simple phenomenon, but one that
was not realized before and can be readily tested experimentally.
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Molecular alignment in moderately intense laser fields has
been the focus of interest for over two decades, both for its
fundamental value and for a large variety of applications,
including enhancement of high harmonic generation [1,2],
orbital imaging [3–7], investigation of orientation dependent
ionization rates and patterns [8–13], control of laser fila-
mentation [14–16], development of long range order in
molecular assembly [17], control of electron and energy
transfer [18], and more. The mathematical framework for
describing molecular alignment by moderately intense laser
fields in both adiabatic (long pulse) and nonadiabatic (short
pulse duration compared to the rotational periods) was
developed in the mid 1990s [19,20] and was since extended,
generalized, and applied in a vast number of experimental
and numerical publications [21–23]. Essentially all this work
has been in the nonadiabatic domain.
Here, we illustrate a universal threshold behavior in

adiabatic molecular alignment, below which molecules are
isotropically distributed and above which the alignment
rapidly saturates at its maximum value; see Fig. 1 (left
panels). This phenomenon applies to all molecules (that can
be aligned), regardless of their symmetry. The interest in
the threshold phenomenon is due to both the interesting
underlying fundamental physics involved (see below) and
the implication to the generality of molecular alignment:
while both nonresonant alignment and nonresonant ioniza-
tion exhibit threshold behaviors, the alignment threshold
is shown below to occur at a lower intensity (by location
of the threshold we refer to the inflection point in the
dependence of the alignment on the intensity). Because

nonresonance ionization is the major competing process
that upper bounds the degree of alignment (at least for
small and mid-sized molecules) this finding implies that
adiabatic alignment is much more broadly applicable than
previously thought.
We show also that both the intensity and the temperature

dependencies of linear alignment follow universal curves
and derive simple analytical forms for these dependencies.
These universal intensity and temperature dependencies
imply that calculation of adiabatic alignment for an arbitrary
molecule, in general a numerically costly task, can be made
trivial. Finally, we discuss the physical significance of the
universal intensity and temperature dependencies.
The total Hamiltonian is given as

Ĥtot ¼ Ĥrot þ Ĥind½ε⃗ðtÞ�; ð1Þ

where Ĥrot is the field-free rotational Hamiltonian (e.g.,
[22,24]). The field-matter interaction is the induced
Hamiltonian, Ĥind, written in the case of a nonresonant
field as [22]

Ĥind ¼ −
1

4

X

ρ;ρ0
εραρρ0ε

�
ρ0 ; ð2Þ

where ρ; ρ0 ¼ fx; y; zg are the space-fixed Cartesian coor-
dinates, we wrote the laser electric field as ϵðtÞ ¼
1
2
εðtÞ expðiωtÞ þ c:c:, ω is the laser frequency, and αρρ0

are components of the molecular polarizability tensor in the
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space-fixed frame. In the case considered here, the laser
field is linearly polarized, (ρ ¼ ρ0 ¼ z), and Eq. (2) sim-
plifies as

Ĥind ¼ −
ε2ðtÞ
4

½αZX cos2 θ þ αYX sin2 θ sin2 χ�; ð3Þ

where αkk
0 ¼ αkk − αk0k0 , αkk are the diagonal components

of the body-fixed polarizability, θ is the polar Euler angle
between the space- and body-fixed z axes, and χ is the
azimuthal Euler angle for rotation about the body-fixed z
axis. In the case of linear and symmetric top molecules,
Ĥind simplifies further as

Ĥind ¼ −
1

4
ε2ðtÞΔα cos2 θ; ð4Þ

where Δα, the polarizability anisotropy, is the difference
between the polarizability components parallel and
perpendicular to the molecular axis.

The time-dependent Schrödinger equation subject to
the Hamiltonian Eqs. (1), (3) (in the case of an asymmetric
top) and Eqs. (1), (4) (in the case of a symmetric or
linear top) is cast in the form of a set of coupled
differential equations by expanding the wave function
in a complete basis of rotational eigenstates appropriate
to the molecular symmetry [25]. The degree of alignment
of the molecular axis (the body-fixed z axis) to the
field polarization axis (the space-fixed z axis) is quantified
through the conventional expectation value hcos2 θiðtÞ ¼
hΨðtÞj cos2 θjΨðtÞi, where ΨðtÞ is the time-dependent
wave packet.
Figure 2 shows the maximum achieved alignment for N2,

starting from the rotational ground state, during a Gaussian
pulse of varying duration. In the short pulse (impulse) limit,
the alignment depends only on the fluence (rather than on the
pulse shape, duration, and peak) and hence the intensity
needed togenerate a given alignment is inversely related to the
pulse duration. Upon turn-on of the adiabatic mechanism,
where the pulse duration exceeds the rotational period, a
striking threshold behavior is observed. At higher intensities
the alignment remains invariant to changes in the intensity.
Figure 1(a) (left panel) shows the average alignment,

hcos2 θi, versus intensity for adiabatic alignment of several
linear molecules, where the threshold behavior is evident.
More interestingly, the alignment characteristics of all
linear molecules follow a single universal curve when
plotted versus the dimensionless interaction parameter
ε2Δα=Be, Be being the rotational constant. Figure 1 (left
panels) illustrates that a calculation of the adiabatic dynamics
(a numerically costly task for either kBT ≫ Be, kB being the
Boltzmann constant, or ε2Δα ≫ Be) can be avoided, as the
alignment can be simply read off the universal plot.
Furthermore, we show below that the alignment can be
determined from an analytical universal equation. The right
panels of Fig. 1 show the eigenvalues of the complete
Hamiltonian (with the field-matter interaction included),
determined by diagonalizing that Hamiltonian, as a function

10 100 100 1000 10000
Pulse FWHM (fs)

In
te

ns
ity

  (
W

cm
2 )

0 4

0 5

0 6

0 7

0 8

0 9

1
Maximum Alignment ( cos2 ) for N2

1010

1011

1012

1013

1014

FIG. 2. Maximum alignment of N2 during a Gaussian pulse.
The plot includes only data acquired while the pulse is on, thus
excluding a revival structure.
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FIG. 1. Alignment thresholds and rotational energies (eigenval-
ues of the complete Hamiltonian) (a) for linear molecules (in this
example, CO with Δα ¼ 5.42 Bohr3, N2 with Δα ¼ 9.28 Bohr3,
Cl2 with Δα ¼ 36.16 Bohr3, HBr with Δα ¼ 11.2 Bohr3, HF
with Δα ¼ 3.27 Bohr3, and I2 with Δα ¼ 59.69 Bohr3), and
(b) for symmetric top molecules (in this example, CHI3 with
Δα ¼ 13.16 Bohr3). The absolute values of the eigenvalues are
given to allow the logarithmic scale. Panel (a) shows that, when
plotted as a function of a reduced interaction parameter ε2Δα=Be,
the alignment exhibits a universal curve. Panel (b) shows that
temperature shifts the threshold intensity without altering its shape.
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of the intensity. The significance of these eigenenergies is
discussed below. Alignment thresholds are not unique to
linear molecules. Figures 1(b) and 3 illustrate that they are
exhibited for all molecular symmetries.
More usefully, the threshold behavior applies at all

rotational temperatures, with the location of the threshold
fully determined by the polarizability anisotropy and
the reduced temperature kBT=Be. Figure 4, showing the
location of the alignment threshold as a function of the
(inverse of the) reduced temperature, illustrates that
the temperature dependence of the alignment of all linear
molecules falls on a single universal curve. The solid curve
in Fig. 4 shows the result of fit of the data to the form
aðBe=kBTÞb þ c, where a, b, and c are fit parameters and
the outcome b ¼ −1 confirms the linearity in T. The linear
dependence of the threshold intensity on the temperature is
shown below to result from the dependence of the effective
potential on the rotational states populated thermally before
the laser pulse.
A complementary view of the role played by the rota-

tional temperature of the initially prepared molecule is
given in Fig. 1(b) (left panel), which illustrates that the
rotational energy shifts the average alignment curve with-
out modifying its shape. The threshold shift explains the
extreme sensitivity of the alignment to the initial rotational
temperature, illustrated in the experimental alignment
literature [26–28].

The threshold behavior of hcos2θi results from a tunnel-
ing phenomenon. The laser-induced potential energy cre-
ates two potential minima corresponding to orientations
of the molecule at θ ¼ 0 and π, which are separated by a
potential barrier at π=2. At low intensities, where the
induced potential is smaller than the rotational energy,
the molecule is free to rotate, nearly unhindered by the
barrier, and the alignment parameter is essentially constant
at its isotropic value. As the intensity increases, the field-
induced barrier grows above the rotational energy and the
free rotation is replaced by tunneling. Further increase of
the intensity fully localizes the probability density in the
aligned configurations. The interplay between the laser-
induced potential barrier and the rotational energy, which
results in the threshold phenomenon, is illustrated for an
asymmetric top in Fig. 3. Here, the induced potential
energy, Eq. (3), is shown as a contour map with contours
(white to red) indicating the values of the rotational
eigenenergies of the complete Hamiltonian. The alignment
is seen to exhibit a threshold at the intensity with which the
interaction potential energy surpasses the eigenenergies.
To substantiate the tunneling mechanism and derive a

closed-form expression for the alignment, we illustrate in
the Supplemental Material [29] that the laser-induced
potential energy barrier can be appropriately approximated
by an Eckart potential [30], which admits an analytical
solution for the tunneling coefficient. We show that the

FIG. 3. Top and bottom: rotational eigenvalues (eigenvalues of the complete Hamiltonian) as contour maps and wave packets for an
asymmetric top molecule (in this example, C6H5I). For the wave packet visualization, the rotation about the internal axis (χ) is set to
zero. Center: the corresponding average alignment as a function of the intensity.
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alignment follows the tunneling curve, increasing from its
isotropic value to close to unity as the tunneling probability
decreases through a threshold to zero.
The linear behavior of the threshold versus the reduced

rotational temperature results from the dependence of
the effective potential on the competition between the
interaction strength and the centrifugal barrier produced
by the rotational levels that dominate the thermal
distribution of the initial state. Specifically, Barrier ¼
½ð−Δαε2Þ=4Be�cos2θ þ ðM2=sin2θÞ, where M is the mag-
netic quantum number. Hence, for T > 0, the field-matter
interaction ∝ ε2 must dominate over the centrifugal barrier
∝ M2

max ¼ J2i;max, where Ji;max is the thermally populated
angular momentum level dominating the initial Boltzmann
distribution. For large Ji (Ji ≫ 1), the rotational energy EJi
is proportional to J2i =T, and thus the alignment threshold is
expected to increase linearly with temperature, as observed.
The universal alignment threshold of molecules is a

fascinating phenomenon but has in addition a ramification
for future alignment experiments and for the generality
of alignment as a tool. In the gas phase the degree of
alignment is upper-bound by the onset of nonresonant
ionization. The latter process is an intensively studied and
well-understood problem, which exhibits a threshold
dependence on the intensity, reflecting the onset of tunnel-
ing via the barrier formed when the laser electric field is
added to the Coulomb field. The critical question is thus if
the alignment threshold occurs at a substantially lower
intensity than the ionization threshold and to what extent
the answer to this question is general.
Qualitative considerations suggest that the answer is

affirmative. Alignment relies on the polarizability tensor,
which measures the ability of the field to distort the bound
electron cloud. Tunnel ionization requires the field to bend
the Coulomb potential sufficiently for the electron to tunnel
out. This suggests that the alignment threshold substantially
precedes the tunnel ionization threshold. Quantitative

calculations and measurements support this qualitative
anticipation, as illustrated in Fig. 5.
Here, ionization saturation intensities for various mol-

ecules are plotted against their alignment thresholds. For all
molecules we have considered, the ground state alignment
threshold is observed at an intensity over an order of
magnitude smaller than the ionization threshold. We note
that the ionization experiments in Fig. 5 correspond to
pulse durations ranging from femtoseconds to nanosec-
onds, where experiments in iodine-containing aromatic
compounds [26] used adiabatic pulses, and for nitrogen
ionization experimental results are available over a wide
range of pulse durations [34–37]. For the short pulse case,
the ionization thresholds in Fig. 5 are likely to overestimate
the ionization thresholds with pulse durations exceeding
the rotational period, but given the large disparity between
the ionization and alignment threshold intensities seen in
Fig. 5, the alignment threshold intensity is expected to
remain well below the relevant, long-pulse ionization
threshold.
Summarizing, we illustrated a fascinating phenomenon

in the adiabatic alignment dynamics of molecules, namely,
a threshold dependence of the alignment on the laser
intensity, which applies to all molecules. Both the align-
ment intensity dependence and the dependence of the
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FIG. 5. Ionization saturation intensities plotted against alignment
thresholds for a variety of molecules. All values lie an order of
magnitude or more above the black line (which corresponds to
equal ordinate and abscissa), illustrating that at nonresonant
frequencies, alignment takes place at an order of magnitude or
more lower intensity than ionization for all explored systems. The
black outlined points show numerical results obtained within the
Perelomov, Popov and Terent’ev theory for the methyl halides and
within the strong field approximation for the other molecules. The
remaining results are experimental. The methyl halides are found
in Ref. [31], phenyl halides and C6H5CN in Ref. [32], unsub-
stituted hydrocarbons in [33], F2 [34], N2 [34–37], O2 [34,37,38],
I2 [39], and CO [37].

PHYSICAL REVIEW LETTERS 129, 183201 (2022)

183201-4



threshold intensity on the rotational temperature are uni-
versal. Further, both dependencies are described by simple
analytical expressions that could replace heavy numerical
calculations. Underlying the threshold effect is a barrier
tunneling mechanism. In addition to its fundamental
interest, the threshold phenomenon carries an implication
for the value of alignment as a general tool, as we show that
the alignment threshold precedes that of the ionization as
the intensity increases at nonresonant frequencies. This
generality will be particularly important as alignment is
extended to large polyatomic systems.

We thank the Department of Energy (Award No. DE-
FG02-04ER15612/0013) for support of the research lead-
ing to this manuscript.
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